1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Alloction in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53
54 struct dentry *debugfs_resctrl;
55
rdt_last_cmd_clear(void)56 void rdt_last_cmd_clear(void)
57 {
58 lockdep_assert_held(&rdtgroup_mutex);
59 seq_buf_clear(&last_cmd_status);
60 }
61
rdt_last_cmd_puts(const char * s)62 void rdt_last_cmd_puts(const char *s)
63 {
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_puts(&last_cmd_status, s);
66 }
67
rdt_last_cmd_printf(const char * fmt,...)68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 va_list ap;
71
72 va_start(ap, fmt);
73 lockdep_assert_held(&rdtgroup_mutex);
74 seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 va_end(ap);
76 }
77
78 /*
79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80 * we can keep a bitmap of free CLOSIDs in a single integer.
81 *
82 * Using a global CLOSID across all resources has some advantages and
83 * some drawbacks:
84 * + We can simply set "current->closid" to assign a task to a resource
85 * group.
86 * + Context switch code can avoid extra memory references deciding which
87 * CLOSID to load into the PQR_ASSOC MSR
88 * - We give up some options in configuring resource groups across multi-socket
89 * systems.
90 * - Our choices on how to configure each resource become progressively more
91 * limited as the number of resources grows.
92 */
93 static int closid_free_map;
94 static int closid_free_map_len;
95
closids_supported(void)96 int closids_supported(void)
97 {
98 return closid_free_map_len;
99 }
100
closid_init(void)101 static void closid_init(void)
102 {
103 struct rdt_resource *r;
104 int rdt_min_closid = 32;
105
106 /* Compute rdt_min_closid across all resources */
107 for_each_alloc_enabled_rdt_resource(r)
108 rdt_min_closid = min(rdt_min_closid, r->num_closid);
109
110 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111
112 /* CLOSID 0 is always reserved for the default group */
113 closid_free_map &= ~1;
114 closid_free_map_len = rdt_min_closid;
115 }
116
closid_alloc(void)117 static int closid_alloc(void)
118 {
119 u32 closid = ffs(closid_free_map);
120
121 if (closid == 0)
122 return -ENOSPC;
123 closid--;
124 closid_free_map &= ~(1 << closid);
125
126 return closid;
127 }
128
closid_free(int closid)129 void closid_free(int closid)
130 {
131 closid_free_map |= 1 << closid;
132 }
133
134 /**
135 * closid_allocated - test if provided closid is in use
136 * @closid: closid to be tested
137 *
138 * Return: true if @closid is currently associated with a resource group,
139 * false if @closid is free
140 */
closid_allocated(unsigned int closid)141 static bool closid_allocated(unsigned int closid)
142 {
143 return (closid_free_map & (1 << closid)) == 0;
144 }
145
146 /**
147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
148 * @closid: closid if the resource group
149 *
150 * Each resource group is associated with a @closid. Here the mode
151 * of a resource group can be queried by searching for it using its closid.
152 *
153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154 */
rdtgroup_mode_by_closid(int closid)155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 struct rdtgroup *rdtgrp;
158
159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 if (rdtgrp->closid == closid)
161 return rdtgrp->mode;
162 }
163
164 return RDT_NUM_MODES;
165 }
166
167 static const char * const rdt_mode_str[] = {
168 [RDT_MODE_SHAREABLE] = "shareable",
169 [RDT_MODE_EXCLUSIVE] = "exclusive",
170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
172 };
173
174 /**
175 * rdtgroup_mode_str - Return the string representation of mode
176 * @mode: the resource group mode as &enum rdtgroup_mode
177 *
178 * Return: string representation of valid mode, "unknown" otherwise
179 */
rdtgroup_mode_str(enum rdtgrp_mode mode)180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 return "unknown";
184
185 return rdt_mode_str[mode];
186 }
187
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 .ia_uid = current_fsuid(),
193 .ia_gid = current_fsgid(), };
194
195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 return 0;
198
199 return kernfs_setattr(kn, &iattr);
200 }
201
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 struct kernfs_node *kn;
205 int ret;
206
207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 0, rft->kf_ops, rft, NULL, NULL);
210 if (IS_ERR(kn))
211 return PTR_ERR(kn);
212
213 ret = rdtgroup_kn_set_ugid(kn);
214 if (ret) {
215 kernfs_remove(kn);
216 return ret;
217 }
218
219 return 0;
220 }
221
rdtgroup_seqfile_show(struct seq_file * m,void * arg)222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 struct kernfs_open_file *of = m->private;
225 struct rftype *rft = of->kn->priv;
226
227 if (rft->seq_show)
228 return rft->seq_show(of, m, arg);
229 return 0;
230 }
231
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 size_t nbytes, loff_t off)
234 {
235 struct rftype *rft = of->kn->priv;
236
237 if (rft->write)
238 return rft->write(of, buf, nbytes, off);
239
240 return -EINVAL;
241 }
242
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 .atomic_write_len = PAGE_SIZE,
245 .write = rdtgroup_file_write,
246 .seq_show = rdtgroup_seqfile_show,
247 };
248
249 static struct kernfs_ops kf_mondata_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .seq_show = rdtgroup_mondata_show,
252 };
253
is_cpu_list(struct kernfs_open_file * of)254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 struct rftype *rft = of->kn->priv;
257
258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 struct seq_file *s, void *v)
263 {
264 struct rdtgroup *rdtgrp;
265 struct cpumask *mask;
266 int ret = 0;
267
268 rdtgrp = rdtgroup_kn_lock_live(of->kn);
269
270 if (rdtgrp) {
271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 if (!rdtgrp->plr->d) {
273 rdt_last_cmd_clear();
274 rdt_last_cmd_puts("Cache domain offline\n");
275 ret = -ENODEV;
276 } else {
277 mask = &rdtgrp->plr->d->cpu_mask;
278 seq_printf(s, is_cpu_list(of) ?
279 "%*pbl\n" : "%*pb\n",
280 cpumask_pr_args(mask));
281 }
282 } else {
283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 cpumask_pr_args(&rdtgrp->cpu_mask));
285 }
286 } else {
287 ret = -ENOENT;
288 }
289 rdtgroup_kn_unlock(of->kn);
290
291 return ret;
292 }
293
294 /*
295 * This is safe against resctrl_sched_in() called from __switch_to()
296 * because __switch_to() is executed with interrupts disabled. A local call
297 * from update_closid_rmid() is proteced against __switch_to() because
298 * preemption is disabled.
299 */
update_cpu_closid_rmid(void * info)300 static void update_cpu_closid_rmid(void *info)
301 {
302 struct rdtgroup *r = info;
303
304 if (r) {
305 this_cpu_write(pqr_state.default_closid, r->closid);
306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 }
308
309 /*
310 * We cannot unconditionally write the MSR because the current
311 * executing task might have its own closid selected. Just reuse
312 * the context switch code.
313 */
314 resctrl_sched_in();
315 }
316
317 /*
318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319 *
320 * Per task closids/rmids must have been set up before calling this function.
321 */
322 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 int cpu = get_cpu();
326
327 if (cpumask_test_cpu(cpu, cpu_mask))
328 update_cpu_closid_rmid(r);
329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 put_cpu();
331 }
332
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 cpumask_var_t tmpmask)
335 {
336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 struct list_head *head;
338
339 /* Check whether cpus belong to parent ctrl group */
340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 if (cpumask_weight(tmpmask)) {
342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 return -EINVAL;
344 }
345
346 /* Check whether cpus are dropped from this group */
347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 if (cpumask_weight(tmpmask)) {
349 /* Give any dropped cpus to parent rdtgroup */
350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 update_closid_rmid(tmpmask, prgrp);
352 }
353
354 /*
355 * If we added cpus, remove them from previous group that owned them
356 * and update per-cpu rmid
357 */
358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 if (cpumask_weight(tmpmask)) {
360 head = &prgrp->mon.crdtgrp_list;
361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 if (crgrp == rdtgrp)
363 continue;
364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 tmpmask);
366 }
367 update_closid_rmid(tmpmask, rdtgrp);
368 }
369
370 /* Done pushing/pulling - update this group with new mask */
371 cpumask_copy(&rdtgrp->cpu_mask, newmask);
372
373 return 0;
374 }
375
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 struct rdtgroup *crgrp;
379
380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 /* update the child mon group masks as well*/
382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 struct rdtgroup *r, *crgrp;
390 struct list_head *head;
391
392 /* Check whether cpus are dropped from this group */
393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 if (cpumask_weight(tmpmask)) {
395 /* Can't drop from default group */
396 if (rdtgrp == &rdtgroup_default) {
397 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 return -EINVAL;
399 }
400
401 /* Give any dropped cpus to rdtgroup_default */
402 cpumask_or(&rdtgroup_default.cpu_mask,
403 &rdtgroup_default.cpu_mask, tmpmask);
404 update_closid_rmid(tmpmask, &rdtgroup_default);
405 }
406
407 /*
408 * If we added cpus, remove them from previous group and
409 * the prev group's child groups that owned them
410 * and update per-cpu closid/rmid.
