1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38
39 /* Registers */
40 #define BPF_R0 regs[BPF_REG_0]
41 #define BPF_R1 regs[BPF_REG_1]
42 #define BPF_R2 regs[BPF_REG_2]
43 #define BPF_R3 regs[BPF_REG_3]
44 #define BPF_R4 regs[BPF_REG_4]
45 #define BPF_R5 regs[BPF_REG_5]
46 #define BPF_R6 regs[BPF_REG_6]
47 #define BPF_R7 regs[BPF_REG_7]
48 #define BPF_R8 regs[BPF_REG_8]
49 #define BPF_R9 regs[BPF_REG_9]
50 #define BPF_R10 regs[BPF_REG_10]
51
52 /* Named registers */
53 #define DST regs[insn->dst_reg]
54 #define SRC regs[insn->src_reg]
55 #define FP regs[BPF_REG_FP]
56 #define AX regs[BPF_REG_AX]
57 #define ARG1 regs[BPF_REG_ARG1]
58 #define CTX regs[BPF_REG_CTX]
59 #define IMM insn->imm
60
61 /* No hurry in this branch
62 *
63 * Exported for the bpf jit load helper.
64 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 u8 *ptr = NULL;
68
69 if (k >= SKF_NET_OFF)
70 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 else if (k >= SKF_LL_OFF)
72 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73
74 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 return ptr;
76
77 return NULL;
78 }
79
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
83 struct bpf_prog_aux *aux;
84 struct bpf_prog *fp;
85
86 size = round_up(size, PAGE_SIZE);
87 fp = __vmalloc(size, gfp_flags);
88 if (fp == NULL)
89 return NULL;
90
91 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 if (aux == NULL) {
93 vfree(fp);
94 return NULL;
95 }
96
97 fp->pages = size / PAGE_SIZE;
98 fp->aux = aux;
99 fp->aux->prog = fp;
100 fp->jit_requested = ebpf_jit_enabled();
101
102 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
103 mutex_init(&fp->aux->used_maps_mutex);
104 mutex_init(&fp->aux->dst_mutex);
105
106 return fp;
107 }
108
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)109 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
110 {
111 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
112 struct bpf_prog *prog;
113 int cpu;
114
115 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
116 if (!prog)
117 return NULL;
118
119 prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
120 if (!prog->aux->stats) {
121 kfree(prog->aux);
122 vfree(prog);
123 return NULL;
124 }
125
126 for_each_possible_cpu(cpu) {
127 struct bpf_prog_stats *pstats;
128
129 pstats = per_cpu_ptr(prog->aux->stats, cpu);
130 u64_stats_init(&pstats->syncp);
131 }
132 return prog;
133 }
134 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
135
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)136 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
137 {
138 if (!prog->aux->nr_linfo || !prog->jit_requested)
139 return 0;
140
141 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
142 sizeof(*prog->aux->jited_linfo),
143 GFP_KERNEL | __GFP_NOWARN);
144 if (!prog->aux->jited_linfo)
145 return -ENOMEM;
146
147 return 0;
148 }
149
bpf_prog_free_jited_linfo(struct bpf_prog * prog)150 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
151 {
152 kfree(prog->aux->jited_linfo);
153 prog->aux->jited_linfo = NULL;
154 }
155
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)156 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
157 {
158 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
159 bpf_prog_free_jited_linfo(prog);
160 }
161
162 /* The jit engine is responsible to provide an array
163 * for insn_off to the jited_off mapping (insn_to_jit_off).
164 *
165 * The idx to this array is the insn_off. Hence, the insn_off
166 * here is relative to the prog itself instead of the main prog.
167 * This array has one entry for each xlated bpf insn.
168 *
169 * jited_off is the byte off to the last byte of the jited insn.
170 *
171 * Hence, with
172 * insn_start:
173 * The first bpf insn off of the prog. The insn off
174 * here is relative to the main prog.
175 * e.g. if prog is a subprog, insn_start > 0
176 * linfo_idx:
177 * The prog's idx to prog->aux->linfo and jited_linfo
178 *
179 * jited_linfo[linfo_idx] = prog->bpf_func
180 *
181 * For i > linfo_idx,
182 *
183 * jited_linfo[i] = prog->bpf_func +
184 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
185 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)186 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
187 const u32 *insn_to_jit_off)
188 {
189 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
190 const struct bpf_line_info *linfo;
191 void **jited_linfo;
192
193 if (!prog->aux->jited_linfo)
194 /* Userspace did not provide linfo */
195 return;
196
197 linfo_idx = prog->aux->linfo_idx;
198 linfo = &prog->aux->linfo[linfo_idx];
199 insn_start = linfo[0].insn_off;
200 insn_end = insn_start + prog->len;
201
202 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
203 jited_linfo[0] = prog->bpf_func;
204
205 nr_linfo = prog->aux->nr_linfo - linfo_idx;
206
207 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
208 /* The verifier ensures that linfo[i].insn_off is
209 * strictly increasing
210 */
211 jited_linfo[i] = prog->bpf_func +
212 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
213 }
214
bpf_prog_free_linfo(struct bpf_prog * prog)215 void bpf_prog_free_linfo(struct bpf_prog *prog)
216 {
217 bpf_prog_free_jited_linfo(prog);
218 kvfree(prog->aux->linfo);
219 }
220
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)221 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
222 gfp_t gfp_extra_flags)
223 {
224 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
225 struct bpf_prog *fp;
226 u32 pages, delta;
227 int ret;
228
229 size = round_up(size, PAGE_SIZE);
230 pages = size / PAGE_SIZE;
231 if (pages <= fp_old->pages)
232 return fp_old;
233
234 delta = pages - fp_old->pages;
235 ret = __bpf_prog_charge(fp_old->aux->user, delta);
236 if (ret)
237 return NULL;
238
239 fp = __vmalloc(size, gfp_flags);
240 if (fp == NULL) {
241 __bpf_prog_uncharge(fp_old->aux->user, delta);
242 } else {
243 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
244 fp->pages = pages;
245 fp->aux->prog = fp;
246
247 /* We keep fp->aux from fp_old around in the new
248 * reallocated structure.
249 */
250 fp_old->aux = NULL;
251 __bpf_prog_free(fp_old);
252 }
253
254 return fp;
255 }
256
__bpf_prog_free(struct bpf_prog * fp)257 void __bpf_prog_free(struct bpf_prog *fp)
258 {
259 if (fp->aux) {
260 mutex_destroy(&fp->aux->used_maps_mutex);
261 mutex_destroy(&fp->aux->dst_mutex);
262 free_percpu(fp->aux->stats);
263 kfree(fp->aux->poke_tab);
264 kfree(fp->aux);
265 }
266 vfree(fp);
267 }
268
bpf_prog_calc_tag(struct bpf_prog * fp)269 int bpf_prog_calc_tag(struct bpf_prog *fp)
270 {
271 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
272 u32 raw_size = bpf_prog_tag_scratch_size(fp);
273 u32 digest[SHA1_DIGEST_WORDS];
274 u32 ws[SHA1_WORKSPACE_WORDS];
275 u32 i, bsize, psize, blocks;
276 struct bpf_insn *dst;
277 bool was_ld_map;
278 u8 *raw, *todo;
279 __be32 *result;
280 __be64 *bits;
281
282 raw = vmalloc(raw_size);
283 if (!raw)
284 return -ENOMEM;
285
286 sha1_init(digest);
287 memset(ws, 0, sizeof(ws));
288
289 /* We need to take out the map fd for the digest calculation
290 * since they are unstable from user space side.
291 */
292 dst = (void *)raw;
293 for (i = 0, was_ld_map = false; i < fp->len; i++) {
294 dst[i] = fp->insnsi[i];
295 if (!was_ld_map &&
296 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
297 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
298 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
299 was_ld_map = true;
300 dst[i].imm = 0;
301 } else if (was_ld_map &&
302 dst[i].code == 0 &&
303 dst[i].dst_reg == 0 &&
304 dst[i].src_reg == 0 &&
305 dst[i].off == 0) {
306 was_ld_map = false;
307 dst[i].imm = 0;
308 } else {
309 was_ld_map = false;
310 }
311 }
312
313 psize = bpf_prog_insn_size(fp);
314 memset(&raw[psize], 0, raw_size - psize);
315 raw[psize++] = 0x80;
316
317 bsize = round_up(psize, SHA1_BLOCK_SIZE);
318 blocks = bsize / SHA1_BLOCK_SIZE;
319 todo = raw;
320 if (bsize - psize >= sizeof(__be64)) {
321 bits = (__be64 *)(todo + bsize - sizeof(__be64));
322 } else {
323 bits = (__be64 *)(todo + bsize + bits_offset);
324 blocks++;
325 }
326 *bits = cpu_to_be64((psize - 1) << 3);
327
328 while (blocks--) {
329 sha1_transform(digest, todo, ws);
330 todo += SHA1_BLOCK_SIZE;
331 }
332
333 result = (__force __be32 *)digest;
334 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
335 result[i] = cpu_to_be32(digest[i]);
336 memcpy(fp->tag, result, sizeof(fp->tag));
337
338 vfree(raw);
339 return 0;
340 }
341
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)342 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
343 s32 end_new, s32 curr, const bool probe_pass)
344 {
345 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
346 s32 delta = end_new - end_old;
347 s64 imm = insn->imm;
348
349 if (curr < pos && curr + imm + 1 >= end_old)
350 imm += delta;
351 else if (curr >= end_new && curr + imm + 1 < end_new)
352 imm -= delta;
353 if (imm < imm_min || imm > imm_max)
354 return -ERANGE;
355 if (!probe_pass)
356 insn->imm = imm;
357 return 0;
358 }
359
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)360 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
361 s32 end_new, s32 curr, const bool probe_pass)
362 {
363 const s32 off_min = S16_MIN, off_max = S16_MAX;
364 s32 delta = end_new - end_old;
365 s32 off = insn->off;
366
367 if (curr < pos && curr + off + 1 >= end_old)
368 off += delta;
369 else if (curr >= end_new && curr + off + 1 < end_new)
370 off -= delta;
371 if (off < off_min || off > off_max)
372 return -ERANGE;
373 if (!probe_pass)
374 insn->off = off;
375 return 0;
376 }
377
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)378 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
379 s32 end_new, const bool probe_pass)
380 {
381 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
382 struct bpf_insn *insn = prog->insnsi;
383 int ret = 0;
384
385 for (i = 0; i < insn_cnt; i++, insn++) {
386 u8 code;
387
388 /* In the probing pass we still operate on the original,
389 * unpatched image in order to check overflows before we
390 * do any other adjustments. Therefore skip the patchlet.
