<sect1 id="MultiArray"><title>MultiArray Concept</title> <para>The MultiArray concept defines an interface to hierarchically nested containers. It specifies operations for accessing elements, traversing containers, and creating views of array data. MultiArray defines a flexible memory model that accomodates a variety of data layouts. </para> <para> At each level (or dimension) of a MultiArray's container hierarchy lie a set of ordered containers, each of which contains the same number and type of values. The depth of this container hierarchy is the MultiArray's <emphasis>dimensionality</emphasis>. MultiArray is recursively defined; the containers at each level of the container hierarchy model MultiArray as well. While each dimension of a MultiArray has its own size, the list of sizes for all dimensions defines the <emphasis>shape</emphasis> of the entire MultiArray. At the base of this hierarchy lie 1-dimensional MultiArrays. Their values are the contained objects of interest and not part of the container hierarchy. These are the MultiArray's elements. </para> <para> Like other container concepts, MultiArray exports iterators to traverse its values. In addition, values can be addressed directly using the familiar bracket notation. </para> <para> MultiArray also specifies routines for creating specialized views. A <emphasis>view</emphasis> lets you treat a subset of the underlying elements in a MultiArray as though it were a separate MultiArray. Since a view refers to the same underlying elements, changes made to a view's elements will be reflected in the original MultiArray. For example, given a 3-dimensional "cube" of elements, a 2-dimensional slice can be viewed as if it were an independent MultiArray. Views are created using <literal>index_gen</literal> and <literal>index_range</literal> objects. <literal>index_range</literal>s denote elements from a certain dimension that are to be included in a view. <literal>index_gen</literal> aggregates range data and performs bookkeeping to determine the view type to be returned. MultiArray's <literal>operator[]</literal> must be passed the result of <literal>N</literal> chained calls to <literal>index_gen::operator[]</literal>, i.e. <programlisting>indices[a0][a1]...[aN]; </programlisting> where <literal>N</literal> is the MultiArray's dimensionality and <literal>indices</literal> an object of type <literal>index_gen</literal>. The view type is dependent upon the number of degenerate dimensions specified to <literal>index_gen</literal>. A degenerate dimension occurs when a single-index is specified to <literal>index_gen</literal> for a certain dimension. For example, if <literal>indices</literal> is an object of type <literal>index_gen</literal>, then the following example: <programlisting>indices[index_range(0,5)][2][index_range(0,4)]; </programlisting> has a degenerate second dimension. The view generated from the above specification will have 2 dimensions with shape <literal>5 x 4</literal>. If the "<literal>2</literal>" above were replaced with another <literal>index_range</literal> object, for example: <programlisting>indices[index_range(0,5)][index_range(0,2)][index_range(0,4)]; </programlisting> then the view would have 3 dimensions.</para> <para> MultiArray exports information regarding the memory layout of its contained elements. Its memory model for elements is completely defined by 4 properties: the origin, shape, index bases, and strides. The origin is the address in memory of the element accessed as <literal>a[0][0]...[0]</literal>, where <literal>a</literal> is a MultiArray. The shape is a list of numbers specifying the size of containers at each dimension. For example, the first extent is the size of the outermost container, the second extent is the size of its subcontainers, and so on. The index bases are a list of signed values specifying the index of the first value in a container. All containers at the same dimension share the same index base. Note that since positive index bases are possible, the origin need not exist in order to determine the location in memory of the MultiArray's elements. The strides determine how index values are mapped to memory offsets. They accomodate a number of possible element layouts. For