1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <algorithm>
16 #include <cassert>
17 #include <cstring>
18 #include <sstream>
19 #include <type_traits>
20
21 #include "util/bit_stream.h"
22
23 namespace spvutils {
24
25 namespace {
26
27 // Returns if the system is little-endian. Unfortunately only works during
28 // runtime.
IsLittleEndian()29 bool IsLittleEndian() {
30 // This constant value allows the detection of the host machine's endianness.
31 // Accessing it as an array of bytes is valid due to C++11 section 3.10
32 // paragraph 10.
33 static const uint16_t kFF00 = 0xff00;
34 return reinterpret_cast<const unsigned char*>(&kFF00)[0] == 0;
35 }
36
37 // Copies bytes from the given buffer to a uint64_t buffer.
38 // Motivation: casting uint64_t* to uint8_t* is ok. Casting in the other
39 // direction is only advisable if uint8_t* is aligned to 64-bit word boundary.
ToBuffer64(const void * buffer,size_t num_bytes)40 std::vector<uint64_t> ToBuffer64(const void* buffer, size_t num_bytes) {
41 std::vector<uint64_t> out;
42 out.resize((num_bytes + 7) / 8, 0);
43 memcpy(out.data(), buffer, num_bytes);
44 return out;
45 }
46
47 // Copies uint8_t buffer to a uint64_t buffer.
ToBuffer64(const std::vector<uint8_t> & in)48 std::vector<uint64_t> ToBuffer64(const std::vector<uint8_t>& in) {
49 return ToBuffer64(in.data(), in.size());
50 }
51
52 // Returns uint64_t containing the same bits as |val|.
53 // Type size must be less than 8 bytes.
54 template <typename T>
ToU64(T val)55 uint64_t ToU64(T val) {
56 static_assert(sizeof(T) <= 8, "Type size too big");
57 uint64_t val64 = 0;
58 std::memcpy(&val64, &val, sizeof(T));
59 return val64;
60 }
61
62 // Returns value of type T containing the same bits as |val64|.
63 // Type size must be less than 8 bytes. Upper (unused) bits of |val64| must be
64 // zero (irrelevant, but is checked with assertion).
65 template <typename T>
FromU64(uint64_t val64)66 T FromU64(uint64_t val64) {
67 assert(sizeof(T) == 8 || (val64 >> (sizeof(T) * 8)) == 0);
68 static_assert(sizeof(T) <= 8, "Type size too big");
69 T val = 0;
70 std::memcpy(&val, &val64, sizeof(T));
71 return val;
72 }
73
74 // Writes bits from |val| to |writer| in chunks of size |chunk_length|.
75 // Signal bit is used to signal if the reader should expect another chunk:
76 // 0 - no more chunks to follow
77 // 1 - more chunks to follow
78 // If number of written bits reaches |max_payload| last chunk is truncated.
WriteVariableWidthInternal(BitWriterInterface * writer,uint64_t val,size_t chunk_length,size_t max_payload)79 void WriteVariableWidthInternal(BitWriterInterface* writer, uint64_t val,
80 size_t chunk_length, size_t max_payload) {
81 assert(chunk_length > 0);
82 assert(chunk_length < max_payload);
83 assert(max_payload == 64 || (val >> max_payload) == 0);
84
85 if (val == 0) {
86 // Split in two writes for more readable logging.
87 writer->WriteBits(0, chunk_length);
88 writer->WriteBits(0, 1);
89 return;
90 }
91
92 size_t payload_written = 0;
93
94 while (val) {
95 if (payload_written + chunk_length >= max_payload) {
96 // This has to be the last chunk.
97 // There is no need for the signal bit and the chunk can be truncated.
98 const size_t left_to_write = max_payload - payload_written;
99 assert((val >> left_to_write) == 0);
100 writer->WriteBits(val, left_to_write);
101 break;
102 }
103
104 writer->WriteBits(val, chunk_length);
105 payload_written += chunk_length;
106 val = val >> chunk_length;
107
108 // Write a single bit to signal if there is more to come.
109 writer->WriteBits(val ? 1 : 0, 1);
110 }
111 }
112
113 // Reads data written with WriteVariableWidthInternal. |chunk_length| and
114 // |max_payload| should be identical to those used to write the data.
115 // Returns false if the stream ends prematurely.