391 */
392 if (probe_pass && i == pos) {
393 i = end_new;
394 insn = prog->insnsi + end_old;
395 }
396 code = insn->code;
397 if ((BPF_CLASS(code) != BPF_JMP &&
398 BPF_CLASS(code) != BPF_JMP32) ||
399 BPF_OP(code) == BPF_EXIT)
400 continue;
401 /* Adjust offset of jmps if we cross patch boundaries. */
402 if (BPF_OP(code) == BPF_CALL) {
403 if (insn->src_reg != BPF_PSEUDO_CALL)
404 continue;
405 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
406 end_new, i, probe_pass);
407 } else {
408 ret = bpf_adj_delta_to_off(insn, pos, end_old,
409 end_new, i, probe_pass);
410 }
411 if (ret)
412 break;
413 }
414
415 return ret;
416 }
417
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)418 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
419 {
420 struct bpf_line_info *linfo;
421 u32 i, nr_linfo;
422
423 nr_linfo = prog->aux->nr_linfo;
424 if (!nr_linfo || !delta)
425 return;
426
427 linfo = prog->aux->linfo;
428
429 for (i = 0; i < nr_linfo; i++)
430 if (off < linfo[i].insn_off)
431 break;
432
433 /* Push all off < linfo[i].insn_off by delta */
434 for (; i < nr_linfo; i++)
435 linfo[i].insn_off += delta;
436 }
437
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)438 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
439 const struct bpf_insn *patch, u32 len)
440 {
441 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
442 const u32 cnt_max = S16_MAX;
443 struct bpf_prog *prog_adj;
444 int err;
445
446 /* Since our patchlet doesn't expand the image, we're done. */
447 if (insn_delta == 0) {
448 memcpy(prog->insnsi + off, patch, sizeof(*patch));
449 return prog;
450 }
451
452 insn_adj_cnt = prog->len + insn_delta;
453
454 /* Reject anything that would potentially let the insn->off
455 * target overflow when we have excessive program expansions.
456 * We need to probe here before we do any reallocation where
457 * we afterwards may not fail anymore.
458 */
459 if (insn_adj_cnt > cnt_max &&
460 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
461 return ERR_PTR(err);
462
463 /* Several new instructions need to be inserted. Make room
464 * for them. Likely, there's no need for a new allocation as
465 * last page could have large enough tailroom.
466 */
467 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
468 GFP_USER);
469 if (!prog_adj)
470 return ERR_PTR(-ENOMEM);
471
472 prog_adj->len = insn_adj_cnt;
473
474 /* Patching happens in 3 steps:
475 *
476 * 1) Move over tail of insnsi from next instruction onwards,
477 * so we can patch the single target insn with one or more
478 * new ones (patching is always from 1 to n insns, n > 0).
479 * 2) Inject new instructions at the target location.
480 * 3) Adjust branch offsets if necessary.
481 */
482 insn_rest = insn_adj_cnt - off - len;
483
484 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
485 sizeof(*patch) * insn_rest);
486 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
487
488 /* We are guaranteed to not fail at this point, otherwise
489 * the ship has sailed to reverse to the original state. An
490 * overflow cannot happen at this point.
491 */
492 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
493
494 bpf_adj_linfo(prog_adj, off, insn_delta);
495
496 return prog_adj;
497 }
498
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)499 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
500 {
501 /* Branch offsets can't overflow when program is shrinking, no need
502 * to call bpf_adj_branches(..., true) here
503 */
504 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
505 sizeof(struct bpf_insn) * (prog->len - off - cnt));
506 prog->len -= cnt;
507
508 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
509 }
510
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)511 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
512 {
513 int i;
514
515 for (i = 0; i < fp->aux->func_cnt; i++)
516 bpf_prog_kallsyms_del(fp->aux->func[i]);
517 }
518
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)519 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
520 {
521 bpf_prog_kallsyms_del_subprogs(fp);
522 bpf_prog_kallsyms_del(fp);
523 }
524
525 #ifdef CONFIG_BPF_JIT
526 /* All BPF JIT sysctl knobs here. */
527 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
528 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
529 int bpf_jit_harden __read_mostly;
530 long bpf_jit_limit __read_mostly;
531 long bpf_jit_limit_max __read_mostly;
532
533 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)534 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
535 {
536 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
537 unsigned long addr = (unsigned long)hdr;
538
539 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
540
541 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
542 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
543 }
544
545 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)546 bpf_prog_ksym_set_name(struct bpf_prog *prog)
547 {
548 char *sym = prog->aux->ksym.name;
549 const char *end = sym + KSYM_NAME_LEN;
550 const struct btf_type *type;
551 const char *func_name;
552
553 BUILD_BUG_ON(sizeof("bpf_prog_") +
554 sizeof(prog->tag) * 2 +
555 /* name has been null terminated.
556 * We should need +1 for the '_' preceding
557 * the name. However, the null character
558 * is double counted between the name and the
559 * sizeof("bpf_prog_") above, so we omit
560 * the +1 here.
561 */
562 sizeof(prog->aux->name) > KSYM_NAME_LEN);
563
564 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
565 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
566
567 /* prog->aux->name will be ignored if full btf name is available */
568 if (prog->aux->func_info_cnt) {
569 type = btf_type_by_id(prog->aux->btf,
570 prog->aux->func_info[prog->aux->func_idx].type_id);
571 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
572 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
573 return;
574 }
575
576 if (prog->aux->name[0])
577 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
578 else
579 *sym = 0;
580 }
581
bpf_get_ksym_start(struct latch_tree_node * n)582 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
583 {
584 return container_of(n, struct bpf_ksym, tnode)->start;
585 }
586
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)587 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
588 struct latch_tree_node *b)
589 {
590 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
591 }
592
bpf_tree_comp(void * key,struct latch_tree_node * n)593 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
594 {
595 unsigned long val = (unsigned long)key;
596 const struct bpf_ksym *ksym;
597
598 ksym = container_of(n, struct bpf_ksym, tnode);
599
600 if (val < ksym->start)
601 return -1;
602 if (val >= ksym->end)
603 return 1;
604
605 return 0;
606 }
607
608 static const struct latch_tree_ops bpf_tree_ops = {
609 .less = bpf_tree_less,
610 .comp = bpf_tree_comp,
611 };
612
613 static DEFINE_SPINLOCK(bpf_lock);
614 static LIST_HEAD(bpf_kallsyms);
615 static struct latch_tree_root bpf_tree __cacheline_aligned;
616
bpf_ksym_add(struct bpf_ksym * ksym)617 void bpf_ksym_add(struct bpf_ksym *ksym)
618 {
619 spin_lock_bh(&bpf_lock);
620 WARN_ON_ONCE(!list_empty(&ksym->lnode));
621 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
622 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
623 spin_unlock_bh(&bpf_lock);
624 }
625
__bpf_ksym_del(struct bpf_ksym * ksym)626 static void __bpf_ksym_del(struct bpf_ksym *ksym)
627 {
628 if (list_empty(&ksym->lnode))
629 return;
630
631 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
632 list_del_rcu(&ksym->lnode);
633 }
634
bpf_ksym_del(struct bpf_ksym * ksym)635 void bpf_ksym_del(struct bpf_ksym *ksym)
636 {
637 spin_lock_bh(&bpf_lock);
638 __bpf_ksym_del(ksym);
639 spin_unlock_bh(&bpf_lock);
640 }
641
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)642 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
643 {
644 return fp->jited && !bpf_prog_was_classic(fp);
645 }
646
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)647 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
648 {
649 return list_empty(&fp->aux->ksym.lnode) ||
650 fp->aux->ksym.lnode.prev == LIST_POISON2;
651 }
652
bpf_prog_kallsyms_add(struct bpf_prog * fp)653 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
654 {
655 if (!bpf_prog_kallsyms_candidate(fp) ||
656 !bpf_capable())
657 return;
658
659 bpf_prog_ksym_set_addr(fp);
660 bpf_prog_ksym_set_name(fp);
661 fp->aux->ksym.prog = true;
662
663 bpf_ksym_add(&fp->aux->ksym);
664 }
665
bpf_prog_kallsyms_del(struct bpf_prog * fp)666 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
667 {
668 if (!bpf_prog_kallsyms_candidate(fp))
669 return;
670
671 bpf_ksym_del(&fp->aux->ksym);
672 }
673
bpf_ksym_find(unsigned long addr)674 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
675 {
676 struct latch_tree_node *n;
677
678 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
679 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
680 }
681
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)682 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
683 unsigned long *off, char *sym)
684 {
685 struct bpf_ksym *ksym;
686 char *ret = NULL;
687
688 rcu_read_lock();
689 ksym = bpf_ksym_find(addr);
690 if (ksym) {
691 unsigned long symbol_start = ksym->start;
692 unsigned long symbol_end = ksym->end;
693
694 strncpy(sym, ksym->name, KSYM_NAME_LEN);
695
696 ret = sym;
697 if (size)
698 *size = symbol_end - symbol_start;
699 if (off)
700 *off = addr - symbol_start;
701 }
702 rcu_read_unlock();
703
704 return ret;
705 }
706
is_bpf_text_address(unsigned long addr)707 bool is_bpf_text_address(unsigned long addr)
708 {
709 bool ret;
710
711 rcu_read_lock();
712 ret = bpf_ksym_find(addr) != NULL;
713 rcu_read_unlock();
714
715 return ret;
716 }
717
bpf_prog_ksym_find(unsigned long addr)718 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
719 {
720 struct bpf_ksym *ksym = bpf_ksym_find(addr);
721
722 return ksym && ksym->prog ?
