// // Copyright 2019-2020 Mateusz Loskot <mateusz at loskot dot net> // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // #include <boost/gil.hpp> #include <boost/gil/extension/numeric/channel_numeric_operations.hpp> #include <boost/core/lightweight_test.hpp> #include <tuple> #include <type_traits> #include "test_utility_output_stream.hpp" #include "core/channel/test_fixture.hpp" namespace gil = boost::gil; namespace fixture = boost::gil::test::fixture; struct test_plus_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_plus_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(127)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_plus_integer_same_types{}); } }; struct test_plus_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; { using channel1_t = channel_t; using channel2_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types gil::channel_plus_t<channel1_t, channel2_t, channel1_t> f; BOOST_TEST_EQ(f(0, 0), channel1_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(127)); } { using channel1_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types using channel2_t = channel_t; gil::channel_plus_t<channel1_t, channel2_t, channel2_t> f; BOOST_TEST_EQ(f(0, 0), channel2_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(127)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_plus_integer_mixed_types{}); } }; struct test_plus_integer_signed_types_with_overflow { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; // Signed integer overflow is UB, so just check addition does not yield mathematically // expected value but is constrained by the range of representable values for given type. auto const max_value = gil::channel_traits<channel_t>::max_value(); gil::channel_plus_t<channel_t, channel_t, channel_t> f; BOOST_TEST_NE(f(max_value, 1), std::int64_t(max_value) + 1); BOOST_TEST_NE(f(max_value, max_value), std::int64_t(max_value) + max_value); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_signed_types>(test_plus_integer_signed_types_with_overflow{}); } }; struct test_plus_integer_unsigned_types_with_wraparound { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; // The C Standard, 6.2.5, paragraph 9 [ISO/IEC 9899:2011], states: // A computation involving unsigned operands can never overflow, because a result that // cannot be represented by the resulting unsigned integer type is reduced modulo the number // that is one greater than the largest value that can be represented by the resulting type. auto const max_value = gil::channel_traits<channel_t>::max_value(); auto const min_value = gil::channel_traits<channel_t>::min_value(); gil::channel_plus_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(max_value, 1), min_value); BOOST_TEST_EQ(f(max_value, max_value), max_value - 1); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_unsigned_types>(test_plus_integer_unsigned_types_with_wraparound{}); } }; struct test_minus_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_minus_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(73)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_minus_integer_same_types{}); } }; struct test_minus_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; { using channel1_t = channel_t; using channel2_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types gil::channel_minus_t<channel1_t, channel2_t, channel1_t> f; BOOST_TEST_EQ(f(0, 0), channel1_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(73)); } { using channel1_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types using channel2_t = channel_t; gil::channel_minus_t<channel1_t, channel2_t, channel2_t> f; BOOST_TEST_EQ(f(0, 0), channel2_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(73)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_minus_integer_mixed_types{}); } }; struct test_multiplies_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_multiplies_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(1, 1), channel_t(1)); BOOST_TEST_EQ(f(4, 2), channel_t(8)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_multiplies_integer_same_types{}); } }; struct test_multiplies_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; { using channel1_t = channel_t; using channel2_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types gil::channel_multiplies_t<channel1_t, channel2_t, channel1_t> f; BOOST_TEST_EQ(f(0, 0), channel1_t(0)); BOOST_TEST_EQ(f(4, 2), channel_t(8)); } { using channel1_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types using channel2_t = channel_t; gil::channel_multiplies_t<channel1_t, channel2_t, channel2_t> f; BOOST_TEST_EQ(f(0, 0), channel2_t(0)); BOOST_TEST_EQ(f(4, 2), channel_t(8)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_multiplies_integer_mixed_types{}); } }; struct test_divides_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_divides_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 1), channel_t(0)); BOOST_TEST_EQ(f(1, 1), channel_t(1)); BOOST_TEST_EQ(f(4, 2), channel_t(2)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_divides_integer_same_types{}); } }; struct test_divides_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; { using channel1_t = channel_t; using channel2_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types