411 */
412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 if (cpumask_weight(tmpmask)) {
414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 if (r == rdtgrp)
416 continue;
417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 if (cpumask_weight(tmpmask1))
419 cpumask_rdtgrp_clear(r, tmpmask1);
420 }
421 update_closid_rmid(tmpmask, rdtgrp);
422 }
423
424 /* Done pushing/pulling - update this group with new mask */
425 cpumask_copy(&rdtgrp->cpu_mask, newmask);
426
427 /*
428 * Clear child mon group masks since there is a new parent mask
429 * now and update the rmid for the cpus the child lost.
430 */
431 head = &rdtgrp->mon.crdtgrp_list;
432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 update_closid_rmid(tmpmask, rdtgrp);
435 cpumask_clear(&crgrp->cpu_mask);
436 }
437
438 return 0;
439 }
440
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 char *buf, size_t nbytes, loff_t off)
443 {
444 cpumask_var_t tmpmask, newmask, tmpmask1;
445 struct rdtgroup *rdtgrp;
446 int ret;
447
448 if (!buf)
449 return -EINVAL;
450
451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 return -ENOMEM;
453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 free_cpumask_var(tmpmask);
455 return -ENOMEM;
456 }
457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 free_cpumask_var(tmpmask);
459 free_cpumask_var(newmask);
460 return -ENOMEM;
461 }
462
463 rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 if (!rdtgrp) {
465 ret = -ENOENT;
466 goto unlock;
467 }
468
469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 ret = -EINVAL;
472 rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 goto unlock;
474 }
475
476 if (is_cpu_list(of))
477 ret = cpulist_parse(buf, newmask);
478 else
479 ret = cpumask_parse(buf, newmask);
480
481 if (ret) {
482 rdt_last_cmd_puts("Bad CPU list/mask\n");
483 goto unlock;
484 }
485
486 /* check that user didn't specify any offline cpus */
487 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 if (cpumask_weight(tmpmask)) {
489 ret = -EINVAL;
490 rdt_last_cmd_puts("Can only assign online CPUs\n");
491 goto unlock;
492 }
493
494 if (rdtgrp->type == RDTCTRL_GROUP)
495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 else if (rdtgrp->type == RDTMON_GROUP)
497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 else
499 ret = -EINVAL;
500
501 unlock:
502 rdtgroup_kn_unlock(of->kn);
503 free_cpumask_var(tmpmask);
504 free_cpumask_var(newmask);
505 free_cpumask_var(tmpmask1);
506
507 return ret ?: nbytes;
508 }
509
510 /**
511 * rdtgroup_remove - the helper to remove resource group safely
512 * @rdtgrp: resource group to remove
513 *
514 * On resource group creation via a mkdir, an extra kernfs_node reference is
515 * taken to ensure that the rdtgroup structure remains accessible for the
516 * rdtgroup_kn_unlock() calls where it is removed.
517 *
518 * Drop the extra reference here, then free the rdtgroup structure.
519 *
520 * Return: void
521 */
rdtgroup_remove(struct rdtgroup * rdtgrp)522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 kernfs_put(rdtgrp->kn);
525 kfree(rdtgrp);
526 }
527
_update_task_closid_rmid(void * task)528 static void _update_task_closid_rmid(void *task)
529 {
530 /*
531 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 * Otherwise, the MSR is updated when the task is scheduled in.
533 */
534 if (task == current)
535 resctrl_sched_in();
536 }
537
update_task_closid_rmid(struct task_struct * t)538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 else
543 _update_task_closid_rmid(t);
544 }
545
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 struct rdtgroup *rdtgrp)
548 {
549 /* If the task is already in rdtgrp, no need to move the task. */
550 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
551 tsk->rmid == rdtgrp->mon.rmid) ||
552 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
553 tsk->closid == rdtgrp->mon.parent->closid))
554 return 0;
555
556 /*
557 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
558 * updated by them.
559 *
560 * For ctrl_mon groups, move both closid and rmid.
561 * For monitor groups, can move the tasks only from
562 * their parent CTRL group.
563 */
564
565 if (rdtgrp->type == RDTCTRL_GROUP) {
566 tsk->closid = rdtgrp->closid;
567 tsk->rmid = rdtgrp->mon.rmid;
568 } else if (rdtgrp->type == RDTMON_GROUP) {
569 if (rdtgrp->mon.parent->closid == tsk->closid) {
570 tsk->rmid = rdtgrp->mon.rmid;
571 } else {
572 rdt_last_cmd_puts("Can't move task to different control group\n");
573 return -EINVAL;
574 }
575 }
576
577 /*
578 * Ensure the task's closid and rmid are written before determining if
579 * the task is current that will decide if it will be interrupted.
580 */
581 barrier();
582
583 /*
584 * By now, the task's closid and rmid are set. If the task is current
585 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
586 * group go into effect. If the task is not current, the MSR will be
587 * updated when the task is scheduled in.
588 */
589 update_task_closid_rmid(tsk);
590
591 return 0;
592 }
593
is_closid_match(struct task_struct * t,struct rdtgroup * r)594 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
595 {
596 return (rdt_alloc_capable &&
597 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
598 }
599
is_rmid_match(struct task_struct * t,struct rdtgroup * r)600 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
601 {
602 return (rdt_mon_capable &&
603 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
604 }
605
606 /**
607 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
608 * @r: Resource group
609 *
610 * Return: 1 if tasks have been assigned to @r, 0 otherwise
611 */
rdtgroup_tasks_assigned(struct rdtgroup * r)612 int rdtgroup_tasks_assigned(struct rdtgroup *r)
613 {
614 struct task_struct *p, *t;
615 int ret = 0;
616
617 lockdep_assert_held(&rdtgroup_mutex);
618
619 rcu_read_lock();
620 for_each_process_thread(p, t) {
621 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
622 ret = 1;
623 break;
624 }
625 }
626 rcu_read_unlock();
627
628 return ret;
629 }
630
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)631 static int rdtgroup_task_write_permission(struct task_struct *task,
632 struct kernfs_open_file *of)
633 {
634 const struct cred *tcred = get_task_cred(task);
635 const struct cred *cred = current_cred();
636 int ret = 0;
637
638 /*
639 * Even if we're attaching all tasks in the thread group, we only
640 * need to check permissions on one of them.
641 */
642 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
643 !uid_eq(cred->euid, tcred->uid) &&
644 !uid_eq(cred->euid, tcred->suid)) {
645 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
646 ret = -EPERM;
647 }
648
649 put_cred(tcred);
650 return ret;
651 }
652
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)653 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
654 struct kernfs_open_file *of)
655 {
656 struct task_struct *tsk;
657 int ret;
658
659 rcu_read_lock();
660 if (pid) {
661 tsk = find_task_by_vpid(pid);
662 if (!tsk) {
663 rcu_read_unlock();
664 rdt_last_cmd_printf("No task %d\n", pid);
665 return -ESRCH;
666 }
667 } else {
668 tsk = current;
669 }
670
671 get_task_struct(tsk);
672 rcu_read_unlock();
673
674 ret = rdtgroup_task_write_permission(tsk, of);
675 if (!ret)
676 ret = __rdtgroup_move_task(tsk, rdtgrp);
677
678 put_task_struct(tsk);
679 return ret;
680 }
681
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)682 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
683 char *buf, size_t nbytes, loff_t off)
684 {
685 struct rdtgroup *rdtgrp;
686 int ret = 0;
687 pid_t pid;
688
689 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
690 return -EINVAL;
691 rdtgrp = rdtgroup_kn_lock_live(of->kn);
692 if (!rdtgrp) {
693 rdtgroup_kn_unlock(of->kn);
694 return -ENOENT;
695 }
696 rdt_last_cmd_clear();
697
698 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
699 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
700 ret = -EINVAL;
701 rdt_last_cmd_puts("Pseudo-locking in progress\n");
702 goto unlock;
703 }
704
705 ret = rdtgroup_move_task(pid, rdtgrp, of);
706
707 unlock:
708 rdtgroup_kn_unlock(of->kn);
709
710 return ret ?: nbytes;
711 }
712
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)713 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
714 {
715 struct task_struct *p, *t;
716
717 rcu_read_lock();
718 for_each_process_thread(p, t) {
719 if (is_closid_match(t, r) || is_rmid_match(t, r))
720 seq_printf(s, "%d\n", t->pid);
721 }
722 rcu_read_unlock();
723 }
724
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)725 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
726 struct seq_file *s, void *v)
727 {
728 struct rdtgroup *rdtgrp;
729 int ret = 0;
730
731 rdtgrp = rdtgroup_kn_lock_live(of->kn);
732 if (rdtgrp)
733 show_rdt_tasks(rdtgrp, s);
734 else
735 ret = -ENOENT;
736 rdtgroup_kn_unlock(of->kn);
737
738 return ret;
739 }
740
741 #ifdef CONFIG_PROC_CPU_RESCTRL
742
743 /*
744 * A task can only be part of one resctrl control group and of one monitor
745 * group which is associated to that control group.