example, the elements of a 2 dimensional array can be stored by row (i.e., the elements of each row are stored contiguously) or by column (i.e., the elements of each column are stored contiguously). </para> <para> Two concept checking classes for the MultiArray concepts (<literal>ConstMultiArrayConcept</literal> and <literal>MutableMultiArrayConcept</literal>) are in the namespace <literal>boost::multi_array_concepts</literal> in <literal><boost/multi_array/concept_checks.hpp></literal>. </para> <sect2><title>Notation</title> <para>What follows are the descriptions of symbols that will be used to describe the MultiArray interface.</para> <table> <title>Notation</title> <tgroup cols="2"> <tbody> <row> <entry><literal>A</literal></entry> <entry>A type that is a model of MultiArray </entry> </row> <row> <entry><literal>a,b</literal></entry> <entry>Objects of type <literal>A</literal></entry> </row> <row> <entry><literal>NumDims</literal></entry> <entry>The numeric dimension parameter associated with <literal>A</literal>.</entry> </row> <row> <entry><literal>Dims</literal></entry> <entry>Some numeric dimension parameter such that <literal>0<Dims<NumDims</literal>. </entry> </row> <row> <entry><literal>indices</literal></entry> <entry>An object created by some number of chained calls to <literal>index_gen::operator[](index_range)</literal>.</entry> </row> <row> <entry><literal>index_list</literal></entry> <entry>An object whose type models <ulink url="../../utility/Collection.html">Collection</ulink> </entry> </row> <row> <entry><literal>idx</literal></entry> <entry>A signed integral value.</entry> </row> <row> <entry><literal>tmp</literal></entry> <entry>An object of type <literal>boost::array<index,NumDims></literal></entry> </row> </tbody> </tgroup> </table> </sect2> <sect2><title>Associated Types</title> <para> </para> <table><title>Associated Types</title> <tgroup cols="2"> <thead> <row> <entry>Type</entry> <entry>Description</entry> </row> </thead> <tbody> <row> <entry><literal>value_type</literal></entry> <entry>This is the value type of the container. If <literal>NumDims == 1</literal>, then this is <literal>element</literal>. Otherwise, this is the value type of the immediately nested containers. </entry> </row> <row> <entry> <literal>reference</literal> </entry> <entry> This is the reference type of the contained value. If <literal>NumDims == 1</literal>, then this is <literal>element&</literal>. Otherwise, this is the same type as <literal>template subarray<NumDims-1>::type</literal>. </entry> </row> <row> <entry> <literal>const_reference</literal> </entry> <entry> This is the const reference type of the contained value. If <literal>NumDims == 1</literal>, then this is <literal>const element&</literal>. Otherwise, this is the same type as <literal>template const_subarray<NumDims-1>::type</literal>. </entry> </row> <row> <entry> <literal>size_type</literal> </entry> <entry> This is an unsigned integral type. It is primarily used to specify array shape. </entry> </row> <row> <entry> <literal>difference_type</literal> </entry> <entry> This is a signed integral type used to represent the distance between two iterators. It is the same type as <literal>std::iterator_traits<iterator>::difference_type</literal>. </entry> </row> <row> <entry><literal>iterator</literal></entry> <entry> This is an iterator over the values of <literal>A</literal>. If <literal>NumDims == 1</literal>, then it models <ulink url="http://www.boost.org/doc/html/RandomAccessIterator.html"> <literal>Random Access Iterator</literal></ulink>. Otherwise it models <ulink url="./iterator_categories.html#concept_RandomAccessTraversalIterator"> Random Access Traversal Iterator</ulink>, <ulink url="./iterator_categories.html#concept_ReadableIterator"> Readable Iterator</ulink>, <ulink url="./iterator_categories.html#concept_WritableIterator"> Writable Iterator</ulink>, and <ulink url="http://www.boost.org/doc/html/OutputIterator.html"> <literal>Output Iterator</literal></ulink>. </entry> </row> <row> <entry> <literal>const_iterator</literal> </entry> <entry> This is the const iterator over the values of <literal>A</literal>. </entry> </row> <row> <entry> <literal>reverse_iterator</literal> </entry> <entry> This is