723 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
724 NULL;
725 }
726
search_bpf_extables(unsigned long addr)727 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
728 {
729 const struct exception_table_entry *e = NULL;
730 struct bpf_prog *prog;
731
732 rcu_read_lock();
733 prog = bpf_prog_ksym_find(addr);
734 if (!prog)
735 goto out;
736 if (!prog->aux->num_exentries)
737 goto out;
738
739 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
740 out:
741 rcu_read_unlock();
742 return e;
743 }
744
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)745 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
746 char *sym)
747 {
748 struct bpf_ksym *ksym;
749 unsigned int it = 0;
750 int ret = -ERANGE;
751
752 if (!bpf_jit_kallsyms_enabled())
753 return ret;
754
755 rcu_read_lock();
756 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
757 if (it++ != symnum)
758 continue;
759
760 strncpy(sym, ksym->name, KSYM_NAME_LEN);
761
762 *value = ksym->start;
763 *type = BPF_SYM_ELF_TYPE;
764
765 ret = 0;
766 break;
767 }
768 rcu_read_unlock();
769
770 return ret;
771 }
772
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)773 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
774 struct bpf_jit_poke_descriptor *poke)
775 {
776 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
777 static const u32 poke_tab_max = 1024;
778 u32 slot = prog->aux->size_poke_tab;
779 u32 size = slot + 1;
780
781 if (size > poke_tab_max)
782 return -ENOSPC;
783 if (poke->tailcall_target || poke->tailcall_target_stable ||
784 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
785 return -EINVAL;
786
787 switch (poke->reason) {
788 case BPF_POKE_REASON_TAIL_CALL:
789 if (!poke->tail_call.map)
790 return -EINVAL;
791 break;
792 default:
793 return -EINVAL;
794 }
795
796 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
797 if (!tab)
798 return -ENOMEM;
799
800 memcpy(&tab[slot], poke, sizeof(*poke));
801 prog->aux->size_poke_tab = size;
802 prog->aux->poke_tab = tab;
803
804 return slot;
805 }
806
807 static atomic_long_t bpf_jit_current;
808
809 /* Can be overridden by an arch's JIT compiler if it has a custom,
810 * dedicated BPF backend memory area, or if neither of the two
811 * below apply.
812 */
bpf_jit_alloc_exec_limit(void)813 u64 __weak bpf_jit_alloc_exec_limit(void)
814 {
815 #if defined(MODULES_VADDR)
816 return MODULES_END - MODULES_VADDR;
817 #else
818 return VMALLOC_END - VMALLOC_START;
819 #endif
820 }
821
bpf_jit_charge_init(void)822 static int __init bpf_jit_charge_init(void)
823 {
824 /* Only used as heuristic here to derive limit. */
825 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
826 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
827 PAGE_SIZE), LONG_MAX);
828 return 0;
829 }
830 pure_initcall(bpf_jit_charge_init);
831
bpf_jit_charge_modmem(u32 pages)832 int bpf_jit_charge_modmem(u32 pages)
833 {
834 if (atomic_long_add_return(pages, &bpf_jit_current) >
835 (bpf_jit_limit >> PAGE_SHIFT)) {
836 if (!bpf_capable()) {
837 atomic_long_sub(pages, &bpf_jit_current);
838 return -EPERM;
839 }
840 }
841
842 return 0;
843 }
844
bpf_jit_uncharge_modmem(u32 pages)845 void bpf_jit_uncharge_modmem(u32 pages)
846 {
847 atomic_long_sub(pages, &bpf_jit_current);
848 }
849
bpf_jit_alloc_exec(unsigned long size)850 void *__weak bpf_jit_alloc_exec(unsigned long size)
851 {
852 return module_alloc(size);
853 }
854
bpf_jit_free_exec(void * addr)855 void __weak bpf_jit_free_exec(void *addr)
856 {
857 module_memfree(addr);
858 }
859
860 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)861 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
862 unsigned int alignment,
863 bpf_jit_fill_hole_t bpf_fill_ill_insns)
864 {
865 struct bpf_binary_header *hdr;
866 u32 size, hole, start, pages;
867
868 WARN_ON_ONCE(!is_power_of_2(alignment) ||
869 alignment > BPF_IMAGE_ALIGNMENT);
870
871 /* Most of BPF filters are really small, but if some of them
872 * fill a page, allow at least 128 extra bytes to insert a
873 * random section of illegal instructions.
874 */
875 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
876 pages = size / PAGE_SIZE;
877
878 if (bpf_jit_charge_modmem(pages))
879 return NULL;
880 hdr = bpf_jit_alloc_exec(size);
881 if (!hdr) {
882 bpf_jit_uncharge_modmem(pages);
883 return NULL;
884 }
885
886 /* Fill space with illegal/arch-dep instructions. */
887 bpf_fill_ill_insns(hdr, size);
888
889 hdr->pages = pages;
890 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
891 PAGE_SIZE - sizeof(*hdr));
892 start = (get_random_int() % hole) & ~(alignment - 1);
893
894 /* Leave a random number of instructions before BPF code. */
895 *image_ptr = &hdr->image[start];
896
897 return hdr;
898 }
899
bpf_jit_binary_free(struct bpf_binary_header * hdr)900 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
901 {
902 u32 pages = hdr->pages;
903
904 bpf_jit_free_exec(hdr);
905 bpf_jit_uncharge_modmem(pages);
906 }
907
908 /* This symbol is only overridden by archs that have different
909 * requirements than the usual eBPF JITs, f.e. when they only
910 * implement cBPF JIT, do not set images read-only, etc.
911 */
bpf_jit_free(struct bpf_prog * fp)912 void __weak bpf_jit_free(struct bpf_prog *fp)
913 {
914 if (fp->jited) {
915 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
916
917 bpf_jit_binary_free(hdr);
918
919 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
920 }
921
922 bpf_prog_unlock_free(fp);
923 }
924
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)925 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
926 const struct bpf_insn *insn, bool extra_pass,
927 u64 *func_addr, bool *func_addr_fixed)
928 {
929 s16 off = insn->off;
930 s32 imm = insn->imm;
931 u8 *addr;
932
933 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
934 if (!*func_addr_fixed) {
935 /* Place-holder address till the last pass has collected
936 * all addresses for JITed subprograms in which case we
937 * can pick them up from prog->aux.
938 */
939 if (!extra_pass)
940 addr = NULL;
941 else if (prog->aux->func &&
942 off >= 0 && off < prog->aux->func_cnt)
943 addr = (u8 *)prog->aux->func[off]->bpf_func;
944 else
945 return -EINVAL;
946 } else {
947 /* Address of a BPF helper call. Since part of the core
948 * kernel, it's always at a fixed location. __bpf_call_base
949 * and the helper with imm relative to it are both in core
950 * kernel.
951 */
952 addr = (u8 *)__bpf_call_base + imm;
953 }
954
955 *func_addr = (unsigned long)addr;
956 return 0;
957 }
958
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)959 static int bpf_jit_blind_insn(const struct bpf_insn *from,
960 const struct bpf_insn *aux,
961 struct bpf_insn *to_buff,
962 bool emit_zext)
963 {
964 struct bpf_insn *to = to_buff;
965 u32 imm_rnd = get_random_int();
966 s16 off;
967
968 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
969 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
970
971 /* Constraints on AX register:
972 *
973 * AX register is inaccessible from user space. It is mapped in
974 * all JITs, and used here for constant blinding rewrites. It is
975 * typically "stateless" meaning its contents are only valid within
976 * the executed instruction, but not across several instructions.