746 *
747 * 1) res:
748 * mon:
749 *
750 * resctrl is not available.
751 *
752 * 2) res:/
753 * mon:
754 *
755 * Task is part of the root resctrl control group, and it is not associated
756 * to any monitor group.
757 *
758 * 3) res:/
759 * mon:mon0
760 *
761 * Task is part of the root resctrl control group and monitor group mon0.
762 *
763 * 4) res:group0
764 * mon:
765 *
766 * Task is part of resctrl control group group0, and it is not associated
767 * to any monitor group.
768 *
769 * 5) res:group0
770 * mon:mon1
771 *
772 * Task is part of resctrl control group group0 and monitor group mon1.
773 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)774 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
775 struct pid *pid, struct task_struct *tsk)
776 {
777 struct rdtgroup *rdtg;
778 int ret = 0;
779
780 mutex_lock(&rdtgroup_mutex);
781
782 /* Return empty if resctrl has not been mounted. */
783 if (!static_branch_unlikely(&rdt_enable_key)) {
784 seq_puts(s, "res:\nmon:\n");
785 goto unlock;
786 }
787
788 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
789 struct rdtgroup *crg;
790
791 /*
792 * Task information is only relevant for shareable
793 * and exclusive groups.
794 */
795 if (rdtg->mode != RDT_MODE_SHAREABLE &&
796 rdtg->mode != RDT_MODE_EXCLUSIVE)
797 continue;
798
799 if (rdtg->closid != tsk->closid)
800 continue;
801
802 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
803 rdtg->kn->name);
804 seq_puts(s, "mon:");
805 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
806 mon.crdtgrp_list) {
807 if (tsk->rmid != crg->mon.rmid)
808 continue;
809 seq_printf(s, "%s", crg->kn->name);
810 break;
811 }
812 seq_putc(s, '\n');
813 goto unlock;
814 }
815 /*
816 * The above search should succeed. Otherwise return
817 * with an error.
818 */
819 ret = -ENOENT;
820 unlock:
821 mutex_unlock(&rdtgroup_mutex);
822
823 return ret;
824 }
825 #endif
826
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)827 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
828 struct seq_file *seq, void *v)
829 {
830 int len;
831
832 mutex_lock(&rdtgroup_mutex);
833 len = seq_buf_used(&last_cmd_status);
834 if (len)
835 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
836 else
837 seq_puts(seq, "ok\n");
838 mutex_unlock(&rdtgroup_mutex);
839 return 0;
840 }
841
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)842 static int rdt_num_closids_show(struct kernfs_open_file *of,
843 struct seq_file *seq, void *v)
844 {
845 struct rdt_resource *r = of->kn->parent->priv;
846
847 seq_printf(seq, "%d\n", r->num_closid);
848 return 0;
849 }
850
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)851 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
852 struct seq_file *seq, void *v)
853 {
854 struct rdt_resource *r = of->kn->parent->priv;
855
856 seq_printf(seq, "%x\n", r->default_ctrl);
857 return 0;
858 }
859
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)860 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
861 struct seq_file *seq, void *v)
862 {
863 struct rdt_resource *r = of->kn->parent->priv;
864
865 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
866 return 0;
867 }
868
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)869 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
870 struct seq_file *seq, void *v)
871 {
872 struct rdt_resource *r = of->kn->parent->priv;
873
874 seq_printf(seq, "%x\n", r->cache.shareable_bits);
875 return 0;
876 }
877
878 /**
879 * rdt_bit_usage_show - Display current usage of resources
880 *
881 * A domain is a shared resource that can now be allocated differently. Here
882 * we display the current regions of the domain as an annotated bitmask.
883 * For each domain of this resource its allocation bitmask
884 * is annotated as below to indicate the current usage of the corresponding bit:
885 * 0 - currently unused
886 * X - currently available for sharing and used by software and hardware
887 * H - currently used by hardware only but available for software use
888 * S - currently used and shareable by software only
889 * E - currently used exclusively by one resource group
890 * P - currently pseudo-locked by one resource group
891 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)892 static int rdt_bit_usage_show(struct kernfs_open_file *of,
893 struct seq_file *seq, void *v)
894 {
895 struct rdt_resource *r = of->kn->parent->priv;
896 /*
897 * Use unsigned long even though only 32 bits are used to ensure
898 * test_bit() is used safely.
899 */
900 unsigned long sw_shareable = 0, hw_shareable = 0;
901 unsigned long exclusive = 0, pseudo_locked = 0;
902 struct rdt_domain *dom;
903 int i, hwb, swb, excl, psl;
904 enum rdtgrp_mode mode;
905 bool sep = false;
906 u32 *ctrl;
907
908 mutex_lock(&rdtgroup_mutex);
909 hw_shareable = r->cache.shareable_bits;
910 list_for_each_entry(dom, &r->domains, list) {
911 if (sep)
912 seq_putc(seq, ';');
913 ctrl = dom->ctrl_val;
914 sw_shareable = 0;
915 exclusive = 0;
916 seq_printf(seq, "%d=", dom->id);
917 for (i = 0; i < closids_supported(); i++, ctrl++) {
918 if (!closid_allocated(i))
919 continue;
920 mode = rdtgroup_mode_by_closid(i);
921 switch (mode) {
922 case RDT_MODE_SHAREABLE:
923 sw_shareable |= *ctrl;
924 break;
925 case RDT_MODE_EXCLUSIVE:
926 exclusive |= *ctrl;
927 break;
928 case RDT_MODE_PSEUDO_LOCKSETUP:
929 /*
930 * RDT_MODE_PSEUDO_LOCKSETUP is possible
931 * here but not included since the CBM
932 * associated with this CLOSID in this mode
933 * is not initialized and no task or cpu can be
934 * assigned this CLOSID.
