• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38 
39 /* Registers */
40 #define BPF_R0	regs[BPF_REG_0]
41 #define BPF_R1	regs[BPF_REG_1]
42 #define BPF_R2	regs[BPF_REG_2]
43 #define BPF_R3	regs[BPF_REG_3]
44 #define BPF_R4	regs[BPF_REG_4]
45 #define BPF_R5	regs[BPF_REG_5]
46 #define BPF_R6	regs[BPF_REG_6]
47 #define BPF_R7	regs[BPF_REG_7]
48 #define BPF_R8	regs[BPF_REG_8]
49 #define BPF_R9	regs[BPF_REG_9]
50 #define BPF_R10	regs[BPF_REG_10]
51 
52 /* Named registers */
53 #define DST	regs[insn->dst_reg]
54 #define SRC	regs[insn->src_reg]
55 #define FP	regs[BPF_REG_FP]
56 #define AX	regs[BPF_REG_AX]
57 #define ARG1	regs[BPF_REG_ARG1]
58 #define CTX	regs[BPF_REG_CTX]
59 #define IMM	insn->imm
60 
61 /* No hurry in this branch
62  *
63  * Exported for the bpf jit load helper.
64  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 	u8 *ptr = NULL;
68 
69 	if (k >= SKF_NET_OFF)
70 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 	else if (k >= SKF_LL_OFF)
72 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73 
74 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 		return ptr;
76 
77 	return NULL;
78 }
79 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
83 	struct bpf_prog_aux *aux;
84 	struct bpf_prog *fp;
85 
86 	size = round_up(size, PAGE_SIZE);
87 	fp = __vmalloc(size, gfp_flags);
88 	if (fp == NULL)
89 		return NULL;
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 
97 	fp->pages = size / PAGE_SIZE;
98 	fp->aux = aux;
99 	fp->aux->prog = fp;
100 	fp->jit_requested = ebpf_jit_enabled();
101 
102 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
103 	mutex_init(&fp->aux->used_maps_mutex);
104 	mutex_init(&fp->aux->dst_mutex);
105 
106 	return fp;
107 }
108 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)109 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
110 {
111 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
112 	struct bpf_prog *prog;
113 	int cpu;
114 
115 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
116 	if (!prog)
117 		return NULL;
118 
119 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
120 	if (!prog->aux->stats) {
121 		kfree(prog->aux);
122 		vfree(prog);
123 		return NULL;
124 	}
125 
126 	for_each_possible_cpu(cpu) {
127 		struct bpf_prog_stats *pstats;
128 
129 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
130 		u64_stats_init(&pstats->syncp);
131 	}
132 	return prog;
133 }
134 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
135 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)136 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
137 {
138 	if (!prog->aux->nr_linfo || !prog->jit_requested)
139 		return 0;
140 
141 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
142 					 sizeof(*prog->aux->jited_linfo),
143 					 GFP_KERNEL | __GFP_NOWARN);
144 	if (!prog->aux->jited_linfo)
145 		return -ENOMEM;
146 
147 	return 0;
148 }
149 
bpf_prog_free_jited_linfo(struct bpf_prog * prog)150 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
151 {
152 	kfree(prog->aux->jited_linfo);
153 	prog->aux->jited_linfo = NULL;
154 }
155 
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)156 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
157 {
158 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
159 		bpf_prog_free_jited_linfo(prog);
160 }
161 
162 /* The jit engine is responsible to provide an array
163  * for insn_off to the jited_off mapping (insn_to_jit_off).
164  *
165  * The idx to this array is the insn_off.  Hence, the insn_off
166  * here is relative to the prog itself instead of the main prog.
167  * This array has one entry for each xlated bpf insn.
168  *
169  * jited_off is the byte off to the last byte of the jited insn.
170  *
171  * Hence, with
172  * insn_start:
173  *      The first bpf insn off of the prog.  The insn off
174  *      here is relative to the main prog.
175  *      e.g. if prog is a subprog, insn_start > 0
176  * linfo_idx:
177  *      The prog's idx to prog->aux->linfo and jited_linfo
178  *
179  * jited_linfo[linfo_idx] = prog->bpf_func
180  *
181  * For i > linfo_idx,
182  *
183  * jited_linfo[i] = prog->bpf_func +
184  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
185  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)186 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
187 			       const u32 *insn_to_jit_off)
188 {
189 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
190 	const struct bpf_line_info *linfo;
191 	void **jited_linfo;
192 
193 	if (!prog->aux->jited_linfo)
194 		/* Userspace did not provide linfo */
195 		return;
196 
197 	linfo_idx = prog->aux->linfo_idx;
198 	linfo = &prog->aux->linfo[linfo_idx];
199 	insn_start = linfo[0].insn_off;
200 	insn_end = insn_start + prog->len;
201 
202 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
203 	jited_linfo[0] = prog->bpf_func;
204 
205 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
206 
207 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
208 		/* The verifier ensures that linfo[i].insn_off is
209 		 * strictly increasing
210 		 */
211 		jited_linfo[i] = prog->bpf_func +
212 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
213 }
214 
bpf_prog_free_linfo(struct bpf_prog * prog)215 void bpf_prog_free_linfo(struct bpf_prog *prog)
216 {
217 	bpf_prog_free_jited_linfo(prog);
218 	kvfree(prog->aux->linfo);
219 }
220 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)221 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
222 				  gfp_t gfp_extra_flags)
223 {
224 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
225 	struct bpf_prog *fp;
226 	u32 pages, delta;
227 	int ret;
228 
229 	size = round_up(size, PAGE_SIZE);
230 	pages = size / PAGE_SIZE;
231 	if (pages <= fp_old->pages)
232 		return fp_old;
233 
234 	delta = pages - fp_old->pages;
235 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
236 	if (ret)
237 		return NULL;
238 
239 	fp = __vmalloc(size, gfp_flags);
240 	if (fp == NULL) {
241 		__bpf_prog_uncharge(fp_old->aux->user, delta);
242 	} else {
243 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
244 		fp->pages = pages;
245 		fp->aux->prog = fp;
246 
247 		/* We keep fp->aux from fp_old around in the new
248 		 * reallocated structure.
249 		 */
250 		fp_old->aux = NULL;
251 		__bpf_prog_free(fp_old);
252 	}
253 
254 	return fp;
255 }
256 
__bpf_prog_free(struct bpf_prog * fp)257 void __bpf_prog_free(struct bpf_prog *fp)
258 {
259 	if (fp->aux) {
260 		mutex_destroy(&fp->aux->used_maps_mutex);
261 		mutex_destroy(&fp->aux->dst_mutex);
262 		free_percpu(fp->aux->stats);
263 		kfree(fp->aux->poke_tab);
264 		kfree(fp->aux);
265 	}
266 	vfree(fp);
267 }
268 
bpf_prog_calc_tag(struct bpf_prog * fp)269 int bpf_prog_calc_tag(struct bpf_prog *fp)
270 {
271 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
272 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
273 	u32 digest[SHA1_DIGEST_WORDS];
274 	u32 ws[SHA1_WORKSPACE_WORDS];
275 	u32 i, bsize, psize, blocks;
276 	struct bpf_insn *dst;
277 	bool was_ld_map;
278 	u8 *raw, *todo;
279 	__be32 *result;
280 	__be64 *bits;
281 
282 	raw = vmalloc(raw_size);
283 	if (!raw)
284 		return -ENOMEM;
285 
286 	sha1_init(digest);
287 	memset(ws, 0, sizeof(ws));
288 
289 	/* We need to take out the map fd for the digest calculation
290 	 * since they are unstable from user space side.
291 	 */
292 	dst = (void *)raw;
293 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
294 		dst[i] = fp->insnsi[i];
295 		if (!was_ld_map &&
296 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
297 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
298 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
299 			was_ld_map = true;
300 			dst[i].imm = 0;
301 		} else if (was_ld_map &&
302 			   dst[i].code == 0 &&
303 			   dst[i].dst_reg == 0 &&
304 			   dst[i].src_reg == 0 &&
305 			   dst[i].off == 0) {
306 			was_ld_map = false;
307 			dst[i].imm = 0;
308 		} else {
309 			was_ld_map = false;
310 		}
311 	}
312 
313 	psize = bpf_prog_insn_size(fp);
314 	memset(&raw[psize], 0, raw_size - psize);
315 	raw[psize++] = 0x80;
316 
317 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
318 	blocks = bsize / SHA1_BLOCK_SIZE;
319 	todo   = raw;
320 	if (bsize - psize >= sizeof(__be64)) {
321 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
322 	} else {
323 		bits = (__be64 *)(todo + bsize + bits_offset);
324 		blocks++;
325 	}
326 	*bits = cpu_to_be64((psize - 1) << 3);
327 
328 	while (blocks--) {
329 		sha1_transform(digest, todo, ws);
330 		todo += SHA1_BLOCK_SIZE;
331 	}
332 
333 	result = (__force __be32 *)digest;
334 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
335 		result[i] = cpu_to_be32(digest[i]);
336 	memcpy(fp->tag, result, sizeof(fp->tag));
337 
338 	vfree(raw);
339 	return 0;
340 }
341 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)342 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
343 				s32 end_new, s32 curr, const bool probe_pass)
344 {
345 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
346 	s32 delta = end_new - end_old;
347 	s64 imm = insn->imm;
348 
349 	if (curr < pos && curr + imm + 1 >= end_old)
350 		imm += delta;
351 	else if (curr >= end_new && curr + imm + 1 < end_new)
352 		imm -= delta;
353 	if (imm < imm_min || imm > imm_max)
354 		return -ERANGE;
355 	if (!probe_pass)
356 		insn->imm = imm;
357 	return 0;
358 }
359 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)360 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
361 				s32 end_new, s32 curr, const bool probe_pass)
362 {
363 	const s32 off_min = S16_MIN, off_max = S16_MAX;
364 	s32 delta = end_new - end_old;
365 	s32 off = insn->off;
366 
367 	if (curr < pos && curr + off + 1 >= end_old)
368 		off += delta;
369 	else if (curr >= end_new && curr + off + 1 < end_new)
370 		off -= delta;
371 	if (off < off_min || off > off_max)
372 		return -ERANGE;
373 	if (!probe_pass)
374 		insn->off = off;
375 	return 0;
376 }
377 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)378 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
379 			    s32 end_new, const bool probe_pass)
380 {
381 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
382 	struct bpf_insn *insn = prog->insnsi;
383 	int ret = 0;
384 
385 	for (i = 0; i < insn_cnt; i++, insn++) {
386 		u8 code;
387 
388 		/* In the probing pass we still operate on the original,
389 		 * unpatched image in order to check overflows before we
390 		 * do any other adjustments. Therefore skip the patchlet.