977 * There are a few exceptions however which are further detailed
978 * below.
979 *
980 * Constant blinding is only used by JITs, not in the interpreter.
981 * The interpreter uses AX in some occasions as a local temporary
982 * register e.g. in DIV or MOD instructions.
983 *
984 * In restricted circumstances, the verifier can also use the AX
985 * register for rewrites as long as they do not interfere with
986 * the above cases!
987 */
988 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
989 goto out;
990
991 if (from->imm == 0 &&
992 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
993 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
994 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
995 goto out;
996 }
997
998 switch (from->code) {
999 case BPF_ALU | BPF_ADD | BPF_K:
1000 case BPF_ALU | BPF_SUB | BPF_K:
1001 case BPF_ALU | BPF_AND | BPF_K:
1002 case BPF_ALU | BPF_OR | BPF_K:
1003 case BPF_ALU | BPF_XOR | BPF_K:
1004 case BPF_ALU | BPF_MUL | BPF_K:
1005 case BPF_ALU | BPF_MOV | BPF_K:
1006 case BPF_ALU | BPF_DIV | BPF_K:
1007 case BPF_ALU | BPF_MOD | BPF_K:
1008 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1009 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1010 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1011 break;
1012
1013 case BPF_ALU64 | BPF_ADD | BPF_K:
1014 case BPF_ALU64 | BPF_SUB | BPF_K:
1015 case BPF_ALU64 | BPF_AND | BPF_K:
1016 case BPF_ALU64 | BPF_OR | BPF_K:
1017 case BPF_ALU64 | BPF_XOR | BPF_K:
1018 case BPF_ALU64 | BPF_MUL | BPF_K:
1019 case BPF_ALU64 | BPF_MOV | BPF_K:
1020 case BPF_ALU64 | BPF_DIV | BPF_K:
1021 case BPF_ALU64 | BPF_MOD | BPF_K:
1022 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1023 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1024 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1025 break;
1026
1027 case BPF_JMP | BPF_JEQ | BPF_K:
1028 case BPF_JMP | BPF_JNE | BPF_K:
1029 case BPF_JMP | BPF_JGT | BPF_K:
1030 case BPF_JMP | BPF_JLT | BPF_K:
1031 case BPF_JMP | BPF_JGE | BPF_K:
1032 case BPF_JMP | BPF_JLE | BPF_K:
1033 case BPF_JMP | BPF_JSGT | BPF_K:
1034 case BPF_JMP | BPF_JSLT | BPF_K:
1035 case BPF_JMP | BPF_JSGE | BPF_K:
1036 case BPF_JMP | BPF_JSLE | BPF_K:
1037 case BPF_JMP | BPF_JSET | BPF_K:
1038 /* Accommodate for extra offset in case of a backjump. */
1039 off = from->off;
1040 if (off < 0)
1041 off -= 2;
1042 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1043 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1044 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1045 break;
1046
1047 case BPF_JMP32 | BPF_JEQ | BPF_K:
1048 case BPF_JMP32 | BPF_JNE | BPF_K:
1049 case BPF_JMP32 | BPF_JGT | BPF_K:
1050 case BPF_JMP32 | BPF_JLT | BPF_K:
1051 case BPF_JMP32 | BPF_JGE | BPF_K:
1052 case BPF_JMP32 | BPF_JLE | BPF_K:
1053 case BPF_JMP32 | BPF_JSGT | BPF_K:
1054 case BPF_JMP32 | BPF_JSLT | BPF_K:
1055 case BPF_JMP32 | BPF_JSGE | BPF_K:
1056 case BPF_JMP32 | BPF_JSLE | BPF_K:
1057 case BPF_JMP32 | BPF_JSET | BPF_K:
1058 /* Accommodate for extra offset in case of a backjump. */
1059 off = from->off;
1060 if (off < 0)
1061 off -= 2;
1062 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1063 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1064 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1065 off);
1066 break;
1067
1068 case BPF_LD | BPF_IMM | BPF_DW:
1069 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1070 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1071 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1072 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1073 break;
1074 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1075 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1076 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1077 if (emit_zext)
1078 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1079 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1080 break;
1081
1082 case BPF_ST | BPF_MEM | BPF_DW:
1083 case BPF_ST | BPF_MEM | BPF_W:
1084 case BPF_ST | BPF_MEM | BPF_H:
1085 case BPF_ST | BPF_MEM | BPF_B:
1086 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1087 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1088 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1089 break;
1090 }
1091 out:
1092 return to - to_buff;
1093 }
1094
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1095 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1096 gfp_t gfp_extra_flags)
1097 {
1098 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1099 struct bpf_prog *fp;
1100
1101 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1102 if (fp != NULL) {
1103 /* aux->prog still points to the fp_other one, so
1104 * when promoting the clone to the real program,
1105 * this still needs to be adapted.
1106 */
1107 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1108 }
1109
1110 return fp;
1111 }
1112
bpf_prog_clone_free(struct bpf_prog * fp)1113 static void bpf_prog_clone_free(struct bpf_prog *fp)
1114 {
1115 /* aux was stolen by the other clone, so we cannot free
1116 * it from this path! It will be freed eventually by the
1117 * other program on release.
1118 *
1119 * At this point, we don't need a deferred release since
1120 * clone is guaranteed to not be locked.
1121 */
1122 fp->aux = NULL;
1123 __bpf_prog_free(fp);
1124 }
1125
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1126 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1127 {
1128 /* We have to repoint aux->prog to self, as we don't
1129 * know whether fp here is the clone or the original.
1130 */
1131 fp->aux->prog = fp;
1132 bpf_prog_clone_free(fp_other);
1133 }
1134
bpf_jit_blind_constants(struct bpf_prog * prog)1135 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1136 {
1137 struct bpf_insn insn_buff[16], aux[2];
1138 struct bpf_prog *clone, *tmp;
1139 int insn_delta, insn_cnt;
1140 struct bpf_insn *insn;
1141 int i, rewritten;
1142
1143 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1144 return prog;
1145
1146 clone = bpf_prog_clone_create(prog, GFP_USER);
1147 if (!clone)
1148 return ERR_PTR(-ENOMEM);
1149
1150 insn_cnt = clone->len;
1151 insn = clone->insnsi;
1152
1153 for (i = 0; i < insn_cnt; i++, insn++) {
1154 /* We temporarily need to hold the original ld64 insn
1155 * so that we can still access the first part in the
1156 * second blinding run.
1157 */
1158 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1159 insn[1].code == 0)
1160 memcpy(aux, insn, sizeof(aux));
1161
1162 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1163 clone->aux->verifier_zext);
1164 if (!rewritten)
1165 continue;
1166
1167 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1168 if (IS_ERR(tmp)) {
1169 /* Patching may have repointed aux->prog during
1170 * realloc from the original one, so we need to
1171 * fix it up here on error.
1172 */
1173 bpf_jit_prog_release_other(prog, clone);
1174 return tmp;
1175 }
1176
1177 clone = tmp;
1178 insn_delta = rewritten - 1;
1179
1180 /* Walk new program and skip insns we just inserted. */
1181 insn = clone->insnsi + i + insn_delta;
1182 insn_cnt += insn_delta;
1183 i += insn_delta;
1184 }
1185
1186 clone->blinded = 1;
1187 return clone;
1188 }
1189 #endif /* CONFIG_BPF_JIT */
1190
1191 /* Base function for offset calculation. Needs to go into .text section,
1192 * therefore keeping it non-static as well; will also be used by JITs
1193 * anyway later on, so do not let the compiler omit it. This also needs
1194 * to go into kallsyms for correlation from e.g. bpftool, so naming
1195 * must not change.