the reversed iterator, used to iterate backwards over the values of <literal>A</literal>. </entry> </row> <row> <entry> <literal>const_reverse_iterator</literal> </entry> <entry> This is the reversed const iterator. <literal>A</literal>. </entry> </row> <row> <entry> <literal>element</literal> </entry> <entry> This is the type of objects stored at the base of the hierarchy of MultiArrays. It is the same as <literal>template subarray<1>::value_type</literal> </entry> </row> <row> <entry> <literal>index</literal> </entry> <entry> This is a signed integral type used for indexing into <literal>A</literal>. It is also used to represent strides and index bases. </entry> </row> <row> <entry> <literal>index_gen</literal> </entry> <entry> This type is used to create a tuple of <literal>index_range</literal>s passed to <literal>operator[]</literal> to create an <literal>array_view<Dims>::type</literal> object. </entry> </row> <row> <entry> <literal>index_range</literal> </entry> <entry> This type specifies a range of indices over some dimension of a MultiArray. This range will be visible through an <literal>array_view<Dims>::type</literal> object. </entry> </row> <row> <entry> <literal>template subarray<Dims>::type</literal> </entry> <entry> This is subarray type with <literal>Dims</literal> dimensions. It is the reference type of the <literal>(NumDims - Dims)</literal> dimension of <literal>A</literal> and also models MultiArray. </entry> </row> <row> <entry> <literal>template const_subarray<Dims>::type</literal> </entry> <entry> This is the const subarray type. </entry> </row> <row> <entry> <literal>template array_view<Dims>::type</literal> </entry> <entry> This is the view type with <literal>Dims</literal> dimensions. It is returned by calling <literal>operator[](<literal>indices</literal>)</literal>. It models MultiArray. </entry> </row> <row> <entry> <literal>template const_array_view<Dims>::type</literal> </entry> <entry> This is the const view type with <literal>Dims</literal> dimensions. </entry> </row> </tbody> </tgroup> </table> </sect2> <sect2><title>Valid expressions</title> <table><title>Valid Expressions</title> <tgroup cols="3"> <thead> <row> <entry>Expression</entry> <entry>Return type</entry> <entry>Semantics</entry> </row> </thead> <tbody> <row> <entry><literal>A::dimensionality</literal></entry> <entry><literal>size_type</literal></entry> <entry>This compile-time constant represents the number of dimensions of the array (note that <literal>A::dimensionality == NumDims</literal>).</entry> </row> <row> <entry><literal>a.shape()</literal></entry> <entry><literal>const size_type*</literal></entry> <entry> This returns a list of <literal>NumDims</literal> elements specifying the extent of each array dimension. </entry> </row> <row> <entry><literal>a.strides()</literal></entry> <entry><literal>const index*</literal></entry> <entry> This returns a list of <literal>NumDims</literal> elements specifying the stride associated with each array dimension. When accessing values, strides is used to calculate an element's location in memory. </entry> </row> <row> <entry><literal>a.index_bases()</literal></entry> <entry><literal>const index*</literal></entry> <entry> This returns a list of <literal>NumDims</literal> elements specifying the numeric index of the first element for each array dimension. </entry> </row> <row> <entry><literal>a.origin()</literal></entry> <entry> <literal>element*</literal> if <literal>a</literal> is mutable, <literal>const element*</literal> otherwise. </entry> <entry> This returns the address of the element accessed by the expression <literal>a[0][0]...[0].</literal>. If the index bases are positive, this element won't exist, but the address can still be used to locate a valid element given its indices. </entry> </row> <row> <entry><literal>a.num_dimensions()</literal></entry> <entry><literal>size_type</literal></entry> <entry>This returns the number of dimensions of the array (note that <literal>a.num_dimensions() == NumDims</literal>).