391 		 */
392 		if (probe_pass && i == pos) {
393 			i = end_new;
394 			insn = prog->insnsi + end_old;
395 		}
396 		code = insn->code;
397 		if ((BPF_CLASS(code) != BPF_JMP &&
398 		     BPF_CLASS(code) != BPF_JMP32) ||
399 		    BPF_OP(code) == BPF_EXIT)
400 			continue;
401 		/* Adjust offset of jmps if we cross patch boundaries. */
402 		if (BPF_OP(code) == BPF_CALL) {
403 			if (insn->src_reg != BPF_PSEUDO_CALL)
404 				continue;
405 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
406 						   end_new, i, probe_pass);
407 		} else {
408 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
409 						   end_new, i, probe_pass);
410 		}
411 		if (ret)
412 			break;
413 	}
414 
415 	return ret;
416 }
417 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)418 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
419 {
420 	struct bpf_line_info *linfo;
421 	u32 i, nr_linfo;
422 
423 	nr_linfo = prog->aux->nr_linfo;
424 	if (!nr_linfo || !delta)
425 		return;
426 
427 	linfo = prog->aux->linfo;
428 
429 	for (i = 0; i < nr_linfo; i++)
430 		if (off < linfo[i].insn_off)
431 			break;
432 
433 	/* Push all off < linfo[i].insn_off by delta */
434 	for (; i < nr_linfo; i++)
435 		linfo[i].insn_off += delta;
436 }
437 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)438 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
439 				       const struct bpf_insn *patch, u32 len)
440 {
441 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
442 	const u32 cnt_max = S16_MAX;
443 	struct bpf_prog *prog_adj;
444 	int err;
445 
446 	/* Since our patchlet doesn't expand the image, we're done. */
447 	if (insn_delta == 0) {
448 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
449 		return prog;
450 	}
451 
452 	insn_adj_cnt = prog->len + insn_delta;
453 
454 	/* Reject anything that would potentially let the insn->off
455 	 * target overflow when we have excessive program expansions.
456 	 * We need to probe here before we do any reallocation where
457 	 * we afterwards may not fail anymore.
458 	 */
459 	if (insn_adj_cnt > cnt_max &&
460 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
461 		return ERR_PTR(err);
462 
463 	/* Several new instructions need to be inserted. Make room
464 	 * for them. Likely, there's no need for a new allocation as
465 	 * last page could have large enough tailroom.
466 	 */
467 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
468 				    GFP_USER);
469 	if (!prog_adj)
470 		return ERR_PTR(-ENOMEM);
471 
472 	prog_adj->len = insn_adj_cnt;
473 
474 	/* Patching happens in 3 steps:
475 	 *
476 	 * 1) Move over tail of insnsi from next instruction onwards,
477 	 *    so we can patch the single target insn with one or more
478 	 *    new ones (patching is always from 1 to n insns, n > 0).
479 	 * 2) Inject new instructions at the target location.
480 	 * 3) Adjust branch offsets if necessary.
481 	 */
482 	insn_rest = insn_adj_cnt - off - len;
483 
484 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
485 		sizeof(*patch) * insn_rest);
486 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
487 
488 	/* We are guaranteed to not fail at this point, otherwise
489 	 * the ship has sailed to reverse to the original state. An
490 	 * overflow cannot happen at this point.
491 	 */
492 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
493 
494 	bpf_adj_linfo(prog_adj, off, insn_delta);
495 
496 	return prog_adj;
497 }
498 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)499 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
500 {
501 	/* Branch offsets can't overflow when program is shrinking, no need
502 	 * to call bpf_adj_branches(..., true) here
503 	 */
504 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
505 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
506 	prog->len -= cnt;
507 
508 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
509 }
510 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)511 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
512 {
513 	int i;
514 
515 	for (i = 0; i < fp->aux->func_cnt; i++)
516 		bpf_prog_kallsyms_del(fp->aux->func[i]);
517 }
518 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)519 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
520 {
521 	bpf_prog_kallsyms_del_subprogs(fp);
522 	bpf_prog_kallsyms_del(fp);
523 }
524 
525 #ifdef CONFIG_BPF_JIT
526 /* All BPF JIT sysctl knobs here. */
527 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
528 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
529 int bpf_jit_harden   __read_mostly;
530 long bpf_jit_limit   __read_mostly;
531 long bpf_jit_limit_max __read_mostly;
532 
533 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)534 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
535 {
536 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
537 	unsigned long addr = (unsigned long)hdr;
538 
539 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
540 
541 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
542 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
543 }
544 
545 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)546 bpf_prog_ksym_set_name(struct bpf_prog *prog)
547 {
548 	char *sym = prog->aux->ksym.name;
549 	const char *end = sym + KSYM_NAME_LEN;
550 	const struct btf_type *type;
551 	const char *func_name;
552 
553 	BUILD_BUG_ON(sizeof("bpf_prog_") +
554 		     sizeof(prog->tag) * 2 +
555 		     /* name has been null terminated.
556 		      * We should need +1 for the '_' preceding
557 		      * the name.  However, the null character
558 		      * is double counted between the name and the
559 		      * sizeof("bpf_prog_") above, so we omit
560 		      * the +1 here.
561 		      */
562 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
563 
564 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
565 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
566 
567 	/* prog->aux->name will be ignored if full btf name is available */
568 	if (prog->aux->func_info_cnt) {
569 		type = btf_type_by_id(prog->aux->btf,
570 				      prog->aux->func_info[prog->aux->func_idx].type_id);
571 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
572 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
573 		return;
574 	}
575 
576 	if (prog->aux->name[0])
577 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
578 	else
579 		*sym = 0;
580 }
581 
bpf_get_ksym_start(struct latch_tree_node * n)582 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
583 {
584 	return container_of(n, struct bpf_ksym, tnode)->start;
585 }
586 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)587 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
588 					  struct latch_tree_node *b)
589 {
590 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
591 }
592 
bpf_tree_comp(void * key,struct latch_tree_node * n)593 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
594 {
595 	unsigned long val = (unsigned long)key;
596 	const struct bpf_ksym *ksym;
597 
598 	ksym = container_of(n, struct bpf_ksym, tnode);
599 
600 	if (val < ksym->start)
601 		return -1;
602 	if (val >= ksym->end)
603 		return  1;
604 
605 	return 0;
606 }
607 
608 static const struct latch_tree_ops bpf_tree_ops = {
609 	.less	= bpf_tree_less,
610 	.comp	= bpf_tree_comp,
611 };
612 
613 static DEFINE_SPINLOCK(bpf_lock);
614 static LIST_HEAD(bpf_kallsyms);
615 static struct latch_tree_root bpf_tree __cacheline_aligned;
616 
bpf_ksym_add(struct bpf_ksym * ksym)617 void bpf_ksym_add(struct bpf_ksym *ksym)
618 {
619 	spin_lock_bh(&bpf_lock);
620 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
621 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
622 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
623 	spin_unlock_bh(&bpf_lock);
624 }
625 
__bpf_ksym_del(struct bpf_ksym * ksym)626 static void __bpf_ksym_del(struct bpf_ksym *ksym)
627 {
628 	if (list_empty(&ksym->lnode))
629 		return;
630 
631 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
632 	list_del_rcu(&ksym->lnode);
633 }
634 
bpf_ksym_del(struct bpf_ksym * ksym)635 void bpf_ksym_del(struct bpf_ksym *ksym)
636 {
637 	spin_lock_bh(&bpf_lock);
638 	__bpf_ksym_del(ksym);
639 	spin_unlock_bh(&bpf_lock);
640 }
641 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)642 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
643 {
644 	return fp->jited && !bpf_prog_was_classic(fp);
645 }
646 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)647 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
648 {
649 	return list_empty(&fp->aux->ksym.lnode) ||
650 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
651 }
652 
bpf_prog_kallsyms_add(struct bpf_prog * fp)653 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
654 {
655 	if (!bpf_prog_kallsyms_candidate(fp) ||
656 	    !bpf_capable())
657 		return;
658 
659 	bpf_prog_ksym_set_addr(fp);
660 	bpf_prog_ksym_set_name(fp);
661 	fp->aux->ksym.prog = true;
662 
663 	bpf_ksym_add(&fp->aux->ksym);
664 }
665 
bpf_prog_kallsyms_del(struct bpf_prog * fp)666 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
667 {
668 	if (!bpf_prog_kallsyms_candidate(fp))
669 		return;
670 
671 	bpf_ksym_del(&fp->aux->ksym);
672 }
673 
bpf_ksym_find(unsigned long addr)674 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
675 {
676 	struct latch_tree_node *n;
677 
678 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
679 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
680 }
681 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)682 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
683 				 unsigned long *off, char *sym)
684 {
685 	struct bpf_ksym *ksym;
686 	char *ret = NULL;
687 
688 	rcu_read_lock();
689 	ksym = bpf_ksym_find(addr);
690 	if (ksym) {
691 		unsigned long symbol_start = ksym->start;
692 		unsigned long symbol_end = ksym->end;
693 
694 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
695 
696 		ret = sym;
697 		if (size)
698 			*size = symbol_end - symbol_start;
699 		if (off)
700 			*off  = addr - symbol_start;
701 	}
702 	rcu_read_unlock();
703 
704 	return ret;
705 }
706 
is_bpf_text_address(unsigned long addr)707 bool is_bpf_text_address(unsigned long addr)
708 {
709 	bool ret;
710 
711 	rcu_read_lock();
712 	ret = bpf_ksym_find(addr) != NULL;
713 	rcu_read_unlock();
714 
715 	return ret;
716 }
717 
bpf_prog_ksym_find(unsigned long addr)718 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
719 {
720 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
721 
722 	return ksym && ksym->prog ?