1196 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1197 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1198 {
1199 return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(__bpf_call_base);
1202
1203 /* All UAPI available opcodes. */
1204 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1205 /* 32 bit ALU operations. */ \
1206 /* Register based. */ \
1207 INSN_3(ALU, ADD, X), \
1208 INSN_3(ALU, SUB, X), \
1209 INSN_3(ALU, AND, X), \
1210 INSN_3(ALU, OR, X), \
1211 INSN_3(ALU, LSH, X), \
1212 INSN_3(ALU, RSH, X), \
1213 INSN_3(ALU, XOR, X), \
1214 INSN_3(ALU, MUL, X), \
1215 INSN_3(ALU, MOV, X), \
1216 INSN_3(ALU, ARSH, X), \
1217 INSN_3(ALU, DIV, X), \
1218 INSN_3(ALU, MOD, X), \
1219 INSN_2(ALU, NEG), \
1220 INSN_3(ALU, END, TO_BE), \
1221 INSN_3(ALU, END, TO_LE), \
1222 /* Immediate based. */ \
1223 INSN_3(ALU, ADD, K), \
1224 INSN_3(ALU, SUB, K), \
1225 INSN_3(ALU, AND, K), \
1226 INSN_3(ALU, OR, K), \
1227 INSN_3(ALU, LSH, K), \
1228 INSN_3(ALU, RSH, K), \
1229 INSN_3(ALU, XOR, K), \
1230 INSN_3(ALU, MUL, K), \
1231 INSN_3(ALU, MOV, K), \
1232 INSN_3(ALU, ARSH, K), \
1233 INSN_3(ALU, DIV, K), \
1234 INSN_3(ALU, MOD, K), \
1235 /* 64 bit ALU operations. */ \
1236 /* Register based. */ \
1237 INSN_3(ALU64, ADD, X), \
1238 INSN_3(ALU64, SUB, X), \
1239 INSN_3(ALU64, AND, X), \
1240 INSN_3(ALU64, OR, X), \
1241 INSN_3(ALU64, LSH, X), \
1242 INSN_3(ALU64, RSH, X), \
1243 INSN_3(ALU64, XOR, X), \
1244 INSN_3(ALU64, MUL, X), \
1245 INSN_3(ALU64, MOV, X), \
1246 INSN_3(ALU64, ARSH, X), \
1247 INSN_3(ALU64, DIV, X), \
1248 INSN_3(ALU64, MOD, X), \
1249 INSN_2(ALU64, NEG), \
1250 /* Immediate based. */ \
1251 INSN_3(ALU64, ADD, K), \
1252 INSN_3(ALU64, SUB, K), \
1253 INSN_3(ALU64, AND, K), \
1254 INSN_3(ALU64, OR, K), \
1255 INSN_3(ALU64, LSH, K), \
1256 INSN_3(ALU64, RSH, K), \
1257 INSN_3(ALU64, XOR, K), \
1258 INSN_3(ALU64, MUL, K), \
1259 INSN_3(ALU64, MOV, K), \
1260 INSN_3(ALU64, ARSH, K), \
1261 INSN_3(ALU64, DIV, K), \
1262 INSN_3(ALU64, MOD, K), \
1263 /* Call instruction. */ \
1264 INSN_2(JMP, CALL), \
1265 /* Exit instruction. */ \
1266 INSN_2(JMP, EXIT), \
1267 /* 32-bit Jump instructions. */ \
1268 /* Register based. */ \
1269 INSN_3(JMP32, JEQ, X), \
1270 INSN_3(JMP32, JNE, X), \
1271 INSN_3(JMP32, JGT, X), \
1272 INSN_3(JMP32, JLT, X), \
1273 INSN_3(JMP32, JGE, X), \
1274 INSN_3(JMP32, JLE, X), \
1275 INSN_3(JMP32, JSGT, X), \
1276 INSN_3(JMP32, JSLT, X), \
1277 INSN_3(JMP32, JSGE, X), \
1278 INSN_3(JMP32, JSLE, X), \
1279 INSN_3(JMP32, JSET, X), \
1280 /* Immediate based. */ \
1281 INSN_3(JMP32, JEQ, K), \
1282 INSN_3(JMP32, JNE, K), \
1283 INSN_3(JMP32, JGT, K), \
1284 INSN_3(JMP32, JLT, K), \
1285 INSN_3(JMP32, JGE, K), \
1286 INSN_3(JMP32, JLE, K), \
1287 INSN_3(JMP32, JSGT, K), \
1288 INSN_3(JMP32, JSLT, K), \
1289 INSN_3(JMP32, JSGE, K), \
1290 INSN_3(JMP32, JSLE, K), \
1291 INSN_3(JMP32, JSET, K), \
1292 /* Jump instructions. */ \
1293 /* Register based. */ \
1294 INSN_3(JMP, JEQ, X), \
1295 INSN_3(JMP, JNE, X), \
1296 INSN_3(JMP, JGT, X), \
1297 INSN_3(JMP, JLT, X), \
1298 INSN_3(JMP, JGE, X), \
1299 INSN_3(JMP, JLE, X), \
1300 INSN_3(JMP, JSGT, X), \
1301 INSN_3(JMP, JSLT, X), \
1302 INSN_3(JMP, JSGE, X), \
1303 INSN_3(JMP, JSLE, X), \
1304 INSN_3(JMP, JSET, X), \
1305 /* Immediate based. */ \
1306 INSN_3(JMP, JEQ, K), \
1307 INSN_3(JMP, JNE, K), \
1308 INSN_3(JMP, JGT, K), \
1309 INSN_3(JMP, JLT, K), \
1310 INSN_3(JMP, JGE, K), \
1311 INSN_3(JMP, JLE, K), \
1312 INSN_3(JMP, JSGT, K), \
1313 INSN_3(JMP, JSLT, K), \
1314 INSN_3(JMP, JSGE, K), \
1315 INSN_3(JMP, JSLE, K), \
1316 INSN_3(JMP, JSET, K), \
1317 INSN_2(JMP, JA), \
1318 /* Store instructions. */ \
1319 /* Register based. */ \
1320 INSN_3(STX, MEM, B), \
1321 INSN_3(STX, MEM, H), \
1322 INSN_3(STX, MEM, W), \
1323 INSN_3(STX, MEM, DW), \
1324 INSN_3(STX, XADD, W), \
1325 INSN_3(STX, XADD, DW), \
1326 /* Immediate based. */ \
1327 INSN_3(ST, MEM, B), \
1328 INSN_3(ST, MEM, H), \
1329 INSN_3(ST, MEM, W), \
1330 INSN_3(ST, MEM, DW), \
1331 /* Load instructions. */ \
1332 /* Register based. */ \
1333 INSN_3(LDX, MEM, B), \
1334 INSN_3(LDX, MEM, H), \
1335 INSN_3(LDX, MEM, W), \
1336 INSN_3(LDX, MEM, DW), \
1337 /* Immediate based. */ \
1338 INSN_3(LD, IMM, DW)
1339
bpf_opcode_in_insntable(u8 code)1340 bool bpf_opcode_in_insntable(u8 code)
1341 {
1342 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1343 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1344 static const bool public_insntable[256] = {
1345 [0 ... 255] = false,
1346 /* Now overwrite non-defaults ... */
1347 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1348 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1349 [BPF_LD | BPF_ABS | BPF_B] = true,
1350 [BPF_LD | BPF_ABS | BPF_H] = true,
1351 [BPF_LD | BPF_ABS | BPF_W] = true,
1352 [BPF_LD | BPF_IND | BPF_B] = true,
1353 [BPF_LD | BPF_IND | BPF_H] = true,
1354 [BPF_LD | BPF_IND | BPF_W] = true,
1355 };
1356 #undef BPF_INSN_3_TBL
1357 #undef BPF_INSN_2_TBL
1358 return public_insntable[code];
1359 }
1360
1361 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1362 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1363 {
1364 memset(dst, 0, size);
1365 return -EFAULT;
1366 }
1367
1368 /**
1369 * __bpf_prog_run - run eBPF program on a given context
1370 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1371 * @insn: is the array of eBPF instructions
1372 * @stack: is the eBPF storage stack
1373 *
1374 * Decode and execute eBPF instructions.