ReadVariableWidthInternal(BitReaderInterface * reader,uint64_t * val,size_t chunk_length,size_t max_payload)116 bool ReadVariableWidthInternal(BitReaderInterface* reader, uint64_t* val,
117 size_t chunk_length, size_t max_payload) {
118 assert(chunk_length > 0);
119 assert(chunk_length <= max_payload);
120 size_t payload_read = 0;
121
122 while (payload_read + chunk_length < max_payload) {
123 uint64_t bits = 0;
124 if (reader->ReadBits(&bits, chunk_length) != chunk_length)
125 return false;
126
127 *val |= bits << payload_read;
128 payload_read += chunk_length;
129
130 uint64_t more_to_come = 0;
131 if (reader->ReadBits(&more_to_come, 1) != 1)
132 return false;
133
134 if (!more_to_come) {
135 return true;
136 }
137 }
138
139 // Need to read the last chunk which may be truncated. No signal bit follows.
140 uint64_t bits = 0;
141 const size_t left_to_read = max_payload - payload_read;
142 if (reader->ReadBits(&bits, left_to_read) != left_to_read)
143 return false;
144
145 *val |= bits << payload_read;
146 return true;
147 }
148
149 // Calls WriteVariableWidthInternal with the right max_payload argument.
150 template <typename T>
WriteVariableWidthUnsigned(BitWriterInterface * writer,T val,size_t chunk_length)151 void WriteVariableWidthUnsigned(BitWriterInterface* writer, T val,
152 size_t chunk_length) {
153 static_assert(std::is_unsigned<T>::value, "Type must be unsigned");
154 static_assert(std::is_integral<T>::value, "Type must be integral");
155 WriteVariableWidthInternal(writer, val, chunk_length, sizeof(T) * 8);
156 }
157
158 // Calls ReadVariableWidthInternal with the right max_payload argument.
159 template <typename T>
ReadVariableWidthUnsigned(BitReaderInterface * reader,T * val,size_t chunk_length)160 bool ReadVariableWidthUnsigned(BitReaderInterface* reader, T* val,
161 size_t chunk_length) {
162 static_assert(std::is_unsigned<T>::value, "Type must be unsigned");
163 static_assert(std::is_integral<T>::value, "Type must be integral");
164 uint64_t val64 = 0;
165 if (!ReadVariableWidthInternal(reader, &val64, chunk_length, sizeof(T) * 8))
166 return false;
167 *val = static_cast<T>(val64);
168 assert(*val == val64);
169 return true;
170 }
171
172 // Encodes signed |val| to an unsigned value and calls
173 // WriteVariableWidthInternal with the right max_payload argument.
174 template <typename T>
WriteVariableWidthSigned(BitWriterInterface * writer,T val,size_t chunk_length,size_t zigzag_exponent)175 void WriteVariableWidthSigned(BitWriterInterface* writer, T val,
176 size_t chunk_length, size_t zigzag_exponent) {
177 static_assert(std::is_signed<T>::value, "Type must be signed");
178 static_assert(std::is_integral<T>::value, "Type must be integral");
179 WriteVariableWidthInternal(writer, EncodeZigZag(val, zigzag_exponent),
180 chunk_length, sizeof(T) * 8);
181 }
182
183 // Calls ReadVariableWidthInternal with the right max_payload argument
184 // and decodes the value.
185 template <typename T>
ReadVariableWidthSigned(BitReaderInterface * reader,T * val,size_t chunk_length,size_t zigzag_exponent)186 bool ReadVariableWidthSigned(BitReaderInterface* reader, T* val,
187 size_t chunk_length, size_t zigzag_exponent) {
188 static_assert(std::is_signed<T>::value, "Type must be signed");
189 static_assert(std::is_integral<T>::value, "Type must be integral");
190 uint64_t encoded = 0;
191 if (!ReadVariableWidthInternal(reader, &encoded, chunk_length, sizeof(T) * 8))
192 return false;
193
194 const int64_t decoded = DecodeZigZag(encoded, zigzag_exponent);
195
196 *val = static_cast<T>(decoded);
197 assert(*val == decoded);
198 return true;
199 }
200
201 } // namespace
202
Log2U64(uint64_t val)203 size_t Log2U64(uint64_t val) {
204 size_t res = 0;
205
206 if (val & 0xFFFFFFFF00000000) {
207 val >>= 32;
208 res |= 32;
209 }
210
211 if (val & 0xFFFF0000) {
212 val >>= 16;
213 res |= 16;