935 */
936 break;
937 case RDT_MODE_PSEUDO_LOCKED:
938 case RDT_NUM_MODES:
939 WARN(1,
940 "invalid mode for closid %d\n", i);
941 break;
942 }
943 }
944 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
945 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
946 hwb = test_bit(i, &hw_shareable);
947 swb = test_bit(i, &sw_shareable);
948 excl = test_bit(i, &exclusive);
949 psl = test_bit(i, &pseudo_locked);
950 if (hwb && swb)
951 seq_putc(seq, 'X');
952 else if (hwb && !swb)
953 seq_putc(seq, 'H');
954 else if (!hwb && swb)
955 seq_putc(seq, 'S');
956 else if (excl)
957 seq_putc(seq, 'E');
958 else if (psl)
959 seq_putc(seq, 'P');
960 else /* Unused bits remain */
961 seq_putc(seq, '0');
962 }
963 sep = true;
964 }
965 seq_putc(seq, '\n');
966 mutex_unlock(&rdtgroup_mutex);
967 return 0;
968 }
969
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)970 static int rdt_min_bw_show(struct kernfs_open_file *of,
971 struct seq_file *seq, void *v)
972 {
973 struct rdt_resource *r = of->kn->parent->priv;
974
975 seq_printf(seq, "%u\n", r->membw.min_bw);
976 return 0;
977 }
978
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)979 static int rdt_num_rmids_show(struct kernfs_open_file *of,
980 struct seq_file *seq, void *v)
981 {
982 struct rdt_resource *r = of->kn->parent->priv;
983
984 seq_printf(seq, "%d\n", r->num_rmid);
985
986 return 0;
987 }
988
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)989 static int rdt_mon_features_show(struct kernfs_open_file *of,
990 struct seq_file *seq, void *v)
991 {
992 struct rdt_resource *r = of->kn->parent->priv;
993 struct mon_evt *mevt;
994
995 list_for_each_entry(mevt, &r->evt_list, list)
996 seq_printf(seq, "%s\n", mevt->name);
997
998 return 0;
999 }
1000
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1001 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1002 struct seq_file *seq, void *v)
1003 {
1004 struct rdt_resource *r = of->kn->parent->priv;
1005
1006 seq_printf(seq, "%u\n", r->membw.bw_gran);
1007 return 0;
1008 }
1009
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1010 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1011 struct seq_file *seq, void *v)
1012 {
1013 struct rdt_resource *r = of->kn->parent->priv;
1014
1015 seq_printf(seq, "%u\n", r->membw.delay_linear);
1016 return 0;
1017 }
1018
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1019 static int max_threshold_occ_show(struct kernfs_open_file *of,
1020 struct seq_file *seq, void *v)
1021 {
1022 struct rdt_resource *r = of->kn->parent->priv;
1023
1024 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1025
1026 return 0;
1027 }
1028
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1029 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1030 struct seq_file *seq, void *v)
1031 {
1032 struct rdt_resource *r = of->kn->parent->priv;
1033
1034 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1035 seq_puts(seq, "per-thread\n");
1036 else
1037 seq_puts(seq, "max\n");
1038
1039 return 0;
1040 }
1041
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1042 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1043 char *buf, size_t nbytes, loff_t off)
1044 {
1045 struct rdt_resource *r = of->kn->parent->priv;
1046 unsigned int bytes;
1047 int ret;
1048
1049 ret = kstrtouint(buf, 0, &bytes);
1050 if (ret)
1051 return ret;
1052
1053 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1054 return -EINVAL;
1055
1056 resctrl_cqm_threshold = bytes / r->mon_scale;
1057
1058 return nbytes;
1059 }
1060
1061 /*
1062 * rdtgroup_mode_show - Display mode of this resource group
1063 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1064 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1065 struct seq_file *s, void *v)
1066 {
1067 struct rdtgroup *rdtgrp;
1068
1069 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1070 if (!rdtgrp) {
1071 rdtgroup_kn_unlock(of->kn);
1072 return -ENOENT;
1073 }
1074
1075 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1076
1077 rdtgroup_kn_unlock(of->kn);
1078 return 0;
1079 }
1080
1081 /**
1082 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1083 * @r: RDT resource to which RDT domain @d belongs
1084 * @d: Cache instance for which a CDP peer is requested
1085 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1086 * Used to return the result.
1087 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1088 * Used to return the result.
1089 *
1090 * RDT resources are managed independently and by extension the RDT domains
1091 * (RDT resource instances) are managed independently also. The Code and
1092 * Data Prioritization (CDP) RDT resources, while managed independently,
1093 * could refer to the same underlying hardware. For example,
1094 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1095 *
1096 * When provided with an RDT resource @r and an instance of that RDT
1097 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1098 * resource and the exact instance that shares the same hardware.
1099 *
1100 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1101 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
1102 * and @d_cdp will point to the peer RDT domain.
1103 */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1104 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1105 struct rdt_resource **r_cdp,
1106 struct rdt_domain **d_cdp)
1107 {
1108 struct rdt_resource *_r_cdp = NULL;
1109 struct rdt_domain *_d_cdp = NULL;
1110 int ret = 0;
1111
1112 switch (r->rid) {
1113 case RDT_RESOURCE_L3DATA:
1114 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1115 break;
1116 case RDT_RESOURCE_L3CODE:
1117 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1118 break;
1119 case RDT_RESOURCE_L2DATA:
1120 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1121 break;
1122 case RDT_RESOURCE_L2CODE:
1123 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1124 break;
1125 default:
1126 ret = -ENOENT;
1127 goto out;
1128 }
1129
1130 /*
1131 * When a new CPU comes online and CDP is enabled then the new
1132 * RDT domains (if any) associated with both CDP RDT resources
1133 * are added in the same CPU online routine while the
1134 * rdtgroup_mutex is held. It should thus not happen for one
1135 * RDT domain to exist and be associated with its RDT CDP
1136 * resource but there is no RDT domain associated with the
1137 * peer RDT CDP resource. Hence the WARN.
1138 */
1139 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1140 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1141 _r_cdp = NULL;
1142 _d_cdp = NULL;
1143 ret = -EINVAL;
1144 }
1145
1146 out:
1147 *r_cdp = _r_cdp;
1148 *d_cdp = _d_cdp;
1149
1150 return ret;
1151 }
1152
1153 /**
1154 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1155 * @r: Resource to which domain instance @d belongs.
1156 * @d: The domain instance for which @closid is being tested.
1157 * @cbm: Capacity bitmask being tested.
1158 * @closid: Intended closid for @cbm.
1159 * @exclusive: Only check if overlaps with exclusive resource groups
1160 *
1161 * Checks if provided @cbm intended to be used for @closid on domain
1162 * @d overlaps with any other closids or other hardware usage associated
1163 * with this domain. If @exclusive is true then only overlaps with
1164 * resource groups in exclusive mode will be considered. If @exclusive
1165 * is false then overlaps with any resource group or hardware entities
1166 * will be considered.
1167 *
1168 * @cbm is unsigned long, even if only 32 bits are used, to make the
1169 * bitmap functions work correctly.
1170 *
1171 * Return: false if CBM does not overlap, true if it does.
1172 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1173 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1174 unsigned long cbm, int closid, bool exclusive)
1175 {
1176 enum rdtgrp_mode mode;
1177 unsigned long ctrl_b;
1178 u32 *ctrl;
1179 int i;
1180
1181 /* Check for any overlap with regions used by hardware directly */
1182 if (!exclusive) {
1183 ctrl_b = r->cache.shareable_bits;
1184 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1185 return true;
1186 }
1187
1188 /* Check for overlap with other resource groups */
1189 ctrl = d->ctrl_val;
1190 for (i = 0; i < closids_supported(); i++, ctrl++) {
1191 ctrl_b = *ctrl;
1192 mode = rdtgroup_mode_by_closid(i);
1193 if (closid_allocated(i) && i != closid &&
1194 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1195 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1196 if (exclusive) {
1197 if (mode == RDT_MODE_EXCLUSIVE)
1198 return true;
1199 continue;
1200 }
1201 return true;
1202 }
1203 }
1204 }
1205
1206 return false;
1207 }
1208
1209 /**
1210 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1211 * @r: Resource to which domain instance @d belongs.
1212 * @d: The domain instance for which @closid is being tested.
1213 * @cbm: Capacity bitmask being tested.
1214 * @closid: Intended closid for @cbm.
1215 * @exclusive: Only check if overlaps with exclusive resource groups
1216 *
1217 * Resources that can be allocated using a CBM can use the CBM to control
1218 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1219 * for overlap. Overlap test is not limited to the specific resource for
1220 * which the CBM is intended though - when dealing with CDP resources that
1221 * share the underlying hardware the overlap check should be performed on
1222 * the CDP resource sharing the hardware also.
1223 *
1224 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1225 * overlap test.
1226 *
1227 * Return: true if CBM overlap detected, false if there is no overlap
1228 */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1229 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1230 unsigned long cbm, int closid, bool exclusive)
1231 {
1232 struct rdt_resource *r_cdp;
1233 struct rdt_domain *d_cdp;
1234
1235 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1236 return true;
1237
1238 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1239 return false;
1240
1241 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1242 }
1243
1244 /**
1245 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1246 *
1247 * An exclusive resource group implies that there should be no sharing of
1248 * its allocated resources. At the time this group is considered to be
1249 * exclusive this test can determine if its current schemata supports this
1250 * setting by testing for overlap with all other resource groups.
1251 *
1252 * Return: true if resource group can be exclusive, false if there is overlap
1253 * with allocations of other resource groups and thus this resource group
1254 * cannot be exclusive.