1375 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1376 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1377 {
1378 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1379 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1380 static const void * const jumptable[256] __annotate_jump_table = {
1381 [0 ... 255] = &&default_label,
1382 /* Now overwrite non-defaults ... */
1383 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1384 /* Non-UAPI available opcodes. */
1385 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1386 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1387 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1388 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1389 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1390 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1391 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1392 };
1393 #undef BPF_INSN_3_LBL
1394 #undef BPF_INSN_2_LBL
1395 u32 tail_call_cnt = 0;
1396
1397 #define CONT ({ insn++; goto select_insn; })
1398 #define CONT_JMP ({ insn++; goto select_insn; })
1399
1400 select_insn:
1401 goto *jumptable[insn->code];
1402
1403 /* Explicitly mask the register-based shift amounts with 63 or 31
1404 * to avoid undefined behavior. Normally this won't affect the
1405 * generated code, for example, in case of native 64 bit archs such
1406 * as x86-64 or arm64, the compiler is optimizing the AND away for
1407 * the interpreter. In case of JITs, each of the JIT backends compiles
1408 * the BPF shift operations to machine instructions which produce
1409 * implementation-defined results in such a case; the resulting
1410 * contents of the register may be arbitrary, but program behaviour
1411 * as a whole remains defined. In other words, in case of JIT backends,
1412 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1413 */
1414 /* ALU (shifts) */
1415 #define SHT(OPCODE, OP) \
1416 ALU64_##OPCODE##_X: \
1417 DST = DST OP (SRC & 63); \
1418 CONT; \
1419 ALU_##OPCODE##_X: \
1420 DST = (u32) DST OP ((u32) SRC & 31); \
1421 CONT; \
1422 ALU64_##OPCODE##_K: \
1423 DST = DST OP IMM; \
1424 CONT; \
1425 ALU_##OPCODE##_K: \
1426 DST = (u32) DST OP (u32) IMM; \
1427 CONT;
1428 /* ALU (rest) */
1429 #define ALU(OPCODE, OP) \
1430 ALU64_##OPCODE##_X: \
1431 DST = DST OP SRC; \
1432 CONT; \
1433 ALU_##OPCODE##_X: \
1434 DST = (u32) DST OP (u32) SRC; \
1435 CONT; \
1436 ALU64_##OPCODE##_K: \
1437 DST = DST OP IMM; \
1438 CONT; \
1439 ALU_##OPCODE##_K: \
1440 DST = (u32) DST OP (u32) IMM; \
1441 CONT;
1442 ALU(ADD, +)
1443 ALU(SUB, -)
1444 ALU(AND, &)
1445 ALU(OR, |)
1446 ALU(XOR, ^)
1447 ALU(MUL, *)
1448 SHT(LSH, <<)
1449 SHT(RSH, >>)
1450 #undef SHT
1451 #undef ALU
1452 ALU_NEG:
1453 DST = (u32) -DST;
1454 CONT;
1455 ALU64_NEG:
1456 DST = -DST;
1457 CONT;
1458 ALU_MOV_X:
1459 DST = (u32) SRC;
1460 CONT;
1461 ALU_MOV_K:
1462 DST = (u32) IMM;
1463 CONT;
1464 ALU64_MOV_X:
1465 DST = SRC;
1466 CONT;
1467 ALU64_MOV_K:
1468 DST = IMM;
1469 CONT;
1470 LD_IMM_DW:
1471 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1472 insn++;
1473 CONT;
1474 ALU_ARSH_X:
1475 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1476 CONT;
1477 ALU_ARSH_K:
1478 DST = (u64) (u32) (((s32) DST) >> IMM);
1479 CONT;
1480 ALU64_ARSH_X:
1481 (*(s64 *) &DST) >>= (SRC & 63);
1482 CONT;
1483 ALU64_ARSH_K:
1484 (*(s64 *) &DST) >>= IMM;
1485 CONT;
1486 ALU64_MOD_X:
1487 div64_u64_rem(DST, SRC, &AX);
1488 DST = AX;
1489 CONT;
1490 ALU_MOD_X:
1491 AX = (u32) DST;
1492 DST = do_div(AX, (u32) SRC);
1493 CONT;
1494 ALU64_MOD_K:
1495 div64_u64_rem(DST, IMM, &AX);
1496 DST = AX;
1497 CONT;
1498 ALU_MOD_K:
1499 AX = (u32) DST;
1500 DST = do_div(AX, (u32) IMM);
1501 CONT;
1502 ALU64_DIV_X:
1503 DST = div64_u64(DST, SRC);
1504 CONT;
1505 ALU_DIV_X:
1506 AX = (u32) DST;
1507 do_div(AX, (u32) SRC);
1508 DST = (u32) AX;
1509 CONT;
1510 ALU64_DIV_K:
1511 DST = div64_u64(DST, IMM);
1512 CONT;
1513 ALU_DIV_K:
1514 AX = (u32) DST;
1515 do_div(AX, (u32) IMM);
1516 DST = (u32) AX;
1517 CONT;
1518 ALU_END_TO_BE:
1519 switch (IMM) {
1520 case 16:
1521 DST = (__force u16) cpu_to_be16(DST);
1522 break;
1523 case 32:
1524 DST = (__force u32) cpu_to_be32(DST);
1525 break;
1526 case 64:
1527 DST = (__force u64) cpu_to_be64(DST);
1528 break;
1529 }
1530 CONT;
1531 ALU_END_TO_LE:
1532 switch (IMM) {
1533 case 16:
1534 DST = (__force u16) cpu_to_le16(DST);
1535 break;
1536 case 32:
1537 DST = (__force u32) cpu_to_le32(DST);
1538 break;
1539 case 64:
1540 DST = (__force u64) cpu_to_le64(DST);
1541 break;
1542 }
1543 CONT;
1544
1545 /* CALL */
1546 JMP_CALL:
1547 /* Function call scratches BPF_R1-BPF_R5 registers,
1548 * preserves BPF_R6-BPF_R9, and stores return value
1549 * into BPF_R0.
1550 */
1551 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1552 BPF_R4, BPF_R5);
1553 CONT;
1554
1555 JMP_CALL_ARGS:
1556 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1557 BPF_R3, BPF_R4,
1558 BPF_R5,
1559 insn + insn->off + 1);
1560 CONT;
1561
1562 JMP_TAIL_CALL: {
1563 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1564 struct bpf_array *array = container_of(map, struct bpf_array, map);
1565 struct bpf_prog *prog;
1566 u32 index = BPF_R3;
1567
1568 if (unlikely(index >= array->map.max_entries))
1569 goto out;
1570 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1571 goto out;
1572
1573 tail_call_cnt++;
1574
1575 prog = READ_ONCE(array->ptrs[index]);
1576 if (!prog)
1577 goto out;
1578
1579 /* ARG1 at this point is guaranteed to point to CTX from
1580 * the verifier side due to the fact that the tail call is
1581 * handled like a helper, that is, bpf_tail_call_proto,
1582 * where arg1_type is ARG_PTR_TO_CTX.
1583 */
1584 insn = prog->insnsi;
1585 goto select_insn;
1586 out:
1587 CONT;
1588 }
1589 JMP_JA:
1590 insn += insn->off;
1591 CONT;
1592 JMP_EXIT:
1593 return BPF_R0;
1594 /* JMP */
1595 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1596 JMP_##OPCODE##_X: \
1597 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1598 insn += insn->off; \
1599 CONT_JMP; \
1600 } \
1601 CONT; \
1602 JMP32_##OPCODE##_X: \
1603 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1604 insn += insn->off; \
1605 CONT_JMP; \
1606 } \
1607 CONT; \
1608 JMP_##OPCODE##_K: \
1609 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1610 insn += insn->off; \
1611 CONT_JMP; \
1612 } \
1613 CONT; \
1614 JMP32_##OPCODE##_K: \
1615 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1616 insn += insn->off; \
1617 CONT_JMP; \
1618 } \
1619 CONT;
1620 COND_JMP(u, JEQ, ==)
1621 COND_JMP(u, JNE, !=)
1622 COND_JMP(u, JGT, >)
1623 COND_JMP(u, JLT, <)
1624 COND_JMP(u, JGE, >=)
1625 COND_JMP(u, JLE, <=)
1626 COND_JMP(u, JSET, &)
1627 COND_JMP(s, JSGT, >)
1628 COND_JMP(s, JSLT, <)
1629 COND_JMP(s, JSGE, >=)
1630 COND_JMP(s, JSLE, <=)
1631 #undef COND_JMP
1632 /* ST, STX and LDX*/
1633 ST_NOSPEC:
1634 /* Speculation barrier for mitigating Speculative Store Bypass.
1635 * In case of arm64, we rely on the firmware mitigation as
1636 * controlled via the ssbd kernel parameter. Whenever the
1637 * mitigation is enabled, it works for all of the kernel code
1638 * with no need to provide any additional instructions here.
1639 * In case of x86, we use 'lfence' insn for mitigation. We
1640 * reuse preexisting logic from Spectre v1 mitigation that
1641 * happens to produce the required code on x86 for v4 as well.
1642 */
1643 #ifdef CONFIG_X86
1644 barrier_nospec();
1645 #endif
1646 CONT;
1647 #define LDST(SIZEOP, SIZE) \
1648 STX_MEM_##SIZEOP: \
1649 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1650 CONT; \
1651 ST_MEM_##SIZEOP: \
1652 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1653 CONT; \
1654 LDX_MEM_##SIZEOP: \
1655 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1656 CONT;
1657
1658 LDST(B, u8)
1659 LDST(H, u16)
1660 LDST(W, u32)
1661 LDST(DW, u64)
1662 #undef LDST
1663 #define LDX_PROBE(SIZEOP, SIZE) \
1664 LDX_PROBE_MEM_##SIZEOP: \
1665 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
1666 CONT;
1667 LDX_PROBE(B, 1)
1668 LDX_PROBE(H, 2)
1669 LDX_PROBE(W, 4)
1670 LDX_PROBE(DW, 8)
1671 #undef LDX_PROBE
1672
1673 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1674 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1675 (DST + insn->off));
1676 CONT;
1677 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1678 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1679 (DST + insn->off));
1680 CONT;
1681
1682 default_label:
1683 /* If we ever reach this, we have a bug somewhere. Die hard here
1684 * instead of just returning 0; we could be somewhere in a subprog,
1685 * so execution could continue otherwise which we do /not/ want.