723 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
724 	       NULL;
725 }
726 
search_bpf_extables(unsigned long addr)727 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
728 {
729 	const struct exception_table_entry *e = NULL;
730 	struct bpf_prog *prog;
731 
732 	rcu_read_lock();
733 	prog = bpf_prog_ksym_find(addr);
734 	if (!prog)
735 		goto out;
736 	if (!prog->aux->num_exentries)
737 		goto out;
738 
739 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
740 out:
741 	rcu_read_unlock();
742 	return e;
743 }
744 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)745 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
746 		    char *sym)
747 {
748 	struct bpf_ksym *ksym;
749 	unsigned int it = 0;
750 	int ret = -ERANGE;
751 
752 	if (!bpf_jit_kallsyms_enabled())
753 		return ret;
754 
755 	rcu_read_lock();
756 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
757 		if (it++ != symnum)
758 			continue;
759 
760 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
761 
762 		*value = ksym->start;
763 		*type  = BPF_SYM_ELF_TYPE;
764 
765 		ret = 0;
766 		break;
767 	}
768 	rcu_read_unlock();
769 
770 	return ret;
771 }
772 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)773 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
774 				struct bpf_jit_poke_descriptor *poke)
775 {
776 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
777 	static const u32 poke_tab_max = 1024;
778 	u32 slot = prog->aux->size_poke_tab;
779 	u32 size = slot + 1;
780 
781 	if (size > poke_tab_max)
782 		return -ENOSPC;
783 	if (poke->tailcall_target || poke->tailcall_target_stable ||
784 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
785 		return -EINVAL;
786 
787 	switch (poke->reason) {
788 	case BPF_POKE_REASON_TAIL_CALL:
789 		if (!poke->tail_call.map)
790 			return -EINVAL;
791 		break;
792 	default:
793 		return -EINVAL;
794 	}
795 
796 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
797 	if (!tab)
798 		return -ENOMEM;
799 
800 	memcpy(&tab[slot], poke, sizeof(*poke));
801 	prog->aux->size_poke_tab = size;
802 	prog->aux->poke_tab = tab;
803 
804 	return slot;
805 }
806 
807 static atomic_long_t bpf_jit_current;
808 
809 /* Can be overridden by an arch's JIT compiler if it has a custom,
810  * dedicated BPF backend memory area, or if neither of the two
811  * below apply.
812  */
bpf_jit_alloc_exec_limit(void)813 u64 __weak bpf_jit_alloc_exec_limit(void)
814 {
815 #if defined(MODULES_VADDR)
816 	return MODULES_END - MODULES_VADDR;
817 #else
818 	return VMALLOC_END - VMALLOC_START;
819 #endif
820 }
821 
bpf_jit_charge_init(void)822 static int __init bpf_jit_charge_init(void)
823 {
824 	/* Only used as heuristic here to derive limit. */
825 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
826 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
827 					    PAGE_SIZE), LONG_MAX);
828 	return 0;
829 }
830 pure_initcall(bpf_jit_charge_init);
831 
bpf_jit_charge_modmem(u32 pages)832 int bpf_jit_charge_modmem(u32 pages)
833 {
834 	if (atomic_long_add_return(pages, &bpf_jit_current) >
835 	    (bpf_jit_limit >> PAGE_SHIFT)) {
836 		if (!bpf_capable()) {
837 			atomic_long_sub(pages, &bpf_jit_current);
838 			return -EPERM;
839 		}
840 	}
841 
842 	return 0;
843 }
844 
bpf_jit_uncharge_modmem(u32 pages)845 void bpf_jit_uncharge_modmem(u32 pages)
846 {
847 	atomic_long_sub(pages, &bpf_jit_current);
848 }
849 
bpf_jit_alloc_exec(unsigned long size)850 void *__weak bpf_jit_alloc_exec(unsigned long size)
851 {
852 	return module_alloc(size);
853 }
854 
bpf_jit_free_exec(void * addr)855 void __weak bpf_jit_free_exec(void *addr)
856 {
857 	module_memfree(addr);
858 }
859 
860 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)861 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
862 		     unsigned int alignment,
863 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
864 {
865 	struct bpf_binary_header *hdr;
866 	u32 size, hole, start, pages;
867 
868 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
869 		     alignment > BPF_IMAGE_ALIGNMENT);
870 
871 	/* Most of BPF filters are really small, but if some of them
872 	 * fill a page, allow at least 128 extra bytes to insert a
873 	 * random section of illegal instructions.
874 	 */
875 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
876 	pages = size / PAGE_SIZE;
877 
878 	if (bpf_jit_charge_modmem(pages))
879 		return NULL;
880 	hdr = bpf_jit_alloc_exec(size);
881 	if (!hdr) {
882 		bpf_jit_uncharge_modmem(pages);
883 		return NULL;
884 	}
885 
886 	/* Fill space with illegal/arch-dep instructions. */
887 	bpf_fill_ill_insns(hdr, size);
888 
889 	hdr->pages = pages;
890 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
891 		     PAGE_SIZE - sizeof(*hdr));
892 	start = (get_random_int() % hole) & ~(alignment - 1);
893 
894 	/* Leave a random number of instructions before BPF code. */
895 	*image_ptr = &hdr->image[start];
896 
897 	return hdr;
898 }
899 
bpf_jit_binary_free(struct bpf_binary_header * hdr)900 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
901 {
902 	u32 pages = hdr->pages;
903 
904 	bpf_jit_free_exec(hdr);
905 	bpf_jit_uncharge_modmem(pages);
906 }
907 
908 /* This symbol is only overridden by archs that have different
909  * requirements than the usual eBPF JITs, f.e. when they only
910  * implement cBPF JIT, do not set images read-only, etc.
911  */
bpf_jit_free(struct bpf_prog * fp)912 void __weak bpf_jit_free(struct bpf_prog *fp)
913 {
914 	if (fp->jited) {
915 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
916 
917 		bpf_jit_binary_free(hdr);
918 
919 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
920 	}
921 
922 	bpf_prog_unlock_free(fp);
923 }
924 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)925 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
926 			  const struct bpf_insn *insn, bool extra_pass,
927 			  u64 *func_addr, bool *func_addr_fixed)
928 {
929 	s16 off = insn->off;
930 	s32 imm = insn->imm;
931 	u8 *addr;
932 
933 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
934 	if (!*func_addr_fixed) {
935 		/* Place-holder address till the last pass has collected
936 		 * all addresses for JITed subprograms in which case we
937 		 * can pick them up from prog->aux.
938 		 */
939 		if (!extra_pass)
940 			addr = NULL;
941 		else if (prog->aux->func &&
942 			 off >= 0 && off < prog->aux->func_cnt)
943 			addr = (u8 *)prog->aux->func[off]->bpf_func;
944 		else
945 			return -EINVAL;
946 	} else {
947 		/* Address of a BPF helper call. Since part of the core
948 		 * kernel, it's always at a fixed location. __bpf_call_base
949 		 * and the helper with imm relative to it are both in core
950 		 * kernel.
951 		 */
952 		addr = (u8 *)__bpf_call_base + imm;
953 	}
954 
955 	*func_addr = (unsigned long)addr;
956 	return 0;
957 }
958 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)959 static int bpf_jit_blind_insn(const struct bpf_insn *from,
960 			      const struct bpf_insn *aux,
961 			      struct bpf_insn *to_buff,
962 			      bool emit_zext)
963 {
964 	struct bpf_insn *to = to_buff;
965 	u32 imm_rnd = get_random_int();
966 	s16 off;
967 
968 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
969 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
970 
971 	/* Constraints on AX register:
972 	 *
973 	 * AX register is inaccessible from user space. It is mapped in
974 	 * all JITs, and used here for constant blinding rewrites. It is
975 	 * typically "stateless" meaning its contents are only valid within
976 	 * the executed instruction, but not across several instructions.
977 	 * There are a few exceptions however which are further detailed
978 	 * below.
979 	 *
980 	 * Constant blinding is only used by JITs, not in the interpreter.
981 	 * The interpreter uses AX in some occasions as a local temporary
982 	 * register e.g. in DIV or MOD instructions.
