/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pooling_builder.h" #include "frameworks/native/transform.h" #include "frameworks/native/validation.h" namespace OHOS { namespace NeuralNetworkRuntime { namespace Ops { static const int INPUT_NUM = 1; static const int OUTPUT_NUM = 1; static const int NUM_ELEMENT_PAD_MODE = 1; static const int NUM_ELEMENT_PAD_LIST = 4; static const int ACTIVATION_LENGTH = 1; OH_NN_ReturnCode PoolingBuilder::PoolingBuild(const std::vector& paramsIndex, const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { if (m_isBuild) { LOGE("[PoolingBuilder] PoolingBuild failed, operation has been build, cannot build again."); return OH_NN_OPERATION_FORBIDDEN; } // Set input and output OH_NN_ReturnCode returnCode = SetInputAndOutput(inputsIndex, outputsIndex, allTensors); if (returnCode != OH_NN_SUCCESS) { LOGE("[PoolingBuilder] PoolingBuild failed, the SetInputAndOutput failed."); return returnCode; } for (int i : paramsIndex) { std::shared_ptr tensor = allTensors[i]; switch (tensor->GetType()) { case OH_NN_AVG_POOL_KERNEL_SIZE: case OH_NN_MAX_POOL_KERNEL_SIZE: returnCode = SetKernel(tensor); break; case OH_NN_AVG_POOL_STRIDE: case OH_NN_MAX_POOL_STRIDE: returnCode = SetStrides(tensor); break; case OH_NN_AVG_POOL_PAD_MODE: case OH_NN_MAX_POOL_PAD_MODE: case OH_NN_MAX_POOL_PAD: case OH_NN_AVG_POOL_PAD: returnCode = SetPadModeOrPaddings(tensor); break; case OH_NN_AVG_POOL_ACTIVATION_TYPE: case OH_NN_MAX_POOL_ACTIVATION_TYPE: returnCode = SetActivation(tensor); break; default: LOGE("[PoolingBuilder] Build failed, param invalid, type = %d.", tensor->GetType()); return OH_NN_INVALID_PARAMETER; } if (returnCode != OH_NN_SUCCESS) { LOGE("[PoolingBuilder] PoolingBuild failed, passed invalid param."); return returnCode; } } // The quantization type of the first output determinies that of the operator. SetQuantType(outputsIndex, allTensors); return OH_NN_SUCCESS; } OH_NN_ReturnCode PoolingBuilder::SetInputAndOutput(const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { OH_NN_ReturnCode returnCode = CheckIOIndex(inputsIndex, outputsIndex, allTensors, INPUT_NUM, OUTPUT_NUM); if (returnCode != OH_NN_SUCCESS) { LOGE("[PoolingBuilder] SetInputAndOutput failed, passed invalid input or output index."); return returnCode; } m_inputsIndex = inputsIndex; m_outputsIndex = outputsIndex; return OH_NN_SUCCESS; } OH_NN_ReturnCode PoolingBuilder::SetKernel(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); // Set kernelSize if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[PoolingBuilder] SetKernel failed, the KernelSize should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[PoolingBuilder] SetKernel GetBuffer return nullptr"); return OH_NN_INVALID_PARAMETER; } const int64_t* pKernelSize = reinterpret_cast(buffer); int kernelSize = tensor->GetElementCount(); m_kernelSize.assign(pKernelSize, pKernelSize + kernelSize); return OH_NN_SUCCESS; } OH_NN_ReturnCode PoolingBuilder::SetStrides(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); // Set Strides if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[PoolingBuilder] SetStrides failed, the Strides should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[PoolingBuilder] SetStrides GetBuffer return nullptr"); return OH_NN_INVALID_PARAMETER; } const int64_t* pStrides = reinterpret_cast(buffer); int strideslSize = tensor->GetElementCount(); m_strides.assign(pStrides, pStrides + strideslSize); return OH_NN_SUCCESS; } OH_NN_ReturnCode PoolingBuilder::SetPadModeOrPaddings(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[PoolingBuilder] SetPadModeOrPaddings GetBuffer return nullptr"); return OH_NN_INVALID_PARAMETER; } size_t tensorElementCount = tensor->GetElementCount(); // Set PadMode or PadList if (tensorElementCount == NUM_ELEMENT_PAD_MODE) { // PadMode if (tensor->GetDataType() != OH_NN_INT8) { LOGE("[PoolingBuilder] SetPadModeOrPaddings failed, the type of padMode should be OH_NN_INT8."); return OH_NN_INVALID_PARAMETER; } int8_t* pPadMode = static_cast(buffer); if (!OHOS::NeuralNetworkRuntime::Validation::ValidatePadMode(*pPadMode)) { LOGE("[PoolingBuilder] SetPadModeOrPaddings failed, invalid pad mode."); return OH_NN_INVALID_PARAMETER; } m_padMode = NNToMS::TransformPadModeValue(*pPadMode); } else if (tensorElementCount == NUM_ELEMENT_PAD_LIST) { if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[PoolingBuilder] SetPadModeOrPaddings failed, the type of padList should be OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } int64_t* pPad = static_cast(buffer); // PadList m_pad.clear(); for (int i = 0; i < NUM_ELEMENT_PAD_LIST; i++) { m_pad.emplace_back(static_cast(pPad[i])); } } else { LOGE("[PoolingBuilder] SetPadModeOrPaddings failed, invalid element size of padMode or padList," "padMode should be single value, and padList should be 4."); return OH_NN_INVALID_PARAMETER; } return OH_NN_SUCCESS; } OH_NN_ReturnCode PoolingBuilder::SetActivation(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); // Set ActivationType if (tensor->GetElementCount() != ACTIVATION_LENGTH) { LOGE("[PoolingBuilder] SetActivation failed, the Activation shoule be a scalar"); return OH_NN_INVALID_PARAMETER; } if (tensor->GetDataType() != OH_NN_INT8) { LOGE("[PoolingBuilder] SetActivation failed, the ActivationType should be type OH_NN_INT8."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[PoolingBuilder] SetActivation GetBuffer return nullptr"); return OH_NN_INVALID_PARAMETER; } int8_t* pFuseData = static_cast(buffer); if (!OHOS::NeuralNetworkRuntime::Validation::ValidateFuseType(static_cast(*pFuseData))) { LOGE("[PoolingBuilder] SetActivation failed, activation input is invalid."); return OH_NN_INVALID_PARAMETER; } auto fuseType = (OH_NN_FuseType)(*pFuseData); m_activationType = NNToMS::TransfromFusionType(fuseType); return OH_NN_SUCCESS; } } // namespace Ops } // namespace NeuralNetworkRuntime } // namespace OHOS