1686 *
1687 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1688 */
1689 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1690 BUG_ON(1);
1691 return 0;
1692 }
1693
1694 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1695 #define DEFINE_BPF_PROG_RUN(stack_size) \
1696 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1697 { \
1698 u64 stack[stack_size / sizeof(u64)]; \
1699 u64 regs[MAX_BPF_EXT_REG]; \
1700 \
1701 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1702 ARG1 = (u64) (unsigned long) ctx; \
1703 return ___bpf_prog_run(regs, insn, stack); \
1704 }
1705
1706 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1707 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1708 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1709 const struct bpf_insn *insn) \
1710 { \
1711 u64 stack[stack_size / sizeof(u64)]; \
1712 u64 regs[MAX_BPF_EXT_REG]; \
1713 \
1714 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1715 BPF_R1 = r1; \
1716 BPF_R2 = r2; \
1717 BPF_R3 = r3; \
1718 BPF_R4 = r4; \
1719 BPF_R5 = r5; \
1720 return ___bpf_prog_run(regs, insn, stack); \
1721 }
1722
1723 #define EVAL1(FN, X) FN(X)
1724 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1725 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1726 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1727 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1728 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1729
1730 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1731 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1732 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1733
1734 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1735 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1736 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1737
1738 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1739
1740 static unsigned int (*interpreters[])(const void *ctx,
1741 const struct bpf_insn *insn) = {
1742 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1743 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1744 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1745 };
1746 #undef PROG_NAME_LIST
1747 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1748 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1749 const struct bpf_insn *insn) = {
1750 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1751 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1752 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1753 };
1754 #undef PROG_NAME_LIST
1755
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1756 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1757 {
1758 stack_depth = max_t(u32, stack_depth, 1);
1759 insn->off = (s16) insn->imm;
1760 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1761 __bpf_call_base_args;
1762 insn->code = BPF_JMP | BPF_CALL_ARGS;
1763 }
1764
1765 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1766 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1767 const struct bpf_insn *insn)
1768 {
1769 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1770 * is not working properly, so warn about it!
1771 */
1772 WARN_ON_ONCE(1);
1773 return 0;
1774 }
1775 #endif
1776
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1777 bool bpf_prog_array_compatible(struct bpf_array *array,
1778 const struct bpf_prog *fp)
1779 {
1780 bool ret;
1781
1782 if (fp->kprobe_override)
1783 return false;
1784
1785 spin_lock(&array->aux->owner.lock);
1786
1787 if (!array->aux->owner.type) {
1788 /* There's no owner yet where we could check for
1789 * compatibility.
1790 */
1791 array->aux->owner.type = fp->type;
1792 array->aux->owner.jited = fp->jited;
1793 ret = true;
1794 } else {
1795 ret = array->aux->owner.type == fp->type &&
1796 array->aux->owner.jited == fp->jited;
1797 }
1798 spin_unlock(&array->aux->owner.lock);
1799 return ret;
1800 }
1801
bpf_check_tail_call(const struct bpf_prog * fp)1802 static int bpf_check_tail_call(const struct bpf_prog *fp)
1803 {
1804 struct bpf_prog_aux *aux = fp->aux;
1805 int i, ret = 0;
1806
1807 mutex_lock(&aux->used_maps_mutex);
1808 for (i = 0; i < aux->used_map_cnt; i++) {
1809 struct bpf_map *map = aux->used_maps[i];
1810 struct bpf_array *array;
1811
1812 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1813 continue;
1814
1815 array = container_of(map, struct bpf_array, map);
1816 if (!bpf_prog_array_compatible(array, fp)) {
1817 ret = -EINVAL;
1818 goto out;
1819 }
1820 }
1821
1822 out:
1823 mutex_unlock(&aux->used_maps_mutex);
1824 return ret;
1825 }
1826
bpf_prog_select_func(struct bpf_prog * fp)1827 static void bpf_prog_select_func(struct bpf_prog *fp)
1828 {
1829 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1830 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1831
1832 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1833 #else
1834 fp->bpf_func = __bpf_prog_ret0_warn;
1835 #endif
1836 }
1837
1838 /**
1839 * bpf_prog_select_runtime - select exec runtime for BPF program
1840 * @fp: bpf_prog populated with internal BPF program
1841 * @err: pointer to error variable
1842 *
1843 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1844 * The BPF program will be executed via BPF_PROG_RUN() macro.
1845 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1846 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1847 {
1848 /* In case of BPF to BPF calls, verifier did all the prep
1849 * work with regards to JITing, etc.
1850 */
1851 if (fp->bpf_func)
1852 goto finalize;
1853
1854 bpf_prog_select_func(fp);
1855
1856 /* eBPF JITs can rewrite the program in case constant
1857 * blinding is active. However, in case of error during
1858 * blinding, bpf_int_jit_compile() must always return a
1859 * valid program, which in this case would simply not
1860 * be JITed, but falls back to the interpreter.
1861 */
1862 if (!bpf_prog_is_dev_bound(fp->aux)) {
1863 *err = bpf_prog_alloc_jited_linfo(fp);
1864 if (*err)
1865 return fp;
1866
1867 fp = bpf_int_jit_compile(fp);
1868 if (!fp->jited) {
1869 bpf_prog_free_jited_linfo(fp);
1870 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1871 *err = -ENOTSUPP;
1872 return fp;
1873 #endif
1874 } else {
1875 bpf_prog_free_unused_jited_linfo(fp);
1876 }
1877 } else {
1878 *err = bpf_prog_offload_compile(fp);
1879 if (*err)
1880 return fp;
1881 }
1882
1883 finalize:
1884 bpf_prog_lock_ro(fp);
1885
1886 /* The tail call compatibility check can only be done at
1887 * this late stage as we need to determine, if we deal
1888 * with JITed or non JITed program concatenations and not
1889 * all eBPF JITs might immediately support all features.
1890 */
1891 *err = bpf_check_tail_call(fp);
1892
1893 return fp;
1894 }
1895 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1896
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1897 static unsigned int __bpf_prog_ret1(const void *ctx,
1898 const struct bpf_insn *insn)
1899 {
1900 return 1;
1901 }
1902
1903 static struct bpf_prog_dummy {
1904 struct bpf_prog prog;
1905 } dummy_bpf_prog = {
1906 .prog = {
1907 .bpf_func = __bpf_prog_ret1,
1908 },
1909 };
1910
1911 /* to avoid allocating empty bpf_prog_array for cgroups that
1912 * don't have bpf program attached use one global 'empty_prog_array'
1913 * It will not be modified the caller of bpf_prog_array_alloc()
1914 * (since caller requested prog_cnt == 0)
1915 * that pointer should be 'freed' by bpf_prog_array_free()
1916 */
1917 static struct {
1918 struct bpf_prog_array hdr;
1919 struct bpf_prog *null_prog;
1920 } empty_prog_array = {
1921 .null_prog = NULL,
1922 };
1923
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1924 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1925 {
1926 if (prog_cnt)
1927 return kzalloc(sizeof(struct bpf_prog_array) +
1928 sizeof(struct bpf_prog_array_item) *
1929 (prog_cnt + 1),
1930 flags);
1931
1932 return &empty_prog_array.hdr;
1933 }
1934
bpf_prog_array_free(struct bpf_prog_array * progs)1935 void bpf_prog_array_free(struct bpf_prog_array *progs)
1936 {
1937 if (!progs || progs == &empty_prog_array.hdr)
1938 return;
1939 kfree_rcu(progs, rcu);
1940 }
1941
bpf_prog_array_length(struct bpf_prog_array * array)1942 int bpf_prog_array_length(struct bpf_prog_array *array)
1943 {
1944 struct bpf_prog_array_item *item;
1945 u32 cnt = 0;
1946
1947 for (item = array->items; item->prog; item++)
1948 if (item->prog != &dummy_bpf_prog.prog)
1949 cnt++;
1950 return cnt;
1951 }
1952
bpf_prog_array_is_empty(struct bpf_prog_array * array)1953 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1954 {
1955 struct bpf_prog_array_item *item;
1956
1957 for (item = array->items; item->prog; item++)
1958 if (item->prog != &dummy_bpf_prog.prog)
1959 return false;
1960 return true;
1961 }
1962
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1963 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1964 u32 *prog_ids,
1965 u32 request_cnt)
1966 {
1967 struct bpf_prog_array_item *item;
1968 int i = 0;
1969
1970 for (item = array->items; item->prog; item++) {
1971 if (item->prog == &dummy_bpf_prog.prog)
1972 continue;
1973 prog_ids[i] = item->prog->aux->id;
1974 if (++i == request_cnt) {
1975 item++;
1976 break;
1977 }
1978 }
1979
1980 return !!(item->prog);
1981 }
1982
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1983 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1984 __u32 __user *prog_ids, u32 cnt)
1985 {
1986 unsigned long err = 0;
1987 bool nospc;
1988 u32 *ids;
1989
1990 /* users of this function are doing:
1991 * cnt = bpf_prog_array_length();
1992 * if (cnt > 0)
1993 * bpf_prog_array_copy_to_user(..., cnt);
1994 * so below kcalloc doesn't need extra cnt > 0 check.
1995 */
1996 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1997 if (!ids)
1998 return -ENOMEM;
1999 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2000 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2001 kfree(ids);
2002 if (err)
2003 return -EFAULT;
2004 if (nospc)
2005 return -ENOSPC;
2006 return 0;
2007 }
2008
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2009 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2010 struct bpf_prog *old_prog)
2011 {
2012 struct bpf_prog_array_item *item;
2013
2014 for (item = array->items; item->prog; item++)
2015 if (item->prog == old_prog) {
2016 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2017 break;
2018 }
2019 }
2020
2021 /**
2022 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2023 * index into the program array with
2024 * a dummy no-op program.
2025 * @array: a bpf_prog_array
2026 * @index: the index of the program to replace
2027 *
2028 * Skips over dummy programs, by not counting them, when calculating
2029 * the position of the program to replace.
2030 *
2031 * Return:
2032 * * 0 - Success
2033 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2034 * * -ENOENT - Index out of range
2035 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2036 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2037 {
2038 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2039 }
2040
2041 /**
2042 * bpf_prog_array_update_at() - Updates the program at the given index
2043 * into the program array.