1255 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1256 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1257 {
1258 int closid = rdtgrp->closid;
1259 struct rdt_resource *r;
1260 bool has_cache = false;
1261 struct rdt_domain *d;
1262
1263 for_each_alloc_enabled_rdt_resource(r) {
1264 if (r->rid == RDT_RESOURCE_MBA)
1265 continue;
1266 has_cache = true;
1267 list_for_each_entry(d, &r->domains, list) {
1268 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1269 rdtgrp->closid, false)) {
1270 rdt_last_cmd_puts("Schemata overlaps\n");
1271 return false;
1272 }
1273 }
1274 }
1275
1276 if (!has_cache) {
1277 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1278 return false;
1279 }
1280
1281 return true;
1282 }
1283
1284 /**
1285 * rdtgroup_mode_write - Modify the resource group's mode
1286 *
1287 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1288 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1289 char *buf, size_t nbytes, loff_t off)
1290 {
1291 struct rdtgroup *rdtgrp;
1292 enum rdtgrp_mode mode;
1293 int ret = 0;
1294
1295 /* Valid input requires a trailing newline */
1296 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1297 return -EINVAL;
1298 buf[nbytes - 1] = '\0';
1299
1300 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1301 if (!rdtgrp) {
1302 rdtgroup_kn_unlock(of->kn);
1303 return -ENOENT;
1304 }
1305
1306 rdt_last_cmd_clear();
1307
1308 mode = rdtgrp->mode;
1309
1310 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1311 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1312 (!strcmp(buf, "pseudo-locksetup") &&
1313 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1314 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1315 goto out;
1316
1317 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1318 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1319 ret = -EINVAL;
1320 goto out;
1321 }
1322
1323 if (!strcmp(buf, "shareable")) {
1324 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1325 ret = rdtgroup_locksetup_exit(rdtgrp);
1326 if (ret)
1327 goto out;
1328 }
1329 rdtgrp->mode = RDT_MODE_SHAREABLE;
1330 } else if (!strcmp(buf, "exclusive")) {
1331 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1332 ret = -EINVAL;
1333 goto out;
1334 }
1335 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1336 ret = rdtgroup_locksetup_exit(rdtgrp);
1337 if (ret)
1338 goto out;
1339 }
1340 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1341 } else if (!strcmp(buf, "pseudo-locksetup")) {
1342 ret = rdtgroup_locksetup_enter(rdtgrp);
1343 if (ret)
1344 goto out;
1345 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1346 } else {
1347 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1348 ret = -EINVAL;
1349 }
1350
1351 out:
1352 rdtgroup_kn_unlock(of->kn);
1353 return ret ?: nbytes;
1354 }
1355
1356 /**
1357 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1358 * @r: RDT resource to which @d belongs.
1359 * @d: RDT domain instance.
1360 * @cbm: bitmask for which the size should be computed.
1361 *
1362 * The bitmask provided associated with the RDT domain instance @d will be
1363 * translated into how many bytes it represents. The size in bytes is
1364 * computed by first dividing the total cache size by the CBM length to
1365 * determine how many bytes each bit in the bitmask represents. The result
1366 * is multiplied with the number of bits set in the bitmask.
1367 *
1368 * @cbm is unsigned long, even if only 32 bits are used to make the
1369 * bitmap functions work correctly.
1370 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1371 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1372 struct rdt_domain *d, unsigned long cbm)
1373 {
1374 struct cpu_cacheinfo *ci;
1375 unsigned int size = 0;
1376 int num_b, i;
1377
1378 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1379 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1380 for (i = 0; i < ci->num_leaves; i++) {
1381 if (ci->info_list[i].level == r->cache_level) {
1382 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1383 break;
1384 }
1385 }
1386
1387 return size;
1388 }
1389
1390 /**
1391 * rdtgroup_size_show - Display size in bytes of allocated regions
1392 *
1393 * The "size" file mirrors the layout of the "schemata" file, printing the
1394 * size in bytes of each region instead of the capacity bitmask.
1395 *
1396 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1397 static int rdtgroup_size_show(struct kernfs_open_file *of,
1398 struct seq_file *s, void *v)
1399 {
1400 struct rdtgroup *rdtgrp;
1401 struct rdt_resource *r;
1402 struct rdt_domain *d;
1403 unsigned int size;
1404 int ret = 0;
1405 bool sep;
1406 u32 ctrl;
1407
1408 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1409 if (!rdtgrp) {
1410 rdtgroup_kn_unlock(of->kn);
1411 return -ENOENT;
1412 }
1413
1414 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1415 if (!rdtgrp->plr->d) {
1416 rdt_last_cmd_clear();
1417 rdt_last_cmd_puts("Cache domain offline\n");
1418 ret = -ENODEV;
1419 } else {
1420 seq_printf(s, "%*s:", max_name_width,
1421 rdtgrp->plr->r->name);
1422 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1423 rdtgrp->plr->d,
1424 rdtgrp->plr->cbm);
1425 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1426 }
1427 goto out;
1428 }
1429
1430 for_each_alloc_enabled_rdt_resource(r) {
1431 sep = false;
1432 seq_printf(s, "%*s:", max_name_width, r->name);
1433 list_for_each_entry(d, &r->domains, list) {
1434 if (sep)
1435 seq_putc(s, ';');
1436 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1437 size = 0;
1438 } else {
1439 ctrl = (!is_mba_sc(r) ?
1440 d->ctrl_val[rdtgrp->closid] :
1441 d->mbps_val[rdtgrp->closid]);
1442 if (r->rid == RDT_RESOURCE_MBA)
1443 size = ctrl;
1444 else
1445 size = rdtgroup_cbm_to_size(r, d, ctrl);
1446 }
1447 seq_printf(s, "%d=%u", d->id, size);
1448 sep = true;
1449 }
1450 seq_putc(s, '\n');
1451 }
1452
1453 out:
1454 rdtgroup_kn_unlock(of->kn);
1455
1456 return ret;
1457 }
1458
1459 /* rdtgroup information files for one cache resource. */
1460 static struct rftype res_common_files[] = {
1461 {
1462 .name = "last_cmd_status",
1463 .mode = 0444,
1464 .kf_ops = &rdtgroup_kf_single_ops,
1465 .seq_show = rdt_last_cmd_status_show,
1466 .fflags = RF_TOP_INFO,
1467 },
1468 {
1469 .name = "num_closids",
1470 .mode = 0444,
1471 .kf_ops = &rdtgroup_kf_single_ops,
1472 .seq_show = rdt_num_closids_show,
1473 .fflags = RF_CTRL_INFO,
1474 },
1475 {
1476 .name = "mon_features",
1477 .mode = 0444,
1478 .kf_ops = &rdtgroup_kf_single_ops,
1479 .seq_show = rdt_mon_features_show,
1480 .fflags = RF_MON_INFO,
1481 },
1482 {
1483 .name = "num_rmids",
1484 .mode = 0444,
1485 .kf_ops = &rdtgroup_kf_single_ops,
1486 .seq_show = rdt_num_rmids_show,
1487 .fflags = RF_MON_INFO,
1488 },
1489 {
1490 .name = "cbm_mask",
1491 .mode = 0444,
1492 .kf_ops = &rdtgroup_kf_single_ops,
1493 .seq_show = rdt_default_ctrl_show,
1494 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1495 },
1496 {
1497 .name = "min_cbm_bits",
1498 .mode = 0444,
1499 .kf_ops = &rdtgroup_kf_single_ops,
1500 .seq_show = rdt_min_cbm_bits_show,
1501 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1502 },
1503 {
1504 .name = "shareable_bits",
1505 .mode = 0444,
1506 .kf_ops = &rdtgroup_kf_single_ops,
1507 .seq_show = rdt_shareable_bits_show,
1508 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1509 },
1510 {
1511 .name = "bit_usage",
1512 .mode = 0444,
1513 .kf_ops = &rdtgroup_kf_single_ops,
1514 .seq_show = rdt_bit_usage_show,
1515 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1516 },
1517 {
1518 .name = "min_bandwidth",
1519 .mode = 0444,
1520 .kf_ops = &rdtgroup_kf_single_ops,
1521 .seq_show = rdt_min_bw_show,
1522 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1523 },
1524 {
1525 .name = "bandwidth_gran",
1526 .mode = 0444,
1527 .kf_ops = &rdtgroup_kf_single_ops,
1528 .seq_show = rdt_bw_gran_show,
1529 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1530 },
1531 {
1532 .name = "delay_linear",
1533 .mode = 0444,
1534 .kf_ops = &rdtgroup_kf_single_ops,
1535 .seq_show = rdt_delay_linear_show,
1536 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1537 },
1538 /*
1539 * Platform specific which (if any) capabilities are provided by
1540 * thread_throttle_mode. Defer "fflags" initialization to platform
1541 * discovery.
