//======================================================================= // Copyright 2009 Trustees of Indiana University. // Authors: Michael Hansen, Andrew Lumsdaine // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include <fstream> #include <iostream> #include <set> #include <boost/foreach.hpp> #include <boost/lexical_cast.hpp> #include <boost/graph/grid_graph.hpp> #include <boost/random.hpp> #include <boost/core/lightweight_test.hpp> using namespace boost; // Function that prints a vertex to std::cout template < typename Vertex > void print_vertex(Vertex vertex_to_print) { std::cout << "("; for (std::size_t dimension_index = 0; dimension_index < vertex_to_print.size(); ++dimension_index) { std::cout << vertex_to_print[dimension_index]; if (dimension_index != (vertex_to_print.size() - 1)) { std::cout << ", "; } } std::cout << ")"; } template < unsigned int Dims > void do_test(minstd_rand& generator) { typedef grid_graph< Dims > Graph; typedef typename graph_traits< Graph >::vertices_size_type vertices_size_type; typedef typename graph_traits< Graph >::edges_size_type edges_size_type; typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor; typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor; std::cout << "Dimensions: " << Dims << ", lengths: "; // Randomly generate the dimension lengths (3-10) and wrapping boost::array< vertices_size_type, Dims > lengths; boost::array< bool, Dims > wrapped; for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { lengths[dimension_index] = 3 + (generator() % 8); wrapped[dimension_index] = ((generator() % 2) == 0); std::cout << lengths[dimension_index] << (wrapped[dimension_index] ? " [W]" : " [U]") << ", "; } std::cout << std::endl; Graph graph(lengths, wrapped); // Verify dimension lengths and wrapping for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { BOOST_TEST( graph.length(dimension_index) == lengths[dimension_index]); BOOST_TEST( graph.wrapped(dimension_index) == wrapped[dimension_index]); } // Verify matching indices for (vertices_size_type vertex_index = 0; vertex_index < num_vertices(graph); ++vertex_index) { BOOST_TEST( get(boost::vertex_index, graph, vertex(vertex_index, graph)) == vertex_index); } for (edges_size_type edge_index = 0; edge_index < num_edges(graph); ++edge_index) { edge_descriptor current_edge = edge_at(edge_index, graph); BOOST_TEST( get(boost::edge_index, graph, current_edge) == edge_index); } // Verify all vertices are within bounds vertices_size_type vertex_count = 0; BOOST_FOREACH (vertex_descriptor current_vertex, vertices(graph)) { vertices_size_type current_index = get(boost::vertex_index, graph, current_vertex); for (unsigned int dimension_index = 0; dimension_index < Dims; ++dimension_index) { BOOST_TEST( /*(current_vertex[dimension_index] >= 0) && */ // Always true (current_vertex[dimension_index] < lengths[dimension_index])); } // Verify out-edges of this vertex edges_size_type out_edge_count = 0; std::set< vertices_size_type > target_vertices; BOOST_FOREACH ( edge_descriptor out_edge, out_edges(current_vertex, graph)) { target_vertices.insert( get(boost::vertex_index, graph, target(out_edge, graph))); ++out_edge_count; } BOOST_TEST(out_edge_count == out_degree(current_vertex, graph)); // Verify in-edges of this vertex edges_size_type in_edge_count = 0; BOOST_FOREACH (edge_descriptor in_edge, in_edges(current_vertex, graph)) { BOOST_TEST(target_vertices.count(get(boost::vertex_index, graph, source(in_edge, graph))) > 0); ++in_edge_count; } BOOST_TEST(in_edge_count == in_degree(current_vertex, graph)); // The number of out-edges and in-edges should be the same BOOST_TEST(degree(current_vertex, graph) == out_degree(current_vertex, graph) + in_degree(current_vertex, graph)); // Verify adjacent vertices to this vertex vertices_size_type adjacent_count = 0; BOOST_FOREACH (vertex_descriptor adjacent_vertex, adjacent_vertices(current_vertex, graph)) { BOOST_TEST(target_vertices.count( get(boost::vertex_index, graph, adjacent_vertex)) > 0); ++adjacent_count; } BOOST_TEST(adjacent_count == out_degree(current_vertex, graph)); // Verify that this vertex is not listed as connected to any // vertices outside of its adjacent vertices. BOOST_FOREACH (vertex_descriptor unconnected_vertex, vertices(graph)) { vertices_size_type unconnected_index = get(boost::vertex_index, graph, unconnected_vertex); if ((unconnected_index == current_index) || (target_vertices.count(unconnected_index) > 0)) { continue; } BOOST_TEST( !edge(current_vertex, unconnected_vertex, graph).second); BOOST_TEST( !edge(unconnected_vertex, current_vertex, graph).second); } ++vertex_count; } BOOST_TEST(vertex_count == num_vertices(graph)); // Verify all edges are within bounds edges_size_type edge_count = 0; BOOST_FOREACH (edge_descriptor current_edge, edges(graph)) { vertices_size_type source_index = get(boost::vertex_index, graph, source(current_edge, graph)); vertices_size_type target_index = get(boost::vertex_index, graph, target(current_edge, graph)); BOOST_TEST(source_index != target_index); BOOST_TEST(/* (source_index >= 0) : always true && */ ( source_index < num_vertices(graph))); BOOST_TEST(/* (target_index >= 0) : always true && */ ( target_index < num_vertices(graph))); // Verify that the edge is listed as existing in both directions BOOST_TEST(edge( source(current_edge, graph), target(current_edge, graph), graph) .second); BOOST_TEST(edge( target(current_edge, graph), source(current_edge, graph), graph) .second); ++edge_count; } BOOST_TEST(edge_count == num_edges(graph)); } int main(int argc, char* argv[]) { std::size_t random_seed = time(0); if (argc > 1) { random_seed = lexical_cast< std::size_t >(argv[1]); } minstd_rand generator(random_seed); do_test< 0 >(generator); do_test< 1 >(generator); do_test< 2 >(generator); do_test< 3 >(generator); do_test< 4 >(generator); return boost::report_errors(); }