983 	 *
984 	 * In restricted circumstances, the verifier can also use the AX
985 	 * register for rewrites as long as they do not interfere with
986 	 * the above cases!
987 	 */
988 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
989 		goto out;
990 
991 	if (from->imm == 0 &&
992 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
993 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
994 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
995 		goto out;
996 	}
997 
998 	switch (from->code) {
999 	case BPF_ALU | BPF_ADD | BPF_K:
1000 	case BPF_ALU | BPF_SUB | BPF_K:
1001 	case BPF_ALU | BPF_AND | BPF_K:
1002 	case BPF_ALU | BPF_OR  | BPF_K:
1003 	case BPF_ALU | BPF_XOR | BPF_K:
1004 	case BPF_ALU | BPF_MUL | BPF_K:
1005 	case BPF_ALU | BPF_MOV | BPF_K:
1006 	case BPF_ALU | BPF_DIV | BPF_K:
1007 	case BPF_ALU | BPF_MOD | BPF_K:
1008 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1009 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1010 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1011 		break;
1012 
1013 	case BPF_ALU64 | BPF_ADD | BPF_K:
1014 	case BPF_ALU64 | BPF_SUB | BPF_K:
1015 	case BPF_ALU64 | BPF_AND | BPF_K:
1016 	case BPF_ALU64 | BPF_OR  | BPF_K:
1017 	case BPF_ALU64 | BPF_XOR | BPF_K:
1018 	case BPF_ALU64 | BPF_MUL | BPF_K:
1019 	case BPF_ALU64 | BPF_MOV | BPF_K:
1020 	case BPF_ALU64 | BPF_DIV | BPF_K:
1021 	case BPF_ALU64 | BPF_MOD | BPF_K:
1022 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1023 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1024 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1025 		break;
1026 
1027 	case BPF_JMP | BPF_JEQ  | BPF_K:
1028 	case BPF_JMP | BPF_JNE  | BPF_K:
1029 	case BPF_JMP | BPF_JGT  | BPF_K:
1030 	case BPF_JMP | BPF_JLT  | BPF_K:
1031 	case BPF_JMP | BPF_JGE  | BPF_K:
1032 	case BPF_JMP | BPF_JLE  | BPF_K:
1033 	case BPF_JMP | BPF_JSGT | BPF_K:
1034 	case BPF_JMP | BPF_JSLT | BPF_K:
1035 	case BPF_JMP | BPF_JSGE | BPF_K:
1036 	case BPF_JMP | BPF_JSLE | BPF_K:
1037 	case BPF_JMP | BPF_JSET | BPF_K:
1038 		/* Accommodate for extra offset in case of a backjump. */
1039 		off = from->off;
1040 		if (off < 0)
1041 			off -= 2;
1042 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1043 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1044 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1045 		break;
1046 
1047 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1048 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1049 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1050 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1051 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1052 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1053 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1054 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1055 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1056 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1057 	case BPF_JMP32 | BPF_JSET | BPF_K:
1058 		/* Accommodate for extra offset in case of a backjump. */
1059 		off = from->off;
1060 		if (off < 0)
1061 			off -= 2;
1062 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1063 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1064 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1065 				      off);
1066 		break;
1067 
1068 	case BPF_LD | BPF_IMM | BPF_DW:
1069 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1070 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1071 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1072 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1073 		break;
1074 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1075 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1076 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1077 		if (emit_zext)
1078 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1079 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1080 		break;
1081 
1082 	case BPF_ST | BPF_MEM | BPF_DW:
1083 	case BPF_ST | BPF_MEM | BPF_W:
1084 	case BPF_ST | BPF_MEM | BPF_H:
1085 	case BPF_ST | BPF_MEM | BPF_B:
1086 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1087 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1088 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1089 		break;
1090 	}
1091 out:
1092 	return to - to_buff;
1093 }
1094 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1095 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1096 					      gfp_t gfp_extra_flags)
1097 {
1098 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1099 	struct bpf_prog *fp;
1100 
1101 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1102 	if (fp != NULL) {
1103 		/* aux->prog still points to the fp_other one, so
1104 		 * when promoting the clone to the real program,
1105 		 * this still needs to be adapted.
1106 		 */
1107 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1108 	}
1109 
1110 	return fp;
1111 }
1112 
bpf_prog_clone_free(struct bpf_prog * fp)1113 static void bpf_prog_clone_free(struct bpf_prog *fp)
1114 {
1115 	/* aux was stolen by the other clone, so we cannot free
1116 	 * it from this path! It will be freed eventually by the
1117 	 * other program on release.
1118 	 *
1119 	 * At this point, we don't need a deferred release since
1120 	 * clone is guaranteed to not be locked.
1121 	 */
1122 	fp->aux = NULL;
1123 	__bpf_prog_free(fp);
1124 }
1125 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1126 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1127 {
1128 	/* We have to repoint aux->prog to self, as we don't
1129 	 * know whether fp here is the clone or the original.
1130 	 */
1131 	fp->aux->prog = fp;
1132 	bpf_prog_clone_free(fp_other);
1133 }
1134 
bpf_jit_blind_constants(struct bpf_prog * prog)1135 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1136 {
1137 	struct bpf_insn insn_buff[16], aux[2];
1138 	struct bpf_prog *clone, *tmp;
1139 	int insn_delta, insn_cnt;
1140 	struct bpf_insn *insn;
1141 	int i, rewritten;
1142 
1143 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1144 		return prog;
1145 
1146 	clone = bpf_prog_clone_create(prog, GFP_USER);
1147 	if (!clone)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	insn_cnt = clone->len;
1151 	insn = clone->insnsi;
1152 
1153 	for (i = 0; i < insn_cnt; i++, insn++) {
1154 		/* We temporarily need to hold the original ld64 insn
1155 		 * so that we can still access the first part in the
1156 		 * second blinding run.
1157 		 */
1158 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1159 		    insn[1].code == 0)
1160 			memcpy(aux, insn, sizeof(aux));
1161 
1162 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1163 						clone->aux->verifier_zext);
1164 		if (!rewritten)
1165 			continue;
1166 
1167 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1168 		if (IS_ERR(tmp)) {
1169 			/* Patching may have repointed aux->prog during
1170 			 * realloc from the original one, so we need to
1171 			 * fix it up here on error.
1172 			 */
1173 			bpf_jit_prog_release_other(prog, clone);
1174 			return tmp;
1175 		}
1176 
1177 		clone = tmp;
1178 		insn_delta = rewritten - 1;
1179 
1180 		/* Walk new program and skip insns we just inserted. */
1181 		insn = clone->insnsi + i + insn_delta;
1182 		insn_cnt += insn_delta;
1183 		i        += insn_delta;
1184 	}
1185 
1186 	clone->blinded = 1;
1187 	return clone;
1188 }
1189 #endif /* CONFIG_BPF_JIT */
1190 
1191 /* Base function for offset calculation. Needs to go into .text section,
1192  * therefore keeping it non-static as well; will also be used by JITs
1193  * anyway later on, so do not let the compiler omit it. This also needs
1194  * to go into kallsyms for correlation from e.g. bpftool, so naming
1195  * must not change.
