# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class NetSigmoidGrad(nn.Cell): def __init__(self): super(NetSigmoidGrad, self).__init__() self.sigmoid_grad = G.SigmoidGrad() def construct(self, y, dy): return self.sigmoid_grad(y, dy) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.ops = P.Sigmoid() def construct(self, x): return self.ops(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): x = np.random.randn(2, 3, 3, 4).astype(np.float32) y_expect = 1 / (1 + np.exp(-x)) net = Net() out = net(Tensor(x)) diff = out.asnumpy() - y_expect err = np.ones(shape=y_expect.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == y_expect.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_sigmoid_grad(): y = Tensor(np.array([[[[-1, 1, 2], [1, -1, 1], [2, 1, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[-11, 2, 4], [-1, 1, -1], [-4, 4, -4]]]]).astype(np.float32)) expect = np.array([[[[22, 0, -8], [0, -2, 0], [8, 0, 8]]]]).astype(np.float32) error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6 sigmoid_grad = NetSigmoidGrad() output = sigmoid_grad(y, dy) diff = np.abs(output.asnumpy() - expect) assert np.all(abs(diff) < error)