</entry> </row> <row> <entry><literal>a.num_elements()</literal></entry> <entry><literal>size_type</literal></entry> <entry>This returns the number of elements contained in the array. It is equivalent to the following code: <programlisting> std::accumulate(a.shape(),a.shape+a.num_dimensions(), size_type(1),std::multiplies<size_type>()); </programlisting> </entry> </row> <row> <entry><literal>a.size()</literal></entry> <entry><literal>size_type</literal></entry> <entry> This returns the number of values contained in <literal>a</literal>. It is equivalent to <literal>a.shape()[0];</literal> </entry> </row> <row> <entry><literal>a(index_list)</literal></entry> <entry> <literal>element&</literal>; if <literal>a</literal> is mutable, <literal>const element&</literal> otherwise. </entry> <entry> This expression accesses a specific element of <literal>a</literal>.<literal>index_list</literal> is the unique set of indices that address the element returned. It is equivalent to the following code (disregarding intermediate temporaries): <programlisting> // multiply indices by strides std::transform(index_list.begin(), index_list.end(), a.strides(), tmp.begin(), std::multiplies<index>()), // add the sum of the products to the origin *std::accumulate(tmp.begin(), tmp.end(), a.origin()); </programlisting> </entry> </row> <row> <entry><literal>a.begin()</literal></entry> <entry> <literal>iterator</literal> if <literal>a</literal> is mutable, <literal>const_iterator</literal> otherwise. </entry> <entry>This returns an iterator pointing to the beginning of <literal>a</literal>.</entry> </row> <row> <entry><literal>a.end()</literal></entry> <entry> <literal>iterator</literal> if <literal>a</literal> is mutable, <literal>const_iterator</literal> otherwise. </entry> <entry>This returns an iterator pointing to the end of <literal>a</literal>.</entry> </row> <row> <entry><literal>a.rbegin()</literal></entry> <entry> <literal>reverse_iterator</literal> if <literal>a</literal> is mutable, <literal>const_reverse_iterator</literal> otherwise. </entry> <entry>This returns a reverse iterator pointing to the beginning of <literal>a</literal> reversed. </entry> </row> <row> <entry><literal>a.rend()</literal></entry> <entry> <literal>reverse_iterator</literal> if <literal>a</literal> is mutable, <literal>const_reverse_iterator</literal> otherwise. </entry> <entry> This returns a reverse iterator pointing to the end of <literal>a</literal> reversed. </entry> </row> <row> <entry><literal>a[idx]</literal></entry> <entry> <literal>reference</literal> if <literal>a</literal> is mutable, <literal>const_reference</literal> otherwise. </entry> <entry> This returns a reference type that is bound to the index <literal>idx</literal> value of <literal>a</literal>. Note that if <literal>i</literal> is the index base for this dimension, the above expression returns the <literal>(idx-i)</literal>th element (counting from zero). The expression is equivalent to <literal>*(a.begin()+idx-a.index_bases()[0]);</literal>. </entry> </row> <row> <entry><literal>a[indices]</literal></entry> <entry> <literal>array_view<Dims>::type</literal> if <literal>a</literal> is mutable, <literal>const_array_view<Dims>::type</literal> otherwise. </entry> <entry> This expression generates a view of the array determined by the <literal>index_range</literal> and <literal>index</literal> values used to construct <literal>indices</literal>. </entry> </row> <row> <entry><literal>a == b</literal></entry> <entry>bool</entry> <entry>This performs a lexicographical comparison of the values of <literal>a</literal> and <literal>b</literal>. The element type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> for this expression to be valid.</entry> </row> <row> <entry><literal>a < b</literal></entry> <entry>bool</entry> <entry>This performs a lexicographical comparison of the values of <literal>a</literal> and <literal>b</literal>. The element type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this expression to be valid.</entry> </row> <row> <entry><literal>a <= b</literal></entry> <entry>bool</entry> <entry>This performs a lexicographical comparison of the values of <literal>a</literal> and <literal>b</literal>. The element type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this expression to be valid.</entry> </row> <row> <entry><literal>a > b</literal></entry> <entry>bool</entry> <entry>This performs a lexicographical comparison of the values of <literal>a</literal> and <literal>b</literal>. The element type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this expression to be valid.