# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """cache_ops""" from ..._checkparam import Validator as validator from ...common import dtype as mstype from ..primitive import prim_attr_register, PrimitiveWithCheck from .. import signature as sig class UpdateCache(PrimitiveWithCheck): """ Update the value fo input_x, similar to ScatterNdUpdate. The difference is that UpdateCache will not update when indices < 0 or indices >= max_num. Inputs: - **input_x** (Parameter) - Parameter which is going to be updated. - **indices** (Tensor) - Update indices of input_x. - **updates** (Tensor) - The update values. Outputs: - **out** (Tensor) - Returns a [1] Tensor, which is not useful. """ __mindspore_signature__ = ( sig.make_sig('input_x', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1), sig.make_sig('updates', dtype=sig.sig_dtype.T), sig.make_sig('max_num', dtype=sig.sig_dtype.T1) ) @prim_attr_register def __init__(self): """init UpdateCache""" self.init_prim_io_names(inputs=['input_x', 'indices', 'update', 'max_num'], outputs=['out']) def check_shape(self, input_x_shape, indices_shape, update_shape, max_num_shape): return [1] def check_dtype(self, input_x_dtype, indices_dtype, update_dtype, max_num_dtype): validator.check_tensor_dtype_valid( "indices", indices_dtype, mstype.int_type, self.name) return input_x_dtype class SubAndFilter(PrimitiveWithCheck): """ Dynamic kernel, sub an offset and return the elements which in range [0, max_num). Inputs: - **input_x** (Tensor) - Input tensor. - **max_num** (Int) - The max value of element that after sub `offset`. - **offset** (int) - Specifies the offset value of this `input_x`. Outputs: tuple(Tensor), tuple of 2 tensors, filter_res and filter_idx. - **filter_res** (Tensor) - The result that `input_x` minus `offset`, and return which in the range [0, max_num). - **filter_idx** (Tensor) - A tensor containing indices of elements in the input coressponding to the output tensor. Supported Platforms: `CPU` Examples: >>> x = Tensor(np.array([1, 3, 5, 8, 9, 16]), mindspore.int32) >>> max_num = 10 >>> offset = 5 >>> output = ops.SubAndFilter()(x, max_num, offset) >>> print(output) (Tensor(shape=[3], dtype=Int32, value= [0, 3, 4]), Tensor(shape=[3], dtype=Int32, value= [2, 3, 4])) """ @prim_attr_register def __init__(self): """init SubAndFilter""" self.init_prim_io_names(inputs=['input_x', 'max_num', 'offset'], outputs=['sub_res', 'sub_idx']) def check_shape(self, input_x_shape, max_num_shape, offset_shape): return ((-1,), (-1,)) def check_dtype(self, input_x_dtype, max_num_dtype, offset_dtype): validator.check_tensor_dtype_valid( "input_x", input_x_dtype, mstype.int_type, self.name) return input_x_dtype class MapUniform(PrimitiveWithCheck): """ Map a tensor by using fomula : value = key % `group_num` * `per_group_size` + key // `group_num`. Inputs: - **input** (Tensor) - Input Tensor. - **per_group_size** (int) - The size of each group. - **group_num** (int) - The number of group. Outputs: Tensor, has the same dtype and shape as the `input`. Supported Platforms: `CPU` Examples: >>> input_x = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7])) >>> per_group_size = 4 >>> group_num = 2 >>> map_uniform = ops.MapUniform() >>> output = map_uniform(input_x, per_group_size, group_num) >>> print(output) [0, 4, 1, 5, 2, 6, 3, 7] """ @prim_attr_register def __init__(self): """init MapUniform""" self.init_prim_io_names(inputs=['input', 'per_group_size', 'group_num'], outputs=['output']) def check_dtype(self, input_dtype, per_group_size_dtype, group_num_dtype): validator.check_tensor_dtype_valid( "input", input_dtype, mstype.int_type, self.name) validator.check_value_type( 'per_group_size', per_group_size_dtype, [mstype.Int], self.name) validator.check_value_type( 'group_num', group_num_dtype, [mstype.Int], self.name) class CacheSwapTable(PrimitiveWithCheck): """ Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry. Inputs: - **cache_table** (Parameter) - The cache table which is on device. - **swap_cache_idx** (Tensor) - The index of table which need to swap. -1 is skipped. - **miss_value** (int) - The values which arg going to swap into cache table. Outputs: - **old_value** (Tensor) - The values which are swapped out. """ __mindspore_signature__ = ( sig.make_sig('cache_table', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('swap_cache_idx', dtype=sig.sig_dtype.T1), sig.make_sig('miss_value', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """init CacheSwapTable""" self.init_prim_io_names(inputs=['cache_table', 'swap_cache_idx', 'miss_value'], outputs=['old_value']) def check_shape(self, cache_table_shape, swap_cache_idx_shape, miss_value_shape): if len(cache_table_shape) != 2: raise ValueError( "cache table shape must be 2, but got %d" % len(cache_table_shape)) return miss_value_shape def check_dtype(self, cache_table_dtype, swap_cache_idx_dtype, miss_value_dtype): validator.check_tensor_dtype_valid( "swap_cache_idx", swap_cache_idx_dtype, mstype.int_type, self.name) return miss_value_dtype class MapCacheIdx(PrimitiveWithCheck): """ MapCacheIdx merge SearchCacheIdx, CacheSwapHashmap, UpdateCache together. When input an indices tensor, it will output the cache indices which search in hashmap. """ __mindspore_signature__ = ( sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T), sig.make_sig('step', dtype=sig.sig_dtype.T), sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T), sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): """init MapCacheIdx""" self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'offset'], outputs=['cache_idx', 'old_emb_idx', 'miss_emb_idx', 'swap_cache_idx']) def __check__(self, hashmap, indices, step, emb_max_num, offset): hashmap_shape = hashmap['shape'] if len(hashmap_shape) != 2: raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, " "but got %d." % len(hashmap_shape)) out_shape = (indices['shape'], -1, -1, -1) hashmap_dtype = hashmap['dtype'] indices_dtype = indices['dtype'] args = {"hashmap": hashmap_dtype, "indices": indices_dtype} validator.check_tensors_dtypes_same_and_valid( args, mstype.int_type, self.name) out_dtype = (hashmap_dtype, hashmap_dtype, hashmap_dtype, hashmap_dtype) out = {'shape': out_shape, 'dtype': out_dtype, 'value': None} if 'max_shape' in indices: out['max_shape'] = (indices['max_shape'], indices['max_shape'], indices['max_shape'], indices['max_shape']) else: out['max_shape'] = (indices['shape'], indices['shape'], indices['shape'], indices['shape']) if 'min_shape' in indices: out['min_shape'] = (indices['min_shape'], 0, 0, 0) else: out['min_shape'] = (0, 0, 0, 0) return out class DynamicAssign(PrimitiveWithCheck): """ Assigns `Parameter` with a value, the `value` can have a dynamic shape. Inputs: - **variable** (Parameter) - The `Parameter`. - **value** (Tensor) - The value to be assigned. Outputs: Tensor, has the same type as original `variable`. Supported Platforms: `CPU` """ __mindspore_signature__ = ( sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('value', dtype=sig.sig_dtype.T) ) @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output']) def check_dtype(self, variable, value): if variable != mstype.type_refkey: validator.check_tensor_dtype_valid( "variable", variable, mstype.number_type, self.name) validator.check_scalar_or_tensor_types_same( {"value": value}, mstype.number_type, self.name) class PadAndShift(PrimitiveWithCheck): """ Pad a tensor with -1, and shift with a length. Inputs: - **input_x** (Tensor) - The input Tensor, which will be copied to `output`. - **cum_sum_arr** (Tensor) - The last value of cum_sum_arr is the pad length of output tensor, cum_sum_arr[shift_idx] is the start to shift, and cum_sum_arr[shift_idx+1] is the end. - **shift_idx** (Int) - The idx of cum_sum_arr. if use python, PadAndShift is: output = [-1] * cum_sum_arr[-1] start = cum_sum_arr[shift_idx] end = cum_sum_arr[shift_idx + 1] output[start:end] = input_x[:(end-start)] Outputs: Tensor, has the same type as original `variable`. Supported Platforms: `CPU` Examples: >>> input_x = Tensor(np.array([9, 13, -1, -1, -1, -1, -1, -1]), mstype.int32) >>> cum_sum_arr = Tensor(np.array([0, 3, 5]), mstype.int32) >>> shift_idx = 1 >>> pad_and_shift = ops.PadAndShift() >>> output = pad_and_shift(input_x, cum_sum_arr, shift_idx) >>> print(output) [-1, -1, -1, 9, 13] """ @prim_attr_register def __init__(self): self.init_prim_io_names( inputs=['input_x', 'cum_sum_arr', 'shift_idx'], outputs=['output']) def check_shape(self, input_x_shape, cum_sum_arr_shape, shift_idx_shape): return input_x_shape def check_dtype(self, input_x_dtype, cum_sum_arr_dtype, shift_idx_dtype): return input_x_dtype