1542 */
1543 {
1544 .name = "thread_throttle_mode",
1545 .mode = 0444,
1546 .kf_ops = &rdtgroup_kf_single_ops,
1547 .seq_show = rdt_thread_throttle_mode_show,
1548 },
1549 {
1550 .name = "max_threshold_occupancy",
1551 .mode = 0644,
1552 .kf_ops = &rdtgroup_kf_single_ops,
1553 .write = max_threshold_occ_write,
1554 .seq_show = max_threshold_occ_show,
1555 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1556 },
1557 {
1558 .name = "cpus",
1559 .mode = 0644,
1560 .kf_ops = &rdtgroup_kf_single_ops,
1561 .write = rdtgroup_cpus_write,
1562 .seq_show = rdtgroup_cpus_show,
1563 .fflags = RFTYPE_BASE,
1564 },
1565 {
1566 .name = "cpus_list",
1567 .mode = 0644,
1568 .kf_ops = &rdtgroup_kf_single_ops,
1569 .write = rdtgroup_cpus_write,
1570 .seq_show = rdtgroup_cpus_show,
1571 .flags = RFTYPE_FLAGS_CPUS_LIST,
1572 .fflags = RFTYPE_BASE,
1573 },
1574 {
1575 .name = "tasks",
1576 .mode = 0644,
1577 .kf_ops = &rdtgroup_kf_single_ops,
1578 .write = rdtgroup_tasks_write,
1579 .seq_show = rdtgroup_tasks_show,
1580 .fflags = RFTYPE_BASE,
1581 },
1582 {
1583 .name = "schemata",
1584 .mode = 0644,
1585 .kf_ops = &rdtgroup_kf_single_ops,
1586 .write = rdtgroup_schemata_write,
1587 .seq_show = rdtgroup_schemata_show,
1588 .fflags = RF_CTRL_BASE,
1589 },
1590 {
1591 .name = "mode",
1592 .mode = 0644,
1593 .kf_ops = &rdtgroup_kf_single_ops,
1594 .write = rdtgroup_mode_write,
1595 .seq_show = rdtgroup_mode_show,
1596 .fflags = RF_CTRL_BASE,
1597 },
1598 {
1599 .name = "size",
1600 .mode = 0444,
1601 .kf_ops = &rdtgroup_kf_single_ops,
1602 .seq_show = rdtgroup_size_show,
1603 .fflags = RF_CTRL_BASE,
1604 },
1605
1606 };
1607
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1608 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1609 {
1610 struct rftype *rfts, *rft;
1611 int ret, len;
1612
1613 rfts = res_common_files;
1614 len = ARRAY_SIZE(res_common_files);
1615
1616 lockdep_assert_held(&rdtgroup_mutex);
1617
1618 for (rft = rfts; rft < rfts + len; rft++) {
1619 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1620 ret = rdtgroup_add_file(kn, rft);
1621 if (ret)
1622 goto error;
1623 }
1624 }
1625
1626 return 0;
1627 error:
1628 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1629 while (--rft >= rfts) {
1630 if ((fflags & rft->fflags) == rft->fflags)
1631 kernfs_remove_by_name(kn, rft->name);
1632 }
1633 return ret;
1634 }
1635
rdtgroup_get_rftype_by_name(const char * name)1636 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1637 {
1638 struct rftype *rfts, *rft;
1639 int len;
1640
1641 rfts = res_common_files;
1642 len = ARRAY_SIZE(res_common_files);
1643
1644 for (rft = rfts; rft < rfts + len; rft++) {
1645 if (!strcmp(rft->name, name))
1646 return rft;
1647 }
1648
1649 return NULL;
1650 }
1651
thread_throttle_mode_init(void)1652 void __init thread_throttle_mode_init(void)
1653 {
1654 struct rftype *rft;
1655
1656 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1657 if (!rft)
1658 return;
1659
1660 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1661 }
1662
1663 /**
1664 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1665 * @r: The resource group with which the file is associated.
1666 * @name: Name of the file
1667 *
1668 * The permissions of named resctrl file, directory, or link are modified
1669 * to not allow read, write, or execute by any user.
1670 *
1671 * WARNING: This function is intended to communicate to the user that the
1672 * resctrl file has been locked down - that it is not relevant to the
1673 * particular state the system finds itself in. It should not be relied
1674 * on to protect from user access because after the file's permissions
1675 * are restricted the user can still change the permissions using chmod
1676 * from the command line.
1677 *
1678 * Return: 0 on success, <0 on failure.
1679 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1680 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1681 {
1682 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1683 struct kernfs_node *kn;
1684 int ret = 0;
1685
1686 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1687 if (!kn)
1688 return -ENOENT;
1689
1690 switch (kernfs_type(kn)) {
1691 case KERNFS_DIR:
1692 iattr.ia_mode = S_IFDIR;
1693 break;
1694 case KERNFS_FILE:
1695 iattr.ia_mode = S_IFREG;
1696 break;
1697 case KERNFS_LINK:
1698 iattr.ia_mode = S_IFLNK;
1699 break;
1700 }
1701
1702 ret = kernfs_setattr(kn, &iattr);
1703 kernfs_put(kn);
1704 return ret;
1705 }
1706
1707 /**
1708 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1709 * @r: The resource group with which the file is associated.
1710 * @name: Name of the file
1711 * @mask: Mask of permissions that should be restored
1712 *
1713 * Restore the permissions of the named file. If @name is a directory the
1714 * permissions of its parent will be used.
1715 *
1716 * Return: 0 on success, <0 on failure.
1717 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1718 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1719 umode_t mask)
1720 {
1721 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1722 struct kernfs_node *kn, *parent;
1723 struct rftype *rfts, *rft;
1724 int ret, len;
1725
1726 rfts = res_common_files;
1727 len = ARRAY_SIZE(res_common_files);
1728
1729 for (rft = rfts; rft < rfts + len; rft++) {
1730 if (!strcmp(rft->name, name))
1731 iattr.ia_mode = rft->mode & mask;
1732 }
1733
1734 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1735 if (!kn)
1736 return -ENOENT;
1737
1738 switch (kernfs_type(kn)) {
1739 case KERNFS_DIR:
1740 parent = kernfs_get_parent(kn);
1741 if (parent) {
1742 iattr.ia_mode |= parent->mode;
1743 kernfs_put(parent);
1744 }
1745 iattr.ia_mode |= S_IFDIR;
1746 break;
1747 case KERNFS_FILE:
1748 iattr.ia_mode |= S_IFREG;
1749 break;
1750 case KERNFS_LINK:
1751 iattr.ia_mode |= S_IFLNK;
1752 break;
1753 }
1754
1755 ret = kernfs_setattr(kn, &iattr);
1756 kernfs_put(kn);
1757 return ret;
1758 }
1759
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1760 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1761 unsigned long fflags)
1762 {
1763 struct kernfs_node *kn_subdir;
1764 int ret;
1765
1766 kn_subdir = kernfs_create_dir(kn_info, name,
1767 kn_info->mode, r);
1768 if (IS_ERR(kn_subdir))
1769 return PTR_ERR(kn_subdir);
1770
1771 ret = rdtgroup_kn_set_ugid(kn_subdir);
1772 if (ret)
1773 return ret;
1774
1775 ret = rdtgroup_add_files(kn_subdir, fflags);
1776 if (!ret)
1777 kernfs_activate(kn_subdir);
1778
1779 return ret;
1780 }
1781
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1782 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1783 {
1784 struct rdt_resource *r;
1785 unsigned long fflags;
1786 char name[32];
1787 int ret;
1788
1789 /* create the directory */
1790 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1791 if (IS_ERR(kn_info))
1792 return PTR_ERR(kn_info);
1793
1794 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1795 if (ret)
1796 goto out_destroy;
1797
1798 for_each_alloc_enabled_rdt_resource(r) {
1799 fflags = r->fflags | RF_CTRL_INFO;
1800 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1801 if (ret)
1802 goto out_destroy;
1803 }
1804
1805 for_each_mon_enabled_rdt_resource(r) {
1806 fflags = r->fflags | RF_MON_INFO;
1807 sprintf(name, "%s_MON", r->name);
1808 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1809 if (ret)
1810 goto out_destroy;
1811 }
1812
1813 ret = rdtgroup_kn_set_ugid(kn_info);
1814 if (ret)
1815 goto out_destroy;
1816
1817 kernfs_activate(kn_info);
1818
1819 return 0;
1820
1821 out_destroy:
1822 kernfs_remove(kn_info);
1823 return ret;
1824 }
1825
1826 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1827 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1828 char *name, struct kernfs_node **dest_kn)
1829 {
1830 struct kernfs_node *kn;
1831 int ret;
1832
1833 /* create the directory */
1834 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1835 if (IS_ERR(kn))
1836 return PTR_ERR(kn);
1837
1838 if (dest_kn)
1839 *dest_kn = kn;
1840
1841 ret = rdtgroup_kn_set_ugid(kn);
1842 if (ret)
1843 goto out_destroy;
1844
1845 kernfs_activate(kn);
1846
1847 return 0;
1848
1849 out_destroy:
1850 kernfs_remove(kn);
1851 return ret;
1852 }
1853
l3_qos_cfg_update(void * arg)1854 static void l3_qos_cfg_update(void *arg)
1855 {
1856 bool *enable = arg;
1857
1858 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1859 }
1860
l2_qos_cfg_update(void * arg)1861 static void l2_qos_cfg_update(void *arg)
1862 {
1863 bool *enable = arg;
1864
1865 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1866 }
1867
is_mba_linear(void)1868 static inline bool is_mba_linear(void)
1869 {
1870 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1871 }
1872
set_cache_qos_cfg(int level,bool enable)1873 static int set_cache_qos_cfg(int level, bool enable)
1874 {
1875 void (*update)(void *arg);
1876 struct rdt_resource *r_l;
1877 cpumask_var_t cpu_mask;
1878 struct rdt_domain *d;
1879 int cpu;
1880
1881 if (level == RDT_RESOURCE_L3)
1882 update = l3_qos_cfg_update;
1883 else if (level == RDT_RESOURCE_L2)
1884 update = l2_qos_cfg_update;
1885 else
1886 return -EINVAL;
1887
1888 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1889 return -ENOMEM;
1890
1891 r_l = &rdt_resources_all[level];
1892 list_for_each_entry(d, &r_l->domains, list) {
1893 if (r_l->cache.arch_has_per_cpu_cfg)
1894 /* Pick all the CPUs in the domain instance */
1895 for_each_cpu(cpu, &d->cpu_mask)
1896 cpumask_set_cpu(cpu, cpu_mask);
1897 else
1898 /* Pick one CPU from each domain instance to update MSR */
1899 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1900 }
1901 cpu = get_cpu();
1902 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1903 if (cpumask_test_cpu(cpu, cpu_mask))
1904 update(&enable);
1905 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1906 smp_call_function_many(cpu_mask, update, &enable, 1);
1907 put_cpu();
1908
1909 free_cpumask_var(cpu_mask);
1910
1911 return 0;
1912 }
1913
1914 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1915 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1916 {
1917 if (!r->alloc_capable)
1918 return;
1919
1920 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1921 l2_qos_cfg_update(&r->alloc_enabled);
1922
1923 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1924 l3_qos_cfg_update(&r->alloc_enabled);
1925 }
1926
1927 /*
1928 * Enable or disable the MBA software controller
1929 * which helps user specify bandwidth in MBps.