</entry> </row> <row> <entry><literal>a >= b</literal></entry> <entry>bool</entry> <entry>This performs a lexicographical comparison of the values of <literal>a</literal> and <literal>b</literal>. The element type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this expression to be valid.</entry> </row> </tbody> </tgroup> </table> </sect2> <sect2><title>Complexity guarantees</title> <literal>begin()</literal> and <literal>end()</literal> execute in amortized constant time. <literal>size()</literal> executes in at most linear time in the MultiArray's size. </sect2> <sect2> <title>Invariants</title> <table><title>Invariants</title> <tgroup cols="2"> <tbody> <row> <entry>Valid range</entry> <entry><literal>[a.begin(),a.end())</literal> is a valid range. </entry> </row> <row> <entry>Range size</entry> <entry> <literal>a.size() == std::distance(a.begin(),a.end());</literal>. </entry> </row> <row> <entry>Completeness</entry> <entry> Iteration through the range <literal>[a.begin(),a.end())</literal> will traverse across every <literal>value_type</literal> of <literal>a</literal>. </entry> </row> <row> <entry>Accessor Equivalence</entry> <entry> Calling <literal>a[a1][a2]...[aN]</literal> where <literal>N==NumDims</literal> yields the same result as calling <literal>a(index_list)</literal>, where <literal>index_list</literal> is a <ulink url="../../utility/Collection.html">Collection</ulink> containing the values <literal>a1...aN</literal>. </entry> </row> </tbody> </tgroup> </table> </sect2> <sect2 id="view_types"> <title>Associated Types for Views</title> <para>The following MultiArray associated types define the interface for creating views of existing MultiArrays. Their interfaces and roles in the concept are described below.</para> <sect3 id="index_range"> <title><literal>index_range</literal></title> <para><literal>index_range</literal> objects represent half-open strided intervals. They are aggregated (using an <literal>index_gen</literal> object) and passed to a MultiArray's <literal>operator[]</literal> to create an array view. When creating a view, each <literal>index_range</literal> denotes a range of valid indices along one dimension of a MultiArray. Elements that are accessed through the set of ranges specified will be included in the constructed view. In some cases, an <literal>index_range</literal> is created without specifying start or finish values. In those cases, the object is interpreted to start at the beginning of a MultiArray dimension and end at its end.</para> <para> <literal>index_range</literal> objects can be constructed and modified several ways in order to allow convenient and clear expression of a range of indices. To specify ranges, <literal>index_range</literal> supports a set of constructors, mutating member functions, and a novel specification involving inequality operators. Using inequality operators, a half open range [5,10) can be specified as follows: <programlisting>5 <= index_range() < 10;</programlisting> or <programlisting>4 < index_range() <= 9;</programlisting> and so on. The following describes the <literal>index_range</literal> interface. </para> <table> <title>Notation</title> <tgroup cols="2"> <tbody> <row> <entry><literal>i</literal></entry> <entry>An object of type <literal>index_range</literal>.</entry> </row> <row> <entry><literal>idx,idx1,idx2,idx3</literal></entry> <entry>Objects of type <literal>index</literal>.</entry> </row> </tbody> </tgroup> </table> <table><title>Associated Types</title> <tgroup cols="2"> <thead> <row> <entry>Type</entry> <entry>Description</entry> </row> </thead> <tbody> <row> <entry><literal>index</literal></entry> <entry>This is a signed integral type. It is used to specify the start, finish, and stride values.</entry> </row> <row> <entry><literal>size_type</literal></entry> <entry>This is an unsigned integral type. It is used to report the size of the range an <literal>index_range</literal> represents.