214 }
215
216 if (val & 0xFF00) {
217 val >>= 8;
218 res |= 8;
219 }
220
221 if (val & 0xF0) {
222 val >>= 4;
223 res |= 4;
224 }
225
226 if (val & 0xC) {
227 val >>= 2;
228 res |= 2;
229 }
230
231 if (val & 0x2) {
232 res |= 1;
233 }
234
235 return res;
236 }
237
WriteVariableWidthU64(uint64_t val,size_t chunk_length)238 void BitWriterInterface::WriteVariableWidthU64(uint64_t val,
239 size_t chunk_length) {
240 WriteVariableWidthUnsigned(this, val, chunk_length);
241 }
242
WriteVariableWidthU32(uint32_t val,size_t chunk_length)243 void BitWriterInterface::WriteVariableWidthU32(uint32_t val,
244 size_t chunk_length) {
245 WriteVariableWidthUnsigned(this, val, chunk_length);
246 }
247
WriteVariableWidthU16(uint16_t val,size_t chunk_length)248 void BitWriterInterface::WriteVariableWidthU16(uint16_t val,
249 size_t chunk_length) {
250 WriteVariableWidthUnsigned(this, val, chunk_length);
251 }
252
WriteVariableWidthU8(uint8_t val,size_t chunk_length)253 void BitWriterInterface::WriteVariableWidthU8(uint8_t val,
254 size_t chunk_length) {
255 WriteVariableWidthUnsigned(this, val, chunk_length);
256 }
257
WriteVariableWidthS64(int64_t val,size_t chunk_length,size_t zigzag_exponent)258 void BitWriterInterface::WriteVariableWidthS64(int64_t val,
259 size_t chunk_length,
260 size_t zigzag_exponent) {
261 WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
262 }
263
WriteVariableWidthS32(int32_t val,size_t chunk_length,size_t zigzag_exponent)264 void BitWriterInterface::WriteVariableWidthS32(int32_t val,
265 size_t chunk_length,
266 size_t zigzag_exponent) {
267 WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
268 }
269
WriteVariableWidthS16(int16_t val,size_t chunk_length,size_t zigzag_exponent)270 void BitWriterInterface::WriteVariableWidthS16(int16_t val,
271 size_t chunk_length,
272 size_t zigzag_exponent) {
273 WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
274 }
275
WriteVariableWidthS8(int8_t val,size_t chunk_length,size_t zigzag_exponent)276 void BitWriterInterface::WriteVariableWidthS8(int8_t val,
277 size_t chunk_length,
278 size_t zigzag_exponent) {
279 WriteVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
280 }
281
WriteFixedWidth(uint64_t val,uint64_t max_val)282 void BitWriterInterface::WriteFixedWidth(uint64_t val, uint64_t max_val) {
283 if (val > max_val) {
284 assert(0 && "WriteFixedWidth: value too wide");
285 return;
286 }
287
288 const size_t num_bits = 1 + Log2U64(max_val);
289 WriteBits(val, num_bits);
290 }
291
BitWriterWord64(size_t reserve_bits)292 BitWriterWord64::BitWriterWord64(size_t reserve_bits) : end_(0) {
293 buffer_.reserve(NumBitsToNumWords<64>(reserve_bits));
294 }
295
WriteBits(uint64_t bits,size_t num_bits)296 void BitWriterWord64::WriteBits(uint64_t bits, size_t num_bits) {
297 // Check that |bits| and |num_bits| are valid and consistent.
298 assert(num_bits <= 64);
299 const bool is_little_endian = IsLittleEndian();
300 assert(is_little_endian && "Big-endian architecture support not implemented");
301 if (!is_little_endian) return;
302
303 bits = GetLowerBits(bits, num_bits);
304
305 EmitSequence(bits, num_bits);
306
307 // Offset from the start of the current word.
308 const size_t offset = end_ % 64;
309
310 if (offset == 0) {
311 // If no offset, simply add |bits| as a new word to the buffer_.
312 buffer_.push_back(bits);
313 } else {
314 // Shift bits and add them to the current word after offset.
315 const uint64_t first_word = bits << offset;
316 buffer_.back() |= first_word;
317
318 // If we don't overflow to the next word, there is nothing more to do.
319
320 if (offset + num_bits > 64) {
321 // We overflow to the next word.
322 const uint64_t second_word = bits >> (64 - offset);
323 // Add remaining bits as a new word to buffer_.
324 buffer_.push_back(second_word);
325 }
326 }
327
328 // Move end_ into position for next write.