gil::channel_divides_t<channel1_t, channel2_t, channel1_t> f; BOOST_TEST_EQ(f(0, 1), channel1_t(0)); BOOST_TEST_EQ(f(4, 2), channel_t(2)); } { using channel1_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types using channel2_t = channel_t; gil::channel_divides_t<channel1_t, channel2_t, channel2_t> f; BOOST_TEST_EQ(f(0, 1), channel2_t(0)); BOOST_TEST_EQ(f(4, 2), channel_t(2)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_divides_integer_mixed_types{}); } }; struct test_plus_scalar_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_plus_scalar_t<channel_t, int, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(127)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_plus_scalar_integer_same_types{}); } }; struct test_plus_scalar_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; using channel_result_t = std::uint8_t; gil::channel_plus_scalar_t<channel_t, int, channel_result_t> f; BOOST_TEST_EQ(f(0, 0), channel_result_t(0)); BOOST_TEST_EQ(f(100, 27), channel_result_t(127)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_plus_scalar_integer_mixed_types{}); } }; struct test_minus_scalar_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_minus_scalar_t<channel_t, int, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(100, 27), channel_t(73)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_minus_scalar_integer_same_types{}); } }; struct test_minus_scalar_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; using channel_result_t = std::uint8_t; gil::channel_minus_scalar_t<channel_t, int, std::uint8_t> f; BOOST_TEST_EQ(f(0, 0), channel_result_t(0)); BOOST_TEST_EQ(f(100, 27), channel_result_t(73)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_minus_scalar_integer_mixed_types{}); } }; struct test_multiplies_scalar_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_multiplies_scalar_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 0), channel_t(0)); BOOST_TEST_EQ(f(1, 1), channel_t(1)); BOOST_TEST_EQ(f(4, 2), channel_t(8)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_multiplies_scalar_integer_same_types{}); } }; struct test_multiplies_scalar_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; using channel_result_t = std::uint8_t; gil::channel_multiplies_scalar_t<channel_t, int, channel_result_t> f; BOOST_TEST_EQ(f(0, 0), channel_result_t(0)); BOOST_TEST_EQ(f(4, 2), channel_result_t(8)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_multiplies_scalar_integer_mixed_types{}); } }; struct test_divides_scalar_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_divides_scalar_t<channel_t, channel_t, channel_t> f; BOOST_TEST_EQ(f(0, 1), channel_t(0)); BOOST_TEST_EQ(f(1, 1), channel_t(1)); BOOST_TEST_EQ(f(4, 2), channel_t(2)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_divides_scalar_integer_same_types{}); } }; struct test_divides_scalar_integer_mixed_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; using channel_result_t = std::uint8_t; // duplicates only one of fixture::channel_integer_types gil::channel_divides_scalar_t<channel_t, int, channel_result_t> f; BOOST_TEST_EQ(f(0, 1), channel_t(0)); BOOST_TEST_EQ(f(4, 2), channel_t(2)); } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_divides_scalar_integer_mixed_types{}); } }; struct test_halves_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_halves_t<channel_t> f; { channel_t c(0); f(c); BOOST_TEST_EQ(c, channel_t(0)); } { channel_t c(2); f(c); BOOST_TEST_EQ(c, channel_t(1)); } { channel_t c(4); f(c); BOOST_TEST_EQ(c, channel_t(2)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_halves_integer_same_types{}); } }; struct test_zeros_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_zeros_t<channel_t> f; { channel_t c(0); f(c); BOOST_TEST_EQ(c, channel_t(0)); } { channel_t c(2); f(c); BOOST_TEST_EQ(c, channel_t(0)); } { channel_t c(4); f(c); BOOST_TEST_EQ(c, channel_t(0)); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_zeros_integer_same_types{}); } }; struct test_assigns_integer_same_types { template <typename Channel> void operator()(Channel const&) { using channel_t = Channel; gil::channel_assigns_t<channel_t, channel_t> f; { channel_t c1(10); channel_t c2(20); f(c1, c2); BOOST_TEST_EQ(c2, c1); } } static void run() { boost::mp11::mp_for_each<fixture::channel_integer_types>(test_assigns_integer_same_types{}); } }; int main() { test_plus_integer_same_types::run(); test_plus_integer_mixed_types::run(); test_plus_integer_signed_types_with_overflow::run(); test_plus_integer_unsigned_types_with_wraparound::run(); test_minus_integer_same_types::run(); test_minus_integer_mixed_types::run(); test_multiplies_integer_same_types::run(); test_multiplies_integer_mixed_types::run(); test_divides_integer_same_types::run(); test_divides_integer_mixed_types::run(); test_plus_scalar_integer_same_types::run(); test_plus_scalar_integer_mixed_types::run(); test_minus_scalar_integer_same_types::run(); test_minus_scalar_integer_mixed_types::run(); test_multiplies_scalar_integer_same_types::run(); test_multiplies_scalar_integer_mixed_types::run(); test_divides_scalar_integer_same_types::run(); test_divides_scalar_integer_mixed_types::run(); test_halves_integer_same_types::run(); test_zeros_integer_same_types::run(); test_assigns_integer_same_types::run(); return ::boost::report_errors(); }