• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <algorithm>
17 
18 #include "minddata/dataset/kernels/ir/vision/random_crop_ir.h"
19 
20 #ifndef ENABLE_ANDROID
21 #include "minddata/dataset/kernels/image/random_crop_op.h"
22 #endif
23 
24 #include "minddata/dataset/kernels/ir/validators.h"
25 namespace mindspore {
26 namespace dataset {
27 namespace vision {
28 #ifndef ENABLE_ANDROID
29 // RandomCropOperation
RandomCropOperation(const std::vector<int32_t> & size,const std::vector<int32_t> & padding,bool pad_if_needed,const std::vector<uint8_t> & fill_value,BorderType padding_mode)30 RandomCropOperation::RandomCropOperation(const std::vector<int32_t> &size, const std::vector<int32_t> &padding,
31                                          bool pad_if_needed, const std::vector<uint8_t> &fill_value,
32                                          BorderType padding_mode)
33     : TensorOperation(true),
34       size_(size),
35       padding_(padding),
36       pad_if_needed_(pad_if_needed),
37       fill_value_(fill_value),
38       padding_mode_(padding_mode) {
39   random_op_ = true;
40 }
41 
42 RandomCropOperation::~RandomCropOperation() = default;
43 
Name() const44 std::string RandomCropOperation::Name() const { return kRandomCropOperation; }
45 
ValidateParams()46 Status RandomCropOperation::ValidateParams() {
47   // size
48   RETURN_IF_NOT_OK(ValidateVectorSize("RandomCrop", size_));
49   // padding
50   RETURN_IF_NOT_OK(ValidateVectorPadding("RandomCrop", padding_));
51   // fill_value
52   RETURN_IF_NOT_OK(ValidateVectorFillvalue("RandomCrop", fill_value_));
53   // padding_mode
54   if (padding_mode_ != BorderType::kConstant && padding_mode_ != BorderType::kEdge &&
55       padding_mode_ != BorderType::kReflect && padding_mode_ != BorderType::kSymmetric) {
56     std::string err_msg = "RandomCrop: Invalid BorderType, check input value of enum.";
57     MS_LOG(ERROR) << err_msg;
58     RETURN_STATUS_SYNTAX_ERROR(err_msg);
59   }
60   return Status::OK();
61 }
62 
Build()63 std::shared_ptr<TensorOp> RandomCropOperation::Build() {
64   constexpr size_t dimension_zero = 0;
65   constexpr size_t dimension_one = 1;
66   constexpr size_t dimension_two = 2;
67   constexpr size_t dimension_three = 3;
68   constexpr size_t size_one = 1;
69   constexpr size_t size_two = 2;
70   constexpr size_t size_three = 3;
71 
72   int32_t crop_height = size_[dimension_zero];
73   int32_t crop_width = size_[dimension_zero];
74 
75   // User has specified the crop_width value.
76   if (size_.size() == size_two) {
77     crop_width = size_[dimension_one];
78   }
79 
80   int32_t pad_top, pad_bottom, pad_left, pad_right;
81   switch (padding_.size()) {
82     case size_one:
83       pad_left = padding_[dimension_zero];
84       pad_top = padding_[dimension_zero];
85       pad_right = padding_[dimension_zero];
86       pad_bottom = padding_[dimension_zero];
87       break;
88     case size_two:
89       pad_left = padding_[dimension_zero];
90       pad_top = padding_[dimension_zero];
91       pad_right = padding_[dimension_one];
92       pad_bottom = padding_[dimension_one];
93       break;
94     default:
95       pad_left = padding_[dimension_zero];
96       pad_top = padding_[dimension_one];
97       pad_right = padding_[dimension_two];
98       pad_bottom = padding_[dimension_three];
99   }
100 
101   uint8_t fill_r, fill_g, fill_b;
102   fill_r = fill_value_[dimension_zero];
103   fill_g = fill_value_[dimension_zero];
104   fill_b = fill_value_[dimension_zero];
105 
106   if (fill_value_.size() == size_three) {
107     fill_r = fill_value_[dimension_zero];
108     fill_g = fill_value_[dimension_one];
109     fill_b = fill_value_[dimension_two];
110   }
111 
112   auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
113                                                   pad_if_needed_, padding_mode_, fill_r, fill_g, fill_b);
114   return tensor_op;
115 }
116 
to_json(nlohmann::json * out_json)117 Status RandomCropOperation::to_json(nlohmann::json *out_json) {
118   nlohmann::json args;
119   args["size"] = size_;
120   args["padding"] = padding_;
121   args["pad_if_needed"] = pad_if_needed_;
122   args["fill_value"] = fill_value_;
123   args["padding_mode"] = padding_mode_;
124   *out_json = args;
125   return Status::OK();
126 }
127 
from_json(nlohmann::json op_params,std::shared_ptr<TensorOperation> * operation)128 Status RandomCropOperation::from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation) {
129   CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("size") != op_params.end(), "Failed to find size");
130   CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("padding") != op_params.end(), "Failed to find padding");
131   CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("pad_if_needed") != op_params.end(), "Failed to find pad_if_needed");
132   CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("fill_value") != op_params.end(), "Failed to find fill_value");
133   CHECK_FAIL_RETURN_UNEXPECTED(op_params.find("padding_mode") != op_params.end(), "Failed to find padding_mode");
134   std::vector<int32_t> size = op_params["size"];
135   std::vector<int32_t> padding = op_params["padding"];
136   bool pad_if_needed = op_params["pad_if_needed"];
137   std::vector<uint8_t> fill_value = op_params["fill_value"];
138   BorderType padding_mode = static_cast<BorderType>(op_params["padding_mode"]);
139   *operation = std::make_shared<vision::RandomCropOperation>(size, padding, pad_if_needed, fill_value, padding_mode);
140   return Status::OK();
141 }
142 
143 #endif
144 }  // namespace vision
145 }  // namespace dataset
146 }  // namespace mindspore
147