1196  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1197 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1198 {
1199 	return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(__bpf_call_base);
1202 
1203 /* All UAPI available opcodes. */
1204 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1205 	/* 32 bit ALU operations. */		\
1206 	/*   Register based. */			\
1207 	INSN_3(ALU, ADD,  X),			\
1208 	INSN_3(ALU, SUB,  X),			\
1209 	INSN_3(ALU, AND,  X),			\
1210 	INSN_3(ALU, OR,   X),			\
1211 	INSN_3(ALU, LSH,  X),			\
1212 	INSN_3(ALU, RSH,  X),			\
1213 	INSN_3(ALU, XOR,  X),			\
1214 	INSN_3(ALU, MUL,  X),			\
1215 	INSN_3(ALU, MOV,  X),			\
1216 	INSN_3(ALU, ARSH, X),			\
1217 	INSN_3(ALU, DIV,  X),			\
1218 	INSN_3(ALU, MOD,  X),			\
1219 	INSN_2(ALU, NEG),			\
1220 	INSN_3(ALU, END, TO_BE),		\
1221 	INSN_3(ALU, END, TO_LE),		\
1222 	/*   Immediate based. */		\
1223 	INSN_3(ALU, ADD,  K),			\
1224 	INSN_3(ALU, SUB,  K),			\
1225 	INSN_3(ALU, AND,  K),			\
1226 	INSN_3(ALU, OR,   K),			\
1227 	INSN_3(ALU, LSH,  K),			\
1228 	INSN_3(ALU, RSH,  K),			\
1229 	INSN_3(ALU, XOR,  K),			\
1230 	INSN_3(ALU, MUL,  K),			\
1231 	INSN_3(ALU, MOV,  K),			\
1232 	INSN_3(ALU, ARSH, K),			\
1233 	INSN_3(ALU, DIV,  K),			\
1234 	INSN_3(ALU, MOD,  K),			\
1235 	/* 64 bit ALU operations. */		\
1236 	/*   Register based. */			\
1237 	INSN_3(ALU64, ADD,  X),			\
1238 	INSN_3(ALU64, SUB,  X),			\
1239 	INSN_3(ALU64, AND,  X),			\
1240 	INSN_3(ALU64, OR,   X),			\
1241 	INSN_3(ALU64, LSH,  X),			\
1242 	INSN_3(ALU64, RSH,  X),			\
1243 	INSN_3(ALU64, XOR,  X),			\
1244 	INSN_3(ALU64, MUL,  X),			\
1245 	INSN_3(ALU64, MOV,  X),			\
1246 	INSN_3(ALU64, ARSH, X),			\
1247 	INSN_3(ALU64, DIV,  X),			\
1248 	INSN_3(ALU64, MOD,  X),			\
1249 	INSN_2(ALU64, NEG),			\
1250 	/*   Immediate based. */		\
1251 	INSN_3(ALU64, ADD,  K),			\
1252 	INSN_3(ALU64, SUB,  K),			\
1253 	INSN_3(ALU64, AND,  K),			\
1254 	INSN_3(ALU64, OR,   K),			\
1255 	INSN_3(ALU64, LSH,  K),			\
1256 	INSN_3(ALU64, RSH,  K),			\
1257 	INSN_3(ALU64, XOR,  K),			\
1258 	INSN_3(ALU64, MUL,  K),			\
1259 	INSN_3(ALU64, MOV,  K),			\
1260 	INSN_3(ALU64, ARSH, K),			\
1261 	INSN_3(ALU64, DIV,  K),			\
1262 	INSN_3(ALU64, MOD,  K),			\
1263 	/* Call instruction. */			\
1264 	INSN_2(JMP, CALL),			\
1265 	/* Exit instruction. */			\
1266 	INSN_2(JMP, EXIT),			\
1267 	/* 32-bit Jump instructions. */		\
1268 	/*   Register based. */			\
1269 	INSN_3(JMP32, JEQ,  X),			\
1270 	INSN_3(JMP32, JNE,  X),			\
1271 	INSN_3(JMP32, JGT,  X),			\
1272 	INSN_3(JMP32, JLT,  X),			\
1273 	INSN_3(JMP32, JGE,  X),			\
1274 	INSN_3(JMP32, JLE,  X),			\
1275 	INSN_3(JMP32, JSGT, X),			\
1276 	INSN_3(JMP32, JSLT, X),			\
1277 	INSN_3(JMP32, JSGE, X),			\
1278 	INSN_3(JMP32, JSLE, X),			\
1279 	INSN_3(JMP32, JSET, X),			\
1280 	/*   Immediate based. */		\
1281 	INSN_3(JMP32, JEQ,  K),			\
1282 	INSN_3(JMP32, JNE,  K),			\
1283 	INSN_3(JMP32, JGT,  K),			\
1284 	INSN_3(JMP32, JLT,  K),			\
1285 	INSN_3(JMP32, JGE,  K),			\
1286 	INSN_3(JMP32, JLE,  K),			\
1287 	INSN_3(JMP32, JSGT, K),			\
1288 	INSN_3(JMP32, JSLT, K),			\
1289 	INSN_3(JMP32, JSGE, K),			\
1290 	INSN_3(JMP32, JSLE, K),			\
1291 	INSN_3(JMP32, JSET, K),			\
1292 	/* Jump instructions. */		\
1293 	/*   Register based. */			\
1294 	INSN_3(JMP, JEQ,  X),			\
1295 	INSN_3(JMP, JNE,  X),			\
1296 	INSN_3(JMP, JGT,  X),			\
1297 	INSN_3(JMP, JLT,  X),			\
1298 	INSN_3(JMP, JGE,  X),			\
1299 	INSN_3(JMP, JLE,  X),			\
1300 	INSN_3(JMP, JSGT, X),			\
1301 	INSN_3(JMP, JSLT, X),			\
1302 	INSN_3(JMP, JSGE, X),			\
1303 	INSN_3(JMP, JSLE, X),			\
1304 	INSN_3(JMP, JSET, X),			\
1305 	/*   Immediate based. */		\
1306 	INSN_3(JMP, JEQ,  K),			\
1307 	INSN_3(JMP, JNE,  K),			\
1308 	INSN_3(JMP, JGT,  K),			\
1309 	INSN_3(JMP, JLT,  K),			\
1310 	INSN_3(JMP, JGE,  K),			\
1311 	INSN_3(JMP, JLE,  K),			\
1312 	INSN_3(JMP, JSGT, K),			\
1313 	INSN_3(JMP, JSLT, K),			\
1314 	INSN_3(JMP, JSGE, K),			\
1315 	INSN_3(JMP, JSLE, K),			\
1316 	INSN_3(JMP, JSET, K),			\
1317 	INSN_2(JMP, JA),			\
1318 	/* Store instructions. */		\
1319 	/*   Register based. */			\
1320 	INSN_3(STX, MEM,  B),			\
1321 	INSN_3(STX, MEM,  H),			\
1322 	INSN_3(STX, MEM,  W),			\
1323 	INSN_3(STX, MEM,  DW),			\
1324 	INSN_3(STX, XADD, W),			\
1325 	INSN_3(STX, XADD, DW),			\
1326 	/*   Immediate based. */		\
1327 	INSN_3(ST, MEM, B),			\
1328 	INSN_3(ST, MEM, H),			\
1329 	INSN_3(ST, MEM, W),			\
1330 	INSN_3(ST, MEM, DW),			\
1331 	/* Load instructions. */		\
1332 	/*   Register based. */			\
1333 	INSN_3(LDX, MEM, B),			\
1334 	INSN_3(LDX, MEM, H),			\
1335 	INSN_3(LDX, MEM, W),			\
1336 	INSN_3(LDX, MEM, DW),			\
1337 	/*   Immediate based. */		\
1338 	INSN_3(LD, IMM, DW)
1339 
bpf_opcode_in_insntable(u8 code)1340 bool bpf_opcode_in_insntable(u8 code)
1341 {
1342 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1343 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1344 	static const bool public_insntable[256] = {
1345 		[0 ... 255] = false,
1346 		/* Now overwrite non-defaults ... */
1347 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1348 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1349 		[BPF_LD | BPF_ABS | BPF_B] = true,
1350 		[BPF_LD | BPF_ABS | BPF_H] = true,
1351 		[BPF_LD | BPF_ABS | BPF_W] = true,
1352 		[BPF_LD | BPF_IND | BPF_B] = true,
1353 		[BPF_LD | BPF_IND | BPF_H] = true,
1354 		[BPF_LD | BPF_IND | BPF_W] = true,
1355 	};
1356 #undef BPF_INSN_3_TBL
1357 #undef BPF_INSN_2_TBL
1358 	return public_insntable[code];
1359 }
1360 
1361 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1362 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1363 {
1364 	memset(dst, 0, size);
1365 	return -EFAULT;
1366 }
1367 
1368 /**
1369  *	__bpf_prog_run - run eBPF program on a given context
1370  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1371  *	@insn: is the array of eBPF instructions
1372  *	@stack: is the eBPF storage stack
1373  *
1374  * Decode and execute eBPF instructions.