</entry> </row> </tbody> </tgroup> </table> <table><title>Valid Expressions</title> <tgroup cols="3"> <thead> <row> <entry>Expression</entry> <entry>Return type</entry> <entry>Semantics</entry> </row> </thead> <tbody> <row> <entry><literal>index_range(idx1,idx2,idx3)</literal></entry> <entry><literal>index_range</literal></entry> <entry>This constructs an <literal>index_range</literal> representing the interval <literal>[idx1,idx2)</literal> with stride <literal>idx3</literal>.</entry> </row> <row> <entry><literal>index_range(idx1,idx2)</literal></entry> <entry><literal>index_range</literal></entry> <entry>This constructs an <literal>index_range</literal> representing the interval <literal>[idx1,idx2)</literal> with unit stride. It is equivalent to <literal>index_range(idx1,idx2,1)</literal>.</entry> </row> <row> <entry><literal>index_range()</literal></entry> <entry><literal>index_range</literal></entry> <entry>This construct an <literal>index_range</literal> with unspecified start and finish values.</entry> </row> <row> <entry><literal>i.start(idx1)</literal></entry> <entry><literal>index&</literal></entry> <entry>This sets the start index of <literal>i</literal> to <literal>idx</literal>.</entry> </row> <row> <entry><literal>i.finish(idx)</literal></entry> <entry><literal>index&</literal></entry> <entry>This sets the finish index of <literal>i</literal> to <literal>idx</literal>.</entry> </row> <row> <entry><literal>i.stride(idx)</literal></entry> <entry><literal>index&</literal></entry> <entry>This sets the stride length of <literal>i</literal> to <literal>idx</literal>.</entry> </row> <row> <entry><literal>i.start()</literal></entry> <entry><literal>index</literal></entry> <entry>This returns the start index of <literal>i</literal>.</entry> </row> <row> <entry><literal>i.finish()</literal></entry> <entry><literal>index</literal></entry> <entry>This returns the finish index of <literal>i</literal>.</entry> </row> <row> <entry><literal>i.stride()</literal></entry> <entry><literal>index</literal></entry> <entry>This returns the stride length of <literal>i</literal>.</entry> </row> <row> <entry><literal>i.get_start(idx)</literal></entry> <entry><literal>index</literal></entry> <entry>If <literal>i</literal> specifies a start value, this is equivalent to <literal>i.start()</literal>. Otherwise it returns <literal>idx</literal>.</entry> </row> <row> <entry><literal>i.get_finish(idx)</literal></entry> <entry><literal>index</literal></entry> <entry>If <literal>i</literal> specifies a finish value, this is equivalent to <literal>i.finish()</literal>. Otherwise it returns <literal>idx</literal>.</entry> </row> <row> <entry><literal>i.size(idx)</literal></entry> <entry><literal>size_type</literal></entry> <entry>If <literal>i</literal> specifies a both finish and start values, this is equivalent to <literal>(i.finish()-i.start())/i.stride()</literal>. Otherwise it returns <literal>idx</literal>.</entry> </row> <row> <entry><literal>i < idx</literal></entry> <entry><literal>index</literal></entry> <entry>This is another syntax for specifying the finish value. This notation does not include <literal>idx</literal> in the range of valid indices. It is equivalent to <literal>index_range(r.start(), idx, r.stride())</literal></entry> </row> <row> <entry><literal>i <= idx</literal></entry> <entry><literal>index</literal></entry> <entry>This is another syntax for specifying the finish value. This notation includes <literal>idx</literal> in the range of valid indices. It is equivalent to <literal>index_range(r.start(), idx + 1, r.stride())</literal></entry> </row> <row> <entry><literal>idx < i</literal></entry> <entry><literal>index</literal></entry> <entry>This is another syntax for specifying the start value. This notation does not include <literal>idx</literal> in the range of valid indices. It is equivalent to <literal>index_range(idx + 1, i.finish(), i.stride())</literal>.</entry> </row> <row> <entry><literal>idx <= i</literal></entry> <entry><literal>index</literal></entry> <entry>This is another syntax for specifying the start value. This notation includes <literal>idx1</literal> in the range of valid indices. It is equivalent to <literal>index_range(idx, i.finish(), i.stride())</literal>.