329 end_ += num_bits;
330 assert(buffer_.size() * 64 >= end_);
331 }
332
ReadVariableWidthU64(uint64_t * val,size_t chunk_length)333 bool BitReaderInterface::ReadVariableWidthU64(uint64_t* val,
334 size_t chunk_length) {
335 return ReadVariableWidthUnsigned(this, val, chunk_length);
336 }
337
ReadVariableWidthU32(uint32_t * val,size_t chunk_length)338 bool BitReaderInterface::ReadVariableWidthU32(uint32_t* val,
339 size_t chunk_length) {
340 return ReadVariableWidthUnsigned(this, val, chunk_length);
341 }
342
ReadVariableWidthU16(uint16_t * val,size_t chunk_length)343 bool BitReaderInterface::ReadVariableWidthU16(uint16_t* val,
344 size_t chunk_length) {
345 return ReadVariableWidthUnsigned(this, val, chunk_length);
346 }
347
ReadVariableWidthU8(uint8_t * val,size_t chunk_length)348 bool BitReaderInterface::ReadVariableWidthU8(uint8_t* val,
349 size_t chunk_length) {
350 return ReadVariableWidthUnsigned(this, val, chunk_length);
351 }
352
ReadVariableWidthS64(int64_t * val,size_t chunk_length,size_t zigzag_exponent)353 bool BitReaderInterface::ReadVariableWidthS64(int64_t* val,
354 size_t chunk_length,
355 size_t zigzag_exponent) {
356 return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
357 }
358
ReadVariableWidthS32(int32_t * val,size_t chunk_length,size_t zigzag_exponent)359 bool BitReaderInterface::ReadVariableWidthS32(int32_t* val,
360 size_t chunk_length,
361 size_t zigzag_exponent) {
362 return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
363 }
364
ReadVariableWidthS16(int16_t * val,size_t chunk_length,size_t zigzag_exponent)365 bool BitReaderInterface::ReadVariableWidthS16(int16_t* val,
366 size_t chunk_length,
367 size_t zigzag_exponent) {
368 return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
369 }
370
ReadVariableWidthS8(int8_t * val,size_t chunk_length,size_t zigzag_exponent)371 bool BitReaderInterface::ReadVariableWidthS8(int8_t* val,
372 size_t chunk_length,
373 size_t zigzag_exponent) {
374 return ReadVariableWidthSigned(this, val, chunk_length, zigzag_exponent);
375 }
376
ReadFixedWidth(uint64_t * val,uint64_t max_val)377 bool BitReaderInterface::ReadFixedWidth(uint64_t* val, uint64_t max_val) {
378 const size_t num_bits = 1 + Log2U64(max_val);
379 return ReadBits(val, num_bits) == num_bits;
380 }
381
BitReaderWord64(std::vector<uint64_t> && buffer)382 BitReaderWord64::BitReaderWord64(std::vector<uint64_t>&& buffer)
383 : buffer_(std::move(buffer)), pos_(0) {}
384
BitReaderWord64(const std::vector<uint8_t> & buffer)385 BitReaderWord64::BitReaderWord64(const std::vector<uint8_t>& buffer)
386 : buffer_(ToBuffer64(buffer)), pos_(0) {}
387
BitReaderWord64(const void * buffer,size_t num_bytes)388 BitReaderWord64::BitReaderWord64(const void* buffer, size_t num_bytes)
389 : buffer_(ToBuffer64(buffer, num_bytes)), pos_(0) {}
390
ReadBits(uint64_t * bits,size_t num_bits)391 size_t BitReaderWord64::ReadBits(uint64_t* bits, size_t num_bits) {
392 assert(num_bits <= 64);
393 const bool is_little_endian = IsLittleEndian();
394 assert(is_little_endian && "Big-endian architecture support not implemented");
395 if (!is_little_endian) return 0;
396
397 if (ReachedEnd())
398 return 0;
399
400 // Index of the current word.
401 const size_t index = pos_ / 64;
402
403 // Bit position in the current word where we start reading.
404 const size_t offset = pos_ % 64;
405
406 // Read all bits from the current word (it might be too much, but
407 // excessive bits will be removed later).
408 *bits = buffer_[index] >> offset;
409
410 const size_t num_read_from_first_word = std::min(64 - offset, num_bits);
411 pos_ += num_read_from_first_word;
412
413 if (pos_ >= buffer_.size() * 64) {
414 // Reached end of buffer_.
415 return num_read_from_first_word;
416 }
417
418 if (offset + num_bits > 64) {
419 // Requested |num_bits| overflows to next word.
420 // Write all bits from the beginning of next word to *bits after offset.
421 *bits |= buffer_[index + 1] << (64 - offset);
422 pos_ += offset + num_bits - 64;
423 }
424
425 // We likely have written more bits than requested. Clear excessive bits.
426 *bits = GetLowerBits(*bits, num_bits);
427 return num_bits;
428 }
429
ReachedEnd() const430 bool BitReaderWord64::ReachedEnd() const {
431 return pos_ >= buffer_.size() * 64;
432 }
433
OnlyZeroesLeft() const434 bool BitReaderWord64::OnlyZeroesLeft() const {
435 if (ReachedEnd())
436 return true;
437
438 const size_t index = pos_ / 64;
439 if (index < buffer_.size() - 1)
440 return false;
441
442 assert(index == buffer_.size() - 1);
443
444 const size_t offset = pos_ % 64;
445 const uint64_t remaining_bits = buffer_[index] >> offset;
446 return !remaining_bits;
447 }
448
449 } // namespace spvutils
450