1375  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1376 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1377 {
1378 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1379 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1380 	static const void * const jumptable[256] __annotate_jump_table = {
1381 		[0 ... 255] = &&default_label,
1382 		/* Now overwrite non-defaults ... */
1383 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1384 		/* Non-UAPI available opcodes. */
1385 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1386 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1387 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1388 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1389 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1390 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1391 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1392 	};
1393 #undef BPF_INSN_3_LBL
1394 #undef BPF_INSN_2_LBL
1395 	u32 tail_call_cnt = 0;
1396 
1397 #define CONT	 ({ insn++; goto select_insn; })
1398 #define CONT_JMP ({ insn++; goto select_insn; })
1399 
1400 select_insn:
1401 	goto *jumptable[insn->code];
1402 
1403 	/* Explicitly mask the register-based shift amounts with 63 or 31
1404 	 * to avoid undefined behavior. Normally this won't affect the
1405 	 * generated code, for example, in case of native 64 bit archs such
1406 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1407 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1408 	 * the BPF shift operations to machine instructions which produce
1409 	 * implementation-defined results in such a case; the resulting
1410 	 * contents of the register may be arbitrary, but program behaviour
1411 	 * as a whole remains defined. In other words, in case of JIT backends,
1412 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1413 	 */
1414 	/* ALU (shifts) */
1415 #define SHT(OPCODE, OP)					\
1416 	ALU64_##OPCODE##_X:				\
1417 		DST = DST OP (SRC & 63);		\
1418 		CONT;					\
1419 	ALU_##OPCODE##_X:				\
1420 		DST = (u32) DST OP ((u32) SRC & 31);	\
1421 		CONT;					\
1422 	ALU64_##OPCODE##_K:				\
1423 		DST = DST OP IMM;			\
1424 		CONT;					\
1425 	ALU_##OPCODE##_K:				\
1426 		DST = (u32) DST OP (u32) IMM;		\
1427 		CONT;
1428 	/* ALU (rest) */
1429 #define ALU(OPCODE, OP)					\
1430 	ALU64_##OPCODE##_X:				\
1431 		DST = DST OP SRC;			\
1432 		CONT;					\
1433 	ALU_##OPCODE##_X:				\
1434 		DST = (u32) DST OP (u32) SRC;		\
1435 		CONT;					\
1436 	ALU64_##OPCODE##_K:				\
1437 		DST = DST OP IMM;			\
1438 		CONT;					\
1439 	ALU_##OPCODE##_K:				\
1440 		DST = (u32) DST OP (u32) IMM;		\
1441 		CONT;
1442 	ALU(ADD,  +)
1443 	ALU(SUB,  -)
1444 	ALU(AND,  &)
1445 	ALU(OR,   |)
1446 	ALU(XOR,  ^)
1447 	ALU(MUL,  *)
1448 	SHT(LSH, <<)
1449 	SHT(RSH, >>)
1450 #undef SHT
1451 #undef ALU
1452 	ALU_NEG:
1453 		DST = (u32) -DST;
1454 		CONT;
1455 	ALU64_NEG:
1456 		DST = -DST;
1457 		CONT;
1458 	ALU_MOV_X:
1459 		DST = (u32) SRC;
1460 		CONT;
1461 	ALU_MOV_K:
1462 		DST = (u32) IMM;
1463 		CONT;
1464 	ALU64_MOV_X:
1465 		DST = SRC;
1466 		CONT;
1467 	ALU64_MOV_K:
1468 		DST = IMM;
1469 		CONT;
1470 	LD_IMM_DW:
1471 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1472 		insn++;
1473 		CONT;
1474 	ALU_ARSH_X:
1475 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1476 		CONT;
1477 	ALU_ARSH_K:
1478 		DST = (u64) (u32) (((s32) DST) >> IMM);
1479 		CONT;
1480 	ALU64_ARSH_X:
1481 		(*(s64 *) &DST) >>= (SRC & 63);
1482 		CONT;
1483 	ALU64_ARSH_K:
1484 		(*(s64 *) &DST) >>= IMM;
1485 		CONT;
1486 	ALU64_MOD_X:
1487 		div64_u64_rem(DST, SRC, &AX);
1488 		DST = AX;
1489 		CONT;
1490 	ALU_MOD_X:
1491 		AX = (u32) DST;
1492 		DST = do_div(AX, (u32) SRC);
1493 		CONT;
1494 	ALU64_MOD_K:
1495 		div64_u64_rem(DST, IMM, &AX);
1496 		DST = AX;
1497 		CONT;
1498 	ALU_MOD_K:
1499 		AX = (u32) DST;
1500 		DST = do_div(AX, (u32) IMM);
1501 		CONT;
1502 	ALU64_DIV_X:
1503 		DST = div64_u64(DST, SRC);
1504 		CONT;
1505 	ALU_DIV_X:
1506 		AX = (u32) DST;
1507 		do_div(AX, (u32) SRC);
1508 		DST = (u32) AX;
1509 		CONT;
1510 	ALU64_DIV_K:
1511 		DST = div64_u64(DST, IMM);
1512 		CONT;
1513 	ALU_DIV_K:
1514 		AX = (u32) DST;
1515 		do_div(AX, (u32) IMM);
1516 		DST = (u32) AX;
1517 		CONT;
1518 	ALU_END_TO_BE:
1519 		switch (IMM) {
1520 		case 16:
1521 			DST = (__force u16) cpu_to_be16(DST);
1522 			break;
1523 		case 32:
1524 			DST = (__force u32) cpu_to_be32(DST);
1525 			break;
1526 		case 64:
1527 			DST = (__force u64) cpu_to_be64(DST);
1528 			break;
1529 		}
1530 		CONT;
1531 	ALU_END_TO_LE:
1532 		switch (IMM) {
1533 		case 16:
1534 			DST = (__force u16) cpu_to_le16(DST);
1535 			break;
1536 		case 32:
1537 			DST = (__force u32) cpu_to_le32(DST);
1538 			break;
1539 		case 64:
1540 			DST = (__force u64) cpu_to_le64(DST);
1541 			break;
1542 		}
1543 		CONT;
1544 
1545 	/* CALL */
1546 	JMP_CALL:
1547 		/* Function call scratches BPF_R1-BPF_R5 registers,
1548 		 * preserves BPF_R6-BPF_R9, and stores return value
1549 		 * into BPF_R0.
1550 		 */
1551 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1552 						       BPF_R4, BPF_R5);
1553 		CONT;
1554 
1555 	JMP_CALL_ARGS:
1556 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1557 							    BPF_R3, BPF_R4,
1558 							    BPF_R5,
1559 							    insn + insn->off + 1);
1560 		CONT;
1561 
1562 	JMP_TAIL_CALL: {
1563 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1564 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1565 		struct bpf_prog *prog;
1566 		u32 index = BPF_R3;
1567 
1568 		if (unlikely(index >= array->map.max_entries))
1569 			goto out;
1570 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1571 			goto out;
1572 
1573 		tail_call_cnt++;
1574 
1575 		prog = READ_ONCE(array->ptrs[index]);
1576 		if (!prog)
1577 			goto out;
1578 
1579 		/* ARG1 at this point is guaranteed to point to CTX from
1580 		 * the verifier side due to the fact that the tail call is
1581 		 * handled like a helper, that is, bpf_tail_call_proto,
1582 		 * where arg1_type is ARG_PTR_TO_CTX.
1583 		 */
1584 		insn = prog->insnsi;
1585 		goto select_insn;
1586 out:
1587 		CONT;
1588 	}
1589 	JMP_JA:
1590 		insn += insn->off;
1591 		CONT;
1592 	JMP_EXIT:
1593 		return BPF_R0;
1594 	/* JMP */
1595 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1596 	JMP_##OPCODE##_X:					\
1597 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1598 			insn += insn->off;			\
1599 			CONT_JMP;				\
1600 		}						\
1601 		CONT;						\
1602 	JMP32_##OPCODE##_X:					\
1603 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1604 			insn += insn->off;			\
1605 			CONT_JMP;				\
1606 		}						\
1607 		CONT;						\
1608 	JMP_##OPCODE##_K:					\
1609 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1610 			insn += insn->off;			\
1611 			CONT_JMP;				\
1612 		}						\
1613 		CONT;						\
1614 	JMP32_##OPCODE##_K:					\
1615 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1616 			insn += insn->off;			\
1617 			CONT_JMP;				\
1618 		}						\
1619 		CONT;
1620 	COND_JMP(u, JEQ, ==)
1621 	COND_JMP(u, JNE, !=)
1622 	COND_JMP(u, JGT, >)
1623 	COND_JMP(u, JLT, <)
1624 	COND_JMP(u, JGE, >=)
1625 	COND_JMP(u, JLE, <=)
1626 	COND_JMP(u, JSET, &)
1627 	COND_JMP(s, JSGT, >)
1628 	COND_JMP(s, JSLT, <)
1629 	COND_JMP(s, JSGE, >=)
1630 	COND_JMP(s, JSLE, <=)
1631 #undef COND_JMP
1632 	/* ST, STX and LDX*/
1633 	ST_NOSPEC:
1634 		/* Speculation barrier for mitigating Speculative Store Bypass.
1635 		 * In case of arm64, we rely on the firmware mitigation as
1636 		 * controlled via the ssbd kernel parameter. Whenever the
1637 		 * mitigation is enabled, it works for all of the kernel code
1638 		 * with no need to provide any additional instructions here.
1639 		 * In case of x86, we use 'lfence' insn for mitigation. We
1640 		 * reuse preexisting logic from Spectre v1 mitigation that
1641 		 * happens to produce the required code on x86 for v4 as well.
1642 		 */
1643 #ifdef CONFIG_X86
1644 		barrier_nospec();
1645 #endif
1646 		CONT;
1647 #define LDST(SIZEOP, SIZE)						\
1648 	STX_MEM_##SIZEOP:						\
1649 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1650 		CONT;							\
1651 	ST_MEM_##SIZEOP:						\
1652 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1653 		CONT;							\
1654 	LDX_MEM_##SIZEOP:						\
1655 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1656 		CONT;
1657 
1658 	LDST(B,   u8)
1659 	LDST(H,  u16)
1660 	LDST(W,  u32)
1661 	LDST(DW, u64)
1662 #undef LDST
1663 #define LDX_PROBE(SIZEOP, SIZE)							\
1664 	LDX_PROBE_MEM_##SIZEOP:							\
1665 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1666 		CONT;
1667 	LDX_PROBE(B,  1)
1668 	LDX_PROBE(H,  2)
1669 	LDX_PROBE(W,  4)
1670 	LDX_PROBE(DW, 8)
1671 #undef LDX_PROBE
1672 
1673 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1674 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1675 			   (DST + insn->off));
1676 		CONT;
1677 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1678 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1679 			     (DST + insn->off));
1680 		CONT;
1681 
1682 	default_label:
1683 		/* If we ever reach this, we have a bug somewhere. Die hard here
1684 		 * instead of just returning 0; we could be somewhere in a subprog,
1685 		 * so execution could continue otherwise which we do /not/ want.
1686 		 *
1687 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1688 		 */
1689 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1690 		BUG_ON(1);
1691 		return 0;
1692 }
1693 
1694 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1695 #define DEFINE_BPF_PROG_RUN(stack_size) \
1696 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1697 { \
1698 	u64 stack[stack_size / sizeof(u64)]; \
1699 	u64 regs[MAX_BPF_EXT_REG]; \
1700 \
1701 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1702 	ARG1 = (u64) (unsigned long) ctx; \
1703 	return ___bpf_prog_run(regs, insn, stack); \
1704 }
1705 
1706 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1707 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1708 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1709 				      const struct bpf_insn *insn) \
1710 { \
1711 	u64 stack[stack_size / sizeof(u64)]; \
1712 	u64 regs[MAX_BPF_EXT_REG]; \
1713 \
1714 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1715 	BPF_R1 = r1; \
1716 	BPF_R2 = r2; \
1717 	BPF_R3 = r3; \
1718 	BPF_R4 = r4; \
1719 	BPF_R5 = r5; \
1720 	return ___bpf_prog_run(regs, insn, stack); \
1721 }
1722 
1723 #define EVAL1(FN, X) FN(X)
1724 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1725 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1726 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1727 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1728 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1729 
1730 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1731 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1732 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1733 
1734 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1735 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1736 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1737 
1738 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1739 
1740 static unsigned int (*interpreters[])(const void *ctx,
1741 				      const struct bpf_insn *insn) = {
1742 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1743 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1744 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1745 };
1746 #undef PROG_NAME_LIST
1747 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1748 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1749 				  const struct bpf_insn *insn) = {
1750 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1751 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1752 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1753 };
1754 #undef PROG_NAME_LIST
1755 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1756 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1757 {
1758 	stack_depth = max_t(u32, stack_depth, 1);
1759 	insn->off = (s16) insn->imm;
1760 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1761 		__bpf_call_base_args;
1762 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1763 }
1764 
1765 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1766 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1767 					 const struct bpf_insn *insn)
1768 {
1769 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1770 	 * is not working properly, so warn about it!
