# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import tempfile import pytest import scipy import numpy as np import mindspore.nn as nn import mindspore.ops.operations as P from mindspore import context, Tensor from mindspore.common import dtype as mstype from mindspore.common.parameter import Parameter from mindspore.train.summary.summary_record import SummaryRecord from tests.summary_utils import SummaryReader from tests.security_utils import security_off_wrap context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class AssignAddNet(nn.Cell): def __init__(self, para): super(AssignAddNet, self).__init__() self.para = Parameter(para, name="para") self.assign_add = P.AssignAdd() def construct(self, value): self.assign_add(self.para, value) return self.para @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_assign_add(): x = Tensor(1, dtype=mstype.int32) y = Tensor(2, dtype=mstype.int32) expect = Tensor(3, dtype=mstype.int32) net = AssignAddNet(x) out = net(y) np.testing.assert_array_equal(out.asnumpy(), expect.asnumpy()) class AssignSubNet(nn.Cell): def __init__(self, para): super(AssignSubNet, self).__init__() self.para = Parameter(para, name="para") self.assign_sub = P.AssignSub() def construct(self, value): self.assign_sub(self.para, value) return self.para @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_assign_sub(): x = Tensor(3, dtype=mstype.int32) y = Tensor(2, dtype=mstype.int32) expect = Tensor(1, dtype=mstype.int32) net = AssignSubNet(x) out = net(y) np.testing.assert_array_equal(out.asnumpy(), expect.asnumpy()) class ScatterAddNet(nn.Cell): def __init__(self, input_x): super(ScatterAddNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_add = P.ScatterAdd() def construct(self, indices, updates): self.scatter_add(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_add(): input_x = Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mstype.float32) indices = Tensor(np.array([[0, 1], [1, 1]]), mstype.int32) updates = Tensor(np.ones([2, 2, 3]), mstype.float32) expect = Tensor(np.array([[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]]), mstype.float32) net = ScatterAddNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterSubNet(nn.Cell): def __init__(self, input_x): super(ScatterSubNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_sub = P.ScatterSub() def construct(self, indices, updates): self.scatter_sub(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_sub(): input_x = Tensor(np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]), mstype.float32) indices = Tensor(np.array([[0, 1]]), mstype.int32) updates = Tensor(np.array([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]), mstype.float32) expect = Tensor(np.array([[-1.0, -1.0, -1.0], [-1.0, -1.0, -1.0]]), mstype.float32) net = ScatterSubNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterMulNet(nn.Cell): def __init__(self, input_x): super(ScatterMulNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_mul = P.ScatterMul() def construct(self, indices, updates): self.scatter_mul(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_mul(): input_x = Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32) indices = Tensor(np.array([[0, 1]]), mstype.int32) updates = Tensor(np.array([[[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]]), mstype.float32) expect = Tensor(np.array([[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]]), mstype.float32) net = ScatterMulNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterDivNet(nn.Cell): def __init__(self, input_x): super(ScatterDivNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_div = P.ScatterDiv() def construct(self, indices, updates): self.scatter_div(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_div(): input_x = Tensor(np.array([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]]), mstype.float32) indices = Tensor(np.array([[0, 1]]), mstype.int32) updates = Tensor(np.array([[[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]]), mstype.float32) expect = Tensor(np.array([[3.0, 3.0, 3.0], [1.0, 1.0, 1.0]]), mstype.float32) net = ScatterDivNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterMaxNet(nn.Cell): def __init__(self, input_x): super(ScatterMaxNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_max = P.ScatterMax() def construct(self, indices, updates): self.scatter_max(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_max(): input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mstype.float32) indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32) updates = Tensor(np.ones([2, 2, 3]) * 88, mstype.float32) expect = Tensor(np.array([[88.0, 88.0, 88.0], [88.0, 88.0, 88.0]]), mstype.float32) net = ScatterMaxNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterMinNet(nn.Cell): def __init__(self, input_x): super(ScatterMinNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_min = P.ScatterMin() def construct(self, indices, updates): self.scatter_min(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_min(): input_x = Tensor(np.array([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0]]), mstype.float32) indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32) updates = Tensor(np.ones([2, 2, 3]), mstype.float32) expect = Tensor(np.array([[0.0, 1.0, 1.0], [0.0, 0.0, 0.0]]), mstype.float32) net = ScatterMinNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterUpdateNet(nn.Cell): def __init__(self, input_x): super(ScatterUpdateNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_update = P.ScatterUpdate() def construct(self, indices, updates): self.scatter_update(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_update(): input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32) indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32) updates = Tensor(np.array([[[1.0, 2.2, 1.0], [2.0, 1.2, 1.0]], [[2.0, 2.2, 1.0], [3.0, 1.2, 1.0]]]), mstype.float32) expect = Tensor(np.array([[2.0, 1.2, 1.0], [3.0, 1.2, 1.0]]), mstype.float32) net = ScatterUpdateNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterNdAddNet(nn.Cell): def __init__(self, input_x): super(ScatterNdAddNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_nd_add = P.ScatterNdAdd() def construct(self, indices, updates): self.scatter_nd_add(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_nd_add(): input_x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32) indices = Tensor(np.array([[2], [4], [1], [7]]), mstype.int32) updates = Tensor(np.array([6, 7, 8, 9]), mstype.float32) expect = Tensor(np.array([1, 10, 9, 4, 12, 6, 7, 17]), mstype.float32) net = ScatterNdAddNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterNdSubNet(nn.Cell): def __init__(self, input_x): super(ScatterNdSubNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_nd_sub = P.ScatterNdSub() def construct(self, indices, updates): self.scatter_nd_sub(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_nd_sub(): input_x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32) indices = Tensor(np.array([[2], [4], [1], [7]]), mstype.int32) updates = Tensor(np.array([6, 7, 8, 9]), mstype.float32) expect = Tensor(np.array([1, -6, -3, 4, -2, 6, 7, -1]), mstype.float32) net = ScatterNdSubNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterNdUpdateNet(nn.Cell): def __init__(self, input_x): super(ScatterNdUpdateNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_nd_update = P.ScatterNdUpdate() def construct(self, indices, updates): self.scatter_nd_update(self.input_x, indices, updates) return self.input_x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_nd_update(): input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32) indices = Tensor(np.array([[0, 0], [1, 1]]), mstype.int32) updates = Tensor(np.array([1.0, 2.2]), mstype.float32) expect = Tensor(np.array([[1., 0.3, 3.6], [0.4, 2.2, -3.2]]), mstype.float32) net = ScatterNdUpdateNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class ScatterNonAliasingAddNet(nn.Cell): def __init__(self, input_x): super(ScatterNonAliasingAddNet, self).__init__() self.input_x = Parameter(input_x, name="para") self.scatter_non_aliasing_add = P.ScatterNonAliasingAdd() def construct(self, indices, updates): out = self.scatter_non_aliasing_add(self.input_x, indices, updates) return out @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_scatter_non_aliasing_add(): input_x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32) indices = Tensor(np.array([[2], [4], [1], [7]]), mstype.int32) updates = Tensor(np.array([6, 7, 8, 9]), mstype.float32) expect = Tensor(np.array([1.0, 10.0, 9.0, 4.0, 12.0, 6.0, 7.0, 17.0]), mstype.float32) net = ScatterNonAliasingAddNet(input_x) out = net(indices, updates) np.testing.assert_almost_equal(out.asnumpy(), expect.asnumpy()) class SummaryNet(nn.Cell): def __init__(self): super().__init__() self.scalar_summary = P.ScalarSummary() self.image_summary = P.ImageSummary() self.tensor_summary = P.TensorSummary() self.histogram_summary = P.HistogramSummary() def construct(self, image_tensor): self.image_summary("image", image_tensor) self.tensor_summary("tensor", image_tensor) self.histogram_summary("histogram", image_tensor) scalar = image_tensor[0][0][0][0] self.scalar_summary("scalar", scalar) return scalar def train_summary_record(test_writer, steps): """Train and record summary.""" net = SummaryNet() out_me_dict = {} for i in range(0, steps): image_tensor = Tensor(np.array([[[[i]]]]).astype(np.float32)) out_put = net(image_tensor) test_writer.record(i) out_me_dict[i] = out_put.asnumpy() return out_me_dict @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @security_off_wrap def test_summary(): with tempfile.TemporaryDirectory() as tmp_dir: steps = 2 with SummaryRecord(tmp_dir) as test_writer: train_summary_record(test_writer, steps=steps) file_name = os.path.realpath(test_writer.log_dir) with SummaryReader(file_name) as summary_writer: for _ in range(steps): event = summary_writer.read_event() tags = set(value.tag for value in event.summary.value) assert tags == {'tensor', 'histogram', 'scalar', 'image'} @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_igamma(): class IGammaTest(nn.Cell): def __init__(self): super().__init__() self.igamma = nn.IGamma() def construct(self, x, a): return self.igamma(a=a, x=x) x = 4.22 a = 2.29 net = IGammaTest() out = net(Tensor(x, mstype.float32), Tensor(a, mstype.float32)) expect = scipy.special.gammainc(a, x) assert np.allclose(out.asnumpy(), expect, rtol=1e-5, atol=1e-5, equal_nan=True)