2044 * @array: a bpf_prog_array
2045 * @index: the index of the program to update
2046 * @prog: the program to insert into the array
2047 *
2048 * Skips over dummy programs, by not counting them, when calculating
2049 * the position of the program to update.
2050 *
2051 * Return:
2052 * * 0 - Success
2053 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2054 * * -ENOENT - Index out of range
2055 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2056 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2057 struct bpf_prog *prog)
2058 {
2059 struct bpf_prog_array_item *item;
2060
2061 if (unlikely(index < 0))
2062 return -EINVAL;
2063
2064 for (item = array->items; item->prog; item++) {
2065 if (item->prog == &dummy_bpf_prog.prog)
2066 continue;
2067 if (!index) {
2068 WRITE_ONCE(item->prog, prog);
2069 return 0;
2070 }
2071 index--;
2072 }
2073 return -ENOENT;
2074 }
2075
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2076 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2077 struct bpf_prog *exclude_prog,
2078 struct bpf_prog *include_prog,
2079 struct bpf_prog_array **new_array)
2080 {
2081 int new_prog_cnt, carry_prog_cnt = 0;
2082 struct bpf_prog_array_item *existing;
2083 struct bpf_prog_array *array;
2084 bool found_exclude = false;
2085 int new_prog_idx = 0;
2086
2087 /* Figure out how many existing progs we need to carry over to
2088 * the new array.
2089 */
2090 if (old_array) {
2091 existing = old_array->items;
2092 for (; existing->prog; existing++) {
2093 if (existing->prog == exclude_prog) {
2094 found_exclude = true;
2095 continue;
2096 }
2097 if (existing->prog != &dummy_bpf_prog.prog)
2098 carry_prog_cnt++;
2099 if (existing->prog == include_prog)
2100 return -EEXIST;
2101 }
2102 }
2103
2104 if (exclude_prog && !found_exclude)
2105 return -ENOENT;
2106
2107 /* How many progs (not NULL) will be in the new array? */
2108 new_prog_cnt = carry_prog_cnt;
2109 if (include_prog)
2110 new_prog_cnt += 1;
2111
2112 /* Do we have any prog (not NULL) in the new array? */
2113 if (!new_prog_cnt) {
2114 *new_array = NULL;
2115 return 0;
2116 }
2117
2118 /* +1 as the end of prog_array is marked with NULL */
2119 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2120 if (!array)
2121 return -ENOMEM;
2122
2123 /* Fill in the new prog array */
2124 if (carry_prog_cnt) {
2125 existing = old_array->items;
2126 for (; existing->prog; existing++)
2127 if (existing->prog != exclude_prog &&
2128 existing->prog != &dummy_bpf_prog.prog) {
2129 array->items[new_prog_idx++].prog =
2130 existing->prog;
2131 }
2132 }
2133 if (include_prog)
2134 array->items[new_prog_idx++].prog = include_prog;
2135 array->items[new_prog_idx].prog = NULL;
2136 *new_array = array;
2137 return 0;
2138 }
2139
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2140 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2141 u32 *prog_ids, u32 request_cnt,
2142 u32 *prog_cnt)
2143 {
2144 u32 cnt = 0;
2145
2146 if (array)
2147 cnt = bpf_prog_array_length(array);
2148
2149 *prog_cnt = cnt;
2150
2151 /* return early if user requested only program count or nothing to copy */
2152 if (!request_cnt || !cnt)
2153 return 0;
2154
2155 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2156 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2157 : 0;
2158 }
2159
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2160 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2161 struct bpf_map **used_maps, u32 len)
2162 {
2163 struct bpf_map *map;
2164 u32 i;
2165
2166 for (i = 0; i < len; i++) {
2167 map = used_maps[i];
2168 if (map->ops->map_poke_untrack)
2169 map->ops->map_poke_untrack(map, aux);
2170 bpf_map_put(map);
2171 }
2172 }
2173
bpf_free_used_maps(struct bpf_prog_aux * aux)2174 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2175 {
2176 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2177 kfree(aux->used_maps);
2178 }
2179
bpf_prog_free_deferred(struct work_struct * work)2180 static void bpf_prog_free_deferred(struct work_struct *work)
2181 {
2182 struct bpf_prog_aux *aux;
2183 int i;
2184
2185 aux = container_of(work, struct bpf_prog_aux, work);
2186 bpf_free_used_maps(aux);
2187 if (bpf_prog_is_dev_bound(aux))
2188 bpf_prog_offload_destroy(aux->prog);
2189 #ifdef CONFIG_PERF_EVENTS
2190 if (aux->prog->has_callchain_buf)
2191 put_callchain_buffers();
2192 #endif
2193 if (aux->dst_trampoline)
2194 bpf_trampoline_put(aux->dst_trampoline);
2195 for (i = 0; i < aux->func_cnt; i++) {
2196 /* We can just unlink the subprog poke descriptor table as
2197 * it was originally linked to the main program and is also
2198 * released along with it.
2199 */
2200 aux->func[i]->aux->poke_tab = NULL;
2201 bpf_jit_free(aux->func[i]);
2202 }
2203 if (aux->func_cnt) {
2204 kfree(aux->func);
2205 bpf_prog_unlock_free(aux->prog);
2206 } else {
2207 bpf_jit_free(aux->prog);
2208 }
2209 }
2210
2211 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2212 void bpf_prog_free(struct bpf_prog *fp)
2213 {
2214 struct bpf_prog_aux *aux = fp->aux;
2215
2216 if (aux->dst_prog)
2217 bpf_prog_put(aux->dst_prog);
2218 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2219 schedule_work(&aux->work);
2220 }
2221 EXPORT_SYMBOL_GPL(bpf_prog_free);
2222
2223 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2224 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2225
bpf_user_rnd_init_once(void)2226 void bpf_user_rnd_init_once(void)
2227 {
2228 prandom_init_once(&bpf_user_rnd_state);
2229 }
2230
BPF_CALL_0(bpf_user_rnd_u32)2231 BPF_CALL_0(bpf_user_rnd_u32)
2232 {
2233 /* Should someone ever have the rather unwise idea to use some
2234 * of the registers passed into this function, then note that
2235 * this function is called from native eBPF and classic-to-eBPF
2236 * transformations. Register assignments from both sides are
2237 * different, f.e. classic always sets fn(ctx, A, X) here.
2238 */
2239 struct rnd_state *state;
2240 u32 res;
2241
2242 state = &get_cpu_var(bpf_user_rnd_state);
2243 res = prandom_u32_state(state);
2244 put_cpu_var(bpf_user_rnd_state);
2245
2246 return res;
2247 }
2248
BPF_CALL_0(bpf_get_raw_cpu_id)2249 BPF_CALL_0(bpf_get_raw_cpu_id)
2250 {
2251 return raw_smp_processor_id();
2252 }
2253
2254 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2255 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2258 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2259 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2260 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2261 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2262 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2263 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2264
2265 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2266 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2267 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2268 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2269 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2270
2271 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2273 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2274 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2275 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2276 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2277 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2278 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2279 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2280
bpf_get_trace_printk_proto(void)2281 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2282 {
2283 return NULL;
2284 }
2285
2286 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2287 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2288 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2289 {
2290 return -ENOTSUPP;
2291 }
2292 EXPORT_SYMBOL_GPL(bpf_event_output);
2293
2294 /* Always built-in helper functions. */
2295 const struct bpf_func_proto bpf_tail_call_proto = {
2296 .func = NULL,
2297 .gpl_only = false,
2298 .ret_type = RET_VOID,
2299 .arg1_type = ARG_PTR_TO_CTX,
2300 .arg2_type = ARG_CONST_MAP_PTR,
2301 .arg3_type = ARG_ANYTHING,
2302 };
2303
2304 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2305 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2306 * eBPF and implicitly also cBPF can get JITed!
2307 */
bpf_int_jit_compile(struct bpf_prog * prog)2308 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2309 {
2310 return prog;
2311 }
2312
2313 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2314 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2315 */
bpf_jit_compile(struct bpf_prog * prog)2316 void __weak bpf_jit_compile(struct bpf_prog *prog)
2317 {
2318 }
2319
bpf_helper_changes_pkt_data(void * func)2320 bool __weak bpf_helper_changes_pkt_data(void *func)
2321 {
2322 return false;
2323 }
2324
2325 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2326 * analysis code and wants explicit zero extension inserted by verifier.
2327 * Otherwise, return FALSE.
2328 */
bpf_jit_needs_zext(void)2329 bool __weak bpf_jit_needs_zext(void)
2330 {
2331 return false;
2332 }
2333
2334 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2335 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2336 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2337 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2338 int len)
2339 {
2340 return -EFAULT;
2341 }
2342
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2343 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2344 void *addr1, void *addr2)
2345 {
2346 return -ENOTSUPP;
2347 }
2348
2349 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2350 EXPORT_SYMBOL(bpf_stats_enabled_key);
2351
2352 /* All definitions of tracepoints related to BPF. */
2353 #define CREATE_TRACE_POINTS
2354 #include <linux/bpf_trace.h>
2355
2356 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2357 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2358