1771 	 */
1772 	WARN_ON_ONCE(1);
1773 	return 0;
1774 }
1775 #endif
1776 
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1777 bool bpf_prog_array_compatible(struct bpf_array *array,
1778 			       const struct bpf_prog *fp)
1779 {
1780 	bool ret;
1781 
1782 	if (fp->kprobe_override)
1783 		return false;
1784 
1785 	spin_lock(&array->aux->owner.lock);
1786 
1787 	if (!array->aux->owner.type) {
1788 		/* There's no owner yet where we could check for
1789 		 * compatibility.
1790 		 */
1791 		array->aux->owner.type  = fp->type;
1792 		array->aux->owner.jited = fp->jited;
1793 		ret = true;
1794 	} else {
1795 		ret = array->aux->owner.type  == fp->type &&
1796 		      array->aux->owner.jited == fp->jited;
1797 	}
1798 	spin_unlock(&array->aux->owner.lock);
1799 	return ret;
1800 }
1801 
bpf_check_tail_call(const struct bpf_prog * fp)1802 static int bpf_check_tail_call(const struct bpf_prog *fp)
1803 {
1804 	struct bpf_prog_aux *aux = fp->aux;
1805 	int i, ret = 0;
1806 
1807 	mutex_lock(&aux->used_maps_mutex);
1808 	for (i = 0; i < aux->used_map_cnt; i++) {
1809 		struct bpf_map *map = aux->used_maps[i];
1810 		struct bpf_array *array;
1811 
1812 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1813 			continue;
1814 
1815 		array = container_of(map, struct bpf_array, map);
1816 		if (!bpf_prog_array_compatible(array, fp)) {
1817 			ret = -EINVAL;
1818 			goto out;
1819 		}
1820 	}
1821 
1822 out:
1823 	mutex_unlock(&aux->used_maps_mutex);
1824 	return ret;
1825 }
1826 
bpf_prog_select_func(struct bpf_prog * fp)1827 static void bpf_prog_select_func(struct bpf_prog *fp)
1828 {
1829 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1830 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1831 
1832 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1833 #else
1834 	fp->bpf_func = __bpf_prog_ret0_warn;
1835 #endif
1836 }
1837 
1838 /**
1839  *	bpf_prog_select_runtime - select exec runtime for BPF program
1840  *	@fp: bpf_prog populated with internal BPF program
1841  *	@err: pointer to error variable
1842  *
1843  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1844  * The BPF program will be executed via BPF_PROG_RUN() macro.
1845  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1846 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1847 {
1848 	/* In case of BPF to BPF calls, verifier did all the prep
1849 	 * work with regards to JITing, etc.
1850 	 */
1851 	if (fp->bpf_func)
1852 		goto finalize;
1853 
1854 	bpf_prog_select_func(fp);
1855 
1856 	/* eBPF JITs can rewrite the program in case constant
1857 	 * blinding is active. However, in case of error during
1858 	 * blinding, bpf_int_jit_compile() must always return a
1859 	 * valid program, which in this case would simply not
1860 	 * be JITed, but falls back to the interpreter.
1861 	 */
1862 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1863 		*err = bpf_prog_alloc_jited_linfo(fp);
1864 		if (*err)
1865 			return fp;
1866 
1867 		fp = bpf_int_jit_compile(fp);
1868 		if (!fp->jited) {
1869 			bpf_prog_free_jited_linfo(fp);
1870 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1871 			*err = -ENOTSUPP;
1872 			return fp;
1873 #endif
1874 		} else {
1875 			bpf_prog_free_unused_jited_linfo(fp);
1876 		}
1877 	} else {
1878 		*err = bpf_prog_offload_compile(fp);
1879 		if (*err)
1880 			return fp;
1881 	}
1882 
1883 finalize:
1884 	bpf_prog_lock_ro(fp);
1885 
1886 	/* The tail call compatibility check can only be done at
1887 	 * this late stage as we need to determine, if we deal
1888 	 * with JITed or non JITed program concatenations and not
1889 	 * all eBPF JITs might immediately support all features.
1890 	 */
1891 	*err = bpf_check_tail_call(fp);
1892 
1893 	return fp;
1894 }
1895 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1896 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1897 static unsigned int __bpf_prog_ret1(const void *ctx,
1898 				    const struct bpf_insn *insn)
1899 {
1900 	return 1;
1901 }
1902 
1903 static struct bpf_prog_dummy {
1904 	struct bpf_prog prog;
1905 } dummy_bpf_prog = {
1906 	.prog = {
1907 		.bpf_func = __bpf_prog_ret1,
1908 	},
1909 };
1910 
1911 /* to avoid allocating empty bpf_prog_array for cgroups that
1912  * don't have bpf program attached use one global 'empty_prog_array'
1913  * It will not be modified the caller of bpf_prog_array_alloc()
1914  * (since caller requested prog_cnt == 0)
1915  * that pointer should be 'freed' by bpf_prog_array_free()
1916  */
1917 static struct {
1918 	struct bpf_prog_array hdr;
1919 	struct bpf_prog *null_prog;
1920 } empty_prog_array = {
1921 	.null_prog = NULL,
1922 };
1923 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1924 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1925 {
1926 	if (prog_cnt)
1927 		return kzalloc(sizeof(struct bpf_prog_array) +
1928 			       sizeof(struct bpf_prog_array_item) *
1929 			       (prog_cnt + 1),
1930 			       flags);
1931 
1932 	return &empty_prog_array.hdr;
1933 }
1934 
bpf_prog_array_free(struct bpf_prog_array * progs)1935 void bpf_prog_array_free(struct bpf_prog_array *progs)
1936 {
1937 	if (!progs || progs == &empty_prog_array.hdr)
1938 		return;
1939 	kfree_rcu(progs, rcu);
1940 }
1941 
bpf_prog_array_length(struct bpf_prog_array * array)1942 int bpf_prog_array_length(struct bpf_prog_array *array)
1943 {
1944 	struct bpf_prog_array_item *item;
1945 	u32 cnt = 0;
1946 
1947 	for (item = array->items; item->prog; item++)
1948 		if (item->prog != &dummy_bpf_prog.prog)
1949 			cnt++;
1950 	return cnt;
1951 }
1952 
bpf_prog_array_is_empty(struct bpf_prog_array * array)1953 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1954 {
1955 	struct bpf_prog_array_item *item;
1956 
1957 	for (item = array->items; item->prog; item++)
1958 		if (item->prog != &dummy_bpf_prog.prog)
1959 			return false;
1960 	return true;
1961 }
1962 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1963 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1964 				     u32 *prog_ids,
1965 				     u32 request_cnt)
1966 {
1967 	struct bpf_prog_array_item *item;
1968 	int i = 0;
1969 
1970 	for (item = array->items; item->prog; item++) {
1971 		if (item->prog == &dummy_bpf_prog.prog)
1972 			continue;
1973 		prog_ids[i] = item->prog->aux->id;
1974 		if (++i == request_cnt) {
1975 			item++;
1976 			break;
1977 		}
1978 	}
1979 
1980 	return !!(item->prog);
1981 }
1982 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1983 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1984 				__u32 __user *prog_ids, u32 cnt)
1985 {
1986 	unsigned long err = 0;
1987 	bool nospc;
1988 	u32 *ids;
1989 
1990 	/* users of this function are doing:
1991 	 * cnt = bpf_prog_array_length();
1992 	 * if (cnt > 0)
1993 	 *     bpf_prog_array_copy_to_user(..., cnt);
1994 	 * so below kcalloc doesn't need extra cnt > 0 check.
1995 	 */
1996 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1997 	if (!ids)
1998 		return -ENOMEM;
1999 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2000 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2001 	kfree(ids);
2002 	if (err)
2003 		return -EFAULT;
2004 	if (nospc)
2005 		return -ENOSPC;
2006 	return 0;
2007 }
2008 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2009 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2010 				struct bpf_prog *old_prog)
2011 {
2012 	struct bpf_prog_array_item *item;
2013 
2014 	for (item = array->items; item->prog; item++)
2015 		if (item->prog == old_prog) {
2016 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2017 			break;
2018 		}
2019 }
2020 
2021 /**
2022  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2023  *                                   index into the program array with
2024  *                                   a dummy no-op program.
2025  * @array: a bpf_prog_array
2026  * @index: the index of the program to replace
2027  *
2028  * Skips over dummy programs, by not counting them, when calculating
2029  * the position of the program to replace.
2030  *
2031  * Return:
2032  * * 0		- Success
2033  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2034  * * -ENOENT	- Index out of range
2035  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2036 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2037 {
2038 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2039 }
2040 
2041 /**
2042  * bpf_prog_array_update_at() - Updates the program at the given index
2043  *                              into the program array.