1930 * MBA software controller is supported only if
1931 * MBM is supported and MBA is in linear scale.
1932 */
set_mba_sc(bool mba_sc)1933 static int set_mba_sc(bool mba_sc)
1934 {
1935 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1936 struct rdt_domain *d;
1937
1938 if (!is_mbm_enabled() || !is_mba_linear() ||
1939 mba_sc == is_mba_sc(r))
1940 return -EINVAL;
1941
1942 r->membw.mba_sc = mba_sc;
1943 list_for_each_entry(d, &r->domains, list)
1944 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1945
1946 return 0;
1947 }
1948
cdp_enable(int level,int data_type,int code_type)1949 static int cdp_enable(int level, int data_type, int code_type)
1950 {
1951 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1952 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1953 struct rdt_resource *r_l = &rdt_resources_all[level];
1954 int ret;
1955
1956 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1957 !r_lcode->alloc_capable)
1958 return -EINVAL;
1959
1960 ret = set_cache_qos_cfg(level, true);
1961 if (!ret) {
1962 r_l->alloc_enabled = false;
1963 r_ldata->alloc_enabled = true;
1964 r_lcode->alloc_enabled = true;
1965 }
1966 return ret;
1967 }
1968
cdpl3_enable(void)1969 static int cdpl3_enable(void)
1970 {
1971 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1972 RDT_RESOURCE_L3CODE);
1973 }
1974
cdpl2_enable(void)1975 static int cdpl2_enable(void)
1976 {
1977 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1978 RDT_RESOURCE_L2CODE);
1979 }
1980
cdp_disable(int level,int data_type,int code_type)1981 static void cdp_disable(int level, int data_type, int code_type)
1982 {
1983 struct rdt_resource *r = &rdt_resources_all[level];
1984
1985 r->alloc_enabled = r->alloc_capable;
1986
1987 if (rdt_resources_all[data_type].alloc_enabled) {
1988 rdt_resources_all[data_type].alloc_enabled = false;
1989 rdt_resources_all[code_type].alloc_enabled = false;
1990 set_cache_qos_cfg(level, false);
1991 }
1992 }
1993
cdpl3_disable(void)1994 static void cdpl3_disable(void)
1995 {
1996 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1997 }
1998
cdpl2_disable(void)1999 static void cdpl2_disable(void)
2000 {
2001 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
2002 }
2003
cdp_disable_all(void)2004 static void cdp_disable_all(void)
2005 {
2006 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2007 cdpl3_disable();
2008 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2009 cdpl2_disable();
2010 }
2011
2012 /*
2013 * We don't allow rdtgroup directories to be created anywhere
2014 * except the root directory. Thus when looking for the rdtgroup
2015 * structure for a kernfs node we are either looking at a directory,
2016 * in which case the rdtgroup structure is pointed at by the "priv"
2017 * field, otherwise we have a file, and need only look to the parent
2018 * to find the rdtgroup.
2019 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2020 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2021 {
2022 if (kernfs_type(kn) == KERNFS_DIR) {
2023 /*
2024 * All the resource directories use "kn->priv"
2025 * to point to the "struct rdtgroup" for the
2026 * resource. "info" and its subdirectories don't
2027 * have rdtgroup structures, so return NULL here.
2028 */
2029 if (kn == kn_info || kn->parent == kn_info)
2030 return NULL;
2031 else
2032 return kn->priv;
2033 } else {
2034 return kn->parent->priv;
2035 }
2036 }
2037
rdtgroup_kn_lock_live(struct kernfs_node * kn)2038 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2039 {
2040 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2041
2042 if (!rdtgrp)
2043 return NULL;
2044
2045 atomic_inc(&rdtgrp->waitcount);
2046 kernfs_break_active_protection(kn);
2047
2048 mutex_lock(&rdtgroup_mutex);
2049
2050 /* Was this group deleted while we waited? */
2051 if (rdtgrp->flags & RDT_DELETED)
2052 return NULL;
2053
2054 return rdtgrp;
2055 }
2056
rdtgroup_kn_unlock(struct kernfs_node * kn)2057 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2058 {
2059 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2060
2061 if (!rdtgrp)
2062 return;
2063
2064 mutex_unlock(&rdtgroup_mutex);
2065
2066 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2067 (rdtgrp->flags & RDT_DELETED)) {
2068 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2069 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2070 rdtgroup_pseudo_lock_remove(rdtgrp);
2071 kernfs_unbreak_active_protection(kn);
2072 rdtgroup_remove(rdtgrp);
2073 } else {
2074 kernfs_unbreak_active_protection(kn);
2075 }
2076 }
2077
2078 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2079 struct rdtgroup *prgrp,
2080 struct kernfs_node **mon_data_kn);
2081
rdt_enable_ctx(struct rdt_fs_context * ctx)2082 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2083 {
2084 int ret = 0;
2085
2086 if (ctx->enable_cdpl2)
2087 ret = cdpl2_enable();
2088
2089 if (!ret && ctx->enable_cdpl3)
2090 ret = cdpl3_enable();
2091
2092 if (!ret && ctx->enable_mba_mbps)
2093 ret = set_mba_sc(true);
2094
2095 return ret;
2096 }
2097
rdt_get_tree(struct fs_context * fc)2098 static int rdt_get_tree(struct fs_context *fc)
2099 {
2100 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2101 struct rdt_domain *dom;
2102 struct rdt_resource *r;
2103 int ret;
2104
2105 cpus_read_lock();
2106 mutex_lock(&rdtgroup_mutex);
2107 /*
2108 * resctrl file system can only be mounted once.