</entry> </row> <row> <entry><literal>i + idx</literal></entry> <entry><literal>index</literal></entry> <entry>This expression shifts the start and finish values of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to <literal>index_range(r.start()+idx1, r.finish()+idx, r.stride())</literal></entry> </row> <row> <entry><literal>i - idx</literal></entry> <entry><literal>index</literal></entry> <entry>This expression shifts the start and finish values of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to <literal>index_range(r.start()-idx1, r.finish()-idx, r.stride())</literal></entry> </row> </tbody> </tgroup> </table> </sect3> <sect3 id="index_gen"> <title><literal>index_gen</literal></title> <para> <literal>index_gen</literal> aggregates <literal>index_range</literal> objects in order to specify view parameters. Chained calls to <literal>operator[]</literal> store range and dimension information used to instantiate a new view into a MultiArray. </para> <table> <title>Notation</title> <tgroup cols="2"> <tbody> <row> <entry><literal>Dims,Ranges</literal></entry> <entry>Unsigned integral values.</entry> </row> <row> <entry><literal>x</literal></entry> <entry>An object of type <literal>template gen_type<Dims,Ranges>::type</literal>.</entry> </row> <row> <entry><literal>i</literal></entry> <entry>An object of type <literal>index_range</literal>.</entry> </row> <row> <entry><literal>idx</literal></entry> <entry>Objects of type <literal>index</literal>.</entry> </row> </tbody> </tgroup> </table> <table><title>Associated Types</title> <tgroup cols="2"> <thead> <row> <entry>Type</entry> <entry>Description</entry> </row> </thead> <tbody> <row> <entry><literal>index</literal></entry> <entry>This is a signed integral type. It is used to specify degenerate dimensions.</entry> </row> <row> <entry><literal>size_type</literal></entry> <entry>This is an unsigned integral type. It is used to report the size of the range an <literal>index_range</literal> represents.</entry> </row> <row> <entry> <literal>template gen_type::<Dims,Ranges>::type</literal></entry> <entry>This type generator names the result of <literal>Dims</literal> chained calls to <literal>index_gen::operator[]</literal>. The <literal>Ranges</literal> parameter is determined by the number of degenerate ranges specified (i.e. calls to <literal>operator[](index)</literal>). Note that <classname>index_gen</classname> and <classname>gen_type<0,0>::type</classname> are the same type.</entry> </row> </tbody> </tgroup> </table> <table><title>Valid Expressions</title> <tgroup cols="3"> <thead> <row> <entry>Expression</entry> <entry>Return type</entry> <entry>Semantics</entry> </row> </thead> <tbody> <row> <entry><literal>index_gen()</literal></entry> <entry><literal>gen_type<0,0>::type</literal></entry> <entry>This constructs an <literal>index_gen</literal> object. This object can then be used to generate tuples of <literal>index_range</literal> values.</entry> </row> <row> <entry><literal>x[i]</literal></entry> <entry><literal>gen_type<Dims+1,Ranges+1>::type</literal> </entry> <entry>Returns a new object containing all previous <classname>index_range</classname> objects in addition to <literal>i.</literal> Chained calls to <function>operator[]</function> are the means by which <classname>index_range</classname> objects are aggregated.</entry> </row> <row> <entry><literal>x[idx]</literal></entry> <entry><literal>gen_type<Dims,Ranges+1>::type</literal> </entry> <entry>Returns a new object containing all previous <classname>index_range</classname> objects in addition to a degenerate range, <literal>index_range(idx,idx).</literal> Note that this is NOT equivalent to <literal>x[index_range(idx,idx)].</literal>, which will return an object of type <literal>gen_type<Dims+1,Ranges+1>::type</literal>. </entry> </row> </tbody> </tgroup> </table> </sect3> </sect2> <sect2> <title>Models</title> <itemizedlist> <listitem> <literal>multi_array</literal> </listitem> <listitem> <literal>multi_array_ref</literal> </listitem> <listitem> <literal>const_multi_array_ref</literal> </listitem> <listitem> <literal>template array_view<Dims>::type</literal> </listitem> <listitem> <literal>template const_array_view<Dims>::type</literal> </listitem> <listitem> <literal>template subarray<Dims>::type</literal> </listitem> <listitem> <literal>template const_subarray<Dims>::type</literal> </listitem> </itemizedlist> </sect2> </sect1>