2044  * @array: a bpf_prog_array
2045  * @index: the index of the program to update
2046  * @prog: the program to insert into the array
2047  *
2048  * Skips over dummy programs, by not counting them, when calculating
2049  * the position of the program to update.
2050  *
2051  * Return:
2052  * * 0		- Success
2053  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2054  * * -ENOENT	- Index out of range
2055  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2056 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2057 			     struct bpf_prog *prog)
2058 {
2059 	struct bpf_prog_array_item *item;
2060 
2061 	if (unlikely(index < 0))
2062 		return -EINVAL;
2063 
2064 	for (item = array->items; item->prog; item++) {
2065 		if (item->prog == &dummy_bpf_prog.prog)
2066 			continue;
2067 		if (!index) {
2068 			WRITE_ONCE(item->prog, prog);
2069 			return 0;
2070 		}
2071 		index--;
2072 	}
2073 	return -ENOENT;
2074 }
2075 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2076 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2077 			struct bpf_prog *exclude_prog,
2078 			struct bpf_prog *include_prog,
2079 			struct bpf_prog_array **new_array)
2080 {
2081 	int new_prog_cnt, carry_prog_cnt = 0;
2082 	struct bpf_prog_array_item *existing;
2083 	struct bpf_prog_array *array;
2084 	bool found_exclude = false;
2085 	int new_prog_idx = 0;
2086 
2087 	/* Figure out how many existing progs we need to carry over to
2088 	 * the new array.
2089 	 */
2090 	if (old_array) {
2091 		existing = old_array->items;
2092 		for (; existing->prog; existing++) {
2093 			if (existing->prog == exclude_prog) {
2094 				found_exclude = true;
2095 				continue;
2096 			}
2097 			if (existing->prog != &dummy_bpf_prog.prog)
2098 				carry_prog_cnt++;
2099 			if (existing->prog == include_prog)
2100 				return -EEXIST;
2101 		}
2102 	}
2103 
2104 	if (exclude_prog && !found_exclude)
2105 		return -ENOENT;
2106 
2107 	/* How many progs (not NULL) will be in the new array? */
2108 	new_prog_cnt = carry_prog_cnt;
2109 	if (include_prog)
2110 		new_prog_cnt += 1;
2111 
2112 	/* Do we have any prog (not NULL) in the new array? */
2113 	if (!new_prog_cnt) {
2114 		*new_array = NULL;
2115 		return 0;
2116 	}
2117 
2118 	/* +1 as the end of prog_array is marked with NULL */
2119 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2120 	if (!array)
2121 		return -ENOMEM;
2122 
2123 	/* Fill in the new prog array */
2124 	if (carry_prog_cnt) {
2125 		existing = old_array->items;
2126 		for (; existing->prog; existing++)
2127 			if (existing->prog != exclude_prog &&
2128 			    existing->prog != &dummy_bpf_prog.prog) {
2129 				array->items[new_prog_idx++].prog =
2130 					existing->prog;
2131 			}
2132 	}
2133 	if (include_prog)
2134 		array->items[new_prog_idx++].prog = include_prog;
2135 	array->items[new_prog_idx].prog = NULL;
2136 	*new_array = array;
2137 	return 0;
2138 }
2139 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2140 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2141 			     u32 *prog_ids, u32 request_cnt,
2142 			     u32 *prog_cnt)
2143 {
2144 	u32 cnt = 0;
2145 
2146 	if (array)
2147 		cnt = bpf_prog_array_length(array);
2148 
2149 	*prog_cnt = cnt;
2150 
2151 	/* return early if user requested only program count or nothing to copy */
2152 	if (!request_cnt || !cnt)
2153 		return 0;
2154 
2155 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2156 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2157 								     : 0;
2158 }
2159 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2160 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2161 			  struct bpf_map **used_maps, u32 len)
2162 {
2163 	struct bpf_map *map;
2164 	u32 i;
2165 
2166 	for (i = 0; i < len; i++) {
2167 		map = used_maps[i];
2168 		if (map->ops->map_poke_untrack)
2169 			map->ops->map_poke_untrack(map, aux);
2170 		bpf_map_put(map);
2171 	}
2172 }
2173 
bpf_free_used_maps(struct bpf_prog_aux * aux)2174 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2175 {
2176 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2177 	kfree(aux->used_maps);
2178 }
2179 
bpf_prog_free_deferred(struct work_struct * work)2180 static void bpf_prog_free_deferred(struct work_struct *work)
2181 {
2182 	struct bpf_prog_aux *aux;
2183 	int i;
2184 
2185 	aux = container_of(work, struct bpf_prog_aux, work);
2186 	bpf_free_used_maps(aux);
2187 	if (bpf_prog_is_dev_bound(aux))
2188 		bpf_prog_offload_destroy(aux->prog);
2189 #ifdef CONFIG_PERF_EVENTS
2190 	if (aux->prog->has_callchain_buf)
2191 		put_callchain_buffers();
2192 #endif
2193 	if (aux->dst_trampoline)
2194 		bpf_trampoline_put(aux->dst_trampoline);
2195 	for (i = 0; i < aux->func_cnt; i++) {
2196 		/* We can just unlink the subprog poke descriptor table as
2197 		 * it was originally linked to the main program and is also
2198 		 * released along with it.
2199 		 */
2200 		aux->func[i]->aux->poke_tab = NULL;
2201 		bpf_jit_free(aux->func[i]);
2202 	}
2203 	if (aux->func_cnt) {
2204 		kfree(aux->func);
2205 		bpf_prog_unlock_free(aux->prog);
2206 	} else {
2207 		bpf_jit_free(aux->prog);
2208 	}
2209 }
2210 
2211 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2212 void bpf_prog_free(struct bpf_prog *fp)
2213 {
2214 	struct bpf_prog_aux *aux = fp->aux;
2215 
2216 	if (aux->dst_prog)
2217 		bpf_prog_put(aux->dst_prog);
2218 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2219 	schedule_work(&aux->work);
2220 }
2221 EXPORT_SYMBOL_GPL(bpf_prog_free);
2222 
2223 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2224 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2225 
bpf_user_rnd_init_once(void)2226 void bpf_user_rnd_init_once(void)
2227 {
2228 	prandom_init_once(&bpf_user_rnd_state);
2229 }
2230 
BPF_CALL_0(bpf_user_rnd_u32)2231 BPF_CALL_0(bpf_user_rnd_u32)
2232 {
2233 	/* Should someone ever have the rather unwise idea to use some
2234 	 * of the registers passed into this function, then note that
2235 	 * this function is called from native eBPF and classic-to-eBPF
2236 	 * transformations. Register assignments from both sides are
2237 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2238 	 */
2239 	struct rnd_state *state;
2240 	u32 res;
2241 
2242 	state = &get_cpu_var(bpf_user_rnd_state);
2243 	res = prandom_u32_state(state);
2244 	put_cpu_var(bpf_user_rnd_state);
2245 
2246 	return res;
2247 }
2248 
BPF_CALL_0(bpf_get_raw_cpu_id)2249 BPF_CALL_0(bpf_get_raw_cpu_id)
2250 {
2251 	return raw_smp_processor_id();
2252 }
2253 
2254 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2255 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2258 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2259 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2260 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2261 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2262 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2263 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2264 
2265 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2266 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2267 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2268 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2269 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2270 
2271 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2273 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2274 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2275 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2276 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2277 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2278 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2279 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2280 
bpf_get_trace_printk_proto(void)2281 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2282 {
2283 	return NULL;
2284 }
2285 
2286 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2287 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2288 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2289 {
2290 	return -ENOTSUPP;
2291 }
2292 EXPORT_SYMBOL_GPL(bpf_event_output);
2293 
2294 /* Always built-in helper functions. */
2295 const struct bpf_func_proto bpf_tail_call_proto = {
2296 	.func		= NULL,
2297 	.gpl_only	= false,
2298 	.ret_type	= RET_VOID,
2299 	.arg1_type	= ARG_PTR_TO_CTX,
2300 	.arg2_type	= ARG_CONST_MAP_PTR,
2301 	.arg3_type	= ARG_ANYTHING,
2302 };
2303 
2304 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2305  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2306  * eBPF and implicitly also cBPF can get JITed!
2307  */
bpf_int_jit_compile(struct bpf_prog * prog)2308 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2309 {
2310 	return prog;
2311 }
2312 
2313 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2314  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2315  */
bpf_jit_compile(struct bpf_prog * prog)2316 void __weak bpf_jit_compile(struct bpf_prog *prog)
2317 {
2318 }
2319 
bpf_helper_changes_pkt_data(void * func)2320 bool __weak bpf_helper_changes_pkt_data(void *func)
2321 {
2322 	return false;
2323 }
2324 
2325 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2326  * analysis code and wants explicit zero extension inserted by verifier.
2327  * Otherwise, return FALSE.
2328  */
bpf_jit_needs_zext(void)2329 bool __weak bpf_jit_needs_zext(void)
2330 {
2331 	return false;
2332 }
2333 
2334 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2335  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2336  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2337 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2338 			 int len)
2339 {
2340 	return -EFAULT;
2341 }
2342 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2343 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2344 			      void *addr1, void *addr2)
2345 {
2346 	return -ENOTSUPP;
2347 }
2348 
2349 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2350 EXPORT_SYMBOL(bpf_stats_enabled_key);
2351 
2352 /* All definitions of tracepoints related to BPF. */
2353 #define CREATE_TRACE_POINTS
2354 #include <linux/bpf_trace.h>
2355 
2356 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2357 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2358