2109 */
2110 if (static_branch_unlikely(&rdt_enable_key)) {
2111 ret = -EBUSY;
2112 goto out;
2113 }
2114
2115 ret = rdt_enable_ctx(ctx);
2116 if (ret < 0)
2117 goto out_cdp;
2118
2119 closid_init();
2120
2121 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2122 if (ret < 0)
2123 goto out_mba;
2124
2125 if (rdt_mon_capable) {
2126 ret = mongroup_create_dir(rdtgroup_default.kn,
2127 &rdtgroup_default, "mon_groups",
2128 &kn_mongrp);
2129 if (ret < 0)
2130 goto out_info;
2131
2132 ret = mkdir_mondata_all(rdtgroup_default.kn,
2133 &rdtgroup_default, &kn_mondata);
2134 if (ret < 0)
2135 goto out_mongrp;
2136 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2137 }
2138
2139 ret = rdt_pseudo_lock_init();
2140 if (ret)
2141 goto out_mondata;
2142
2143 ret = kernfs_get_tree(fc);
2144 if (ret < 0)
2145 goto out_psl;
2146
2147 if (rdt_alloc_capable)
2148 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2149 if (rdt_mon_capable)
2150 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2151
2152 if (rdt_alloc_capable || rdt_mon_capable)
2153 static_branch_enable_cpuslocked(&rdt_enable_key);
2154
2155 if (is_mbm_enabled()) {
2156 r = &rdt_resources_all[RDT_RESOURCE_L3];
2157 list_for_each_entry(dom, &r->domains, list)
2158 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2159 }
2160
2161 goto out;
2162
2163 out_psl:
2164 rdt_pseudo_lock_release();
2165 out_mondata:
2166 if (rdt_mon_capable)
2167 kernfs_remove(kn_mondata);
2168 out_mongrp:
2169 if (rdt_mon_capable)
2170 kernfs_remove(kn_mongrp);
2171 out_info:
2172 kernfs_remove(kn_info);
2173 out_mba:
2174 if (ctx->enable_mba_mbps)
2175 set_mba_sc(false);
2176 out_cdp:
2177 cdp_disable_all();
2178 out:
2179 rdt_last_cmd_clear();
2180 mutex_unlock(&rdtgroup_mutex);
2181 cpus_read_unlock();
2182 return ret;
2183 }
2184
2185 enum rdt_param {
2186 Opt_cdp,
2187 Opt_cdpl2,
2188 Opt_mba_mbps,
2189 nr__rdt_params
2190 };
2191
2192 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2193 fsparam_flag("cdp", Opt_cdp),
2194 fsparam_flag("cdpl2", Opt_cdpl2),
2195 fsparam_flag("mba_MBps", Opt_mba_mbps),
2196 {}
2197 };
2198
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2199 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2200 {
2201 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2202 struct fs_parse_result result;
2203 int opt;
2204
2205 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2206 if (opt < 0)
2207 return opt;
2208
2209 switch (opt) {
2210 case Opt_cdp:
2211 ctx->enable_cdpl3 = true;
2212 return 0;
2213 case Opt_cdpl2:
2214 ctx->enable_cdpl2 = true;
2215 return 0;
2216 case Opt_mba_mbps:
2217 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2218 return -EINVAL;
2219 ctx->enable_mba_mbps = true;
2220 return 0;
2221 }
2222
2223 return -EINVAL;
2224 }
2225
rdt_fs_context_free(struct fs_context * fc)2226 static void rdt_fs_context_free(struct fs_context *fc)
2227 {
2228 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2229
2230 kernfs_free_fs_context(fc);
2231 kfree(ctx);
2232 }
2233
2234 static const struct fs_context_operations rdt_fs_context_ops = {
2235 .free = rdt_fs_context_free,
2236 .parse_param = rdt_parse_param,
2237 .get_tree = rdt_get_tree,
2238 };
2239
rdt_init_fs_context(struct fs_context * fc)2240 static int rdt_init_fs_context(struct fs_context *fc)
2241 {
2242 struct rdt_fs_context *ctx;
2243
2244 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2245 if (!ctx)
2246 return -ENOMEM;
2247
2248 ctx->kfc.root = rdt_root;
2249 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2250 fc->fs_private = &ctx->kfc;
2251 fc->ops = &rdt_fs_context_ops;
2252 put_user_ns(fc->user_ns);
2253 fc->user_ns = get_user_ns(&init_user_ns);
2254 fc->global = true;
2255 return 0;
2256 }
2257
reset_all_ctrls(struct rdt_resource * r)2258 static int reset_all_ctrls(struct rdt_resource *r)
2259 {
2260 struct msr_param msr_param;
2261 cpumask_var_t cpu_mask;
2262 struct rdt_domain *d;
2263 int i, cpu;
2264
2265 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2266 return -ENOMEM;
2267
2268 msr_param.res = r;
2269 msr_param.low = 0;
2270 msr_param.high = r->num_closid;
2271
2272 /*
2273 * Disable resource control for this resource by setting all
2274 * CBMs in all domains to the maximum mask value. Pick one CPU
2275 * from each domain to update the MSRs below.
2276 */
2277 list_for_each_entry(d, &r->domains, list) {
2278 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2279
2280 for (i = 0; i < r->num_closid; i++)
2281 d->ctrl_val[i] = r->default_ctrl;
2282 }
2283 cpu = get_cpu();
2284 /* Update CBM on this cpu if it's in cpu_mask. */
2285 if (cpumask_test_cpu(cpu, cpu_mask))
2286 rdt_ctrl_update(&msr_param);
2287 /* Update CBM on all other cpus in cpu_mask. */
2288 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2289 put_cpu();
2290
2291 free_cpumask_var(cpu_mask);
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * Move tasks from one to the other group. If @from is NULL, then all tasks
2298 * in the systems are moved unconditionally (used for teardown).
2299 *
2300 * If @mask is not NULL the cpus on which moved tasks are running are set
2301 * in that mask so the update smp function call is restricted to affected
2302 * cpus.
2303 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2304 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2305 struct cpumask *mask)
2306 {
2307 struct task_struct *p, *t;
2308
2309 read_lock(&tasklist_lock);
2310 for_each_process_thread(p, t) {
2311 if (!from || is_closid_match(t, from) ||
2312 is_rmid_match(t, from)) {
2313 t->closid = to->closid;
2314 t->rmid = to->mon.rmid;
2315
2316 #ifdef CONFIG_SMP
2317 /*
2318 * This is safe on x86 w/o barriers as the ordering
2319 * of writing to task_cpu() and t->on_cpu is
2320 * reverse to the reading here. The detection is
2321 * inaccurate as tasks might move or schedule
2322 * before the smp function call takes place. In
2323 * such a case the function call is pointless, but
2324 * there is no other side effect.
2325 */
2326 if (mask && t->on_cpu)
2327 cpumask_set_cpu(task_cpu(t), mask);
2328 #endif
2329 }
2330 }
2331 read_unlock(&tasklist_lock);
2332 }
2333
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2334 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2335 {
2336 struct rdtgroup *sentry, *stmp;
2337 struct list_head *head;
2338
2339 head = &rdtgrp->mon.crdtgrp_list;
2340 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2341 free_rmid(sentry->mon.rmid);
2342 list_del(&sentry->mon.crdtgrp_list);
2343
2344 if (atomic_read(&sentry->waitcount) != 0)
2345 sentry->flags = RDT_DELETED;
2346 else
2347 rdtgroup_remove(sentry);
2348 }
2349 }
2350
2351 /*
2352 * Forcibly remove all of subdirectories under root.
2353 */
rmdir_all_sub(void)2354 static void rmdir_all_sub(void)
2355 {
2356 struct rdtgroup *rdtgrp, *tmp;
2357
2358 /* Move all tasks to the default resource group */
2359 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2360
2361 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2362 /* Free any child rmids */
2363 free_all_child_rdtgrp(rdtgrp);
2364
2365 /* Remove each rdtgroup other than root */
2366 if (rdtgrp == &rdtgroup_default)
2367 continue;
2368
2369 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2370 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2371 rdtgroup_pseudo_lock_remove(rdtgrp);
2372
2373 /*
2374 * Give any CPUs back to the default group. We cannot copy
2375 * cpu_online_mask because a CPU might have executed the
2376 * offline callback already, but is still marked online.
2377 */
2378 cpumask_or(&rdtgroup_default.cpu_mask,
2379 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2380
2381 free_rmid(rdtgrp->mon.rmid);
2382
2383 kernfs_remove(rdtgrp->kn);
2384 list_del(&rdtgrp->rdtgroup_list);
2385
2386 if (atomic_read(&rdtgrp->waitcount) != 0)
2387 rdtgrp->flags = RDT_DELETED;
2388 else
2389 rdtgroup_remove(rdtgrp);
2390 }
2391 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2392 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2393
2394 kernfs_remove(kn_info);
2395 kernfs_remove(kn_mongrp);
2396 kernfs_remove(kn_mondata);
2397 }
2398
rdt_kill_sb(struct super_block * sb)2399 static void rdt_kill_sb(struct super_block *sb)
2400 {
2401 struct rdt_resource *r;
2402
2403 cpus_read_lock();
2404 mutex_lock(&rdtgroup_mutex);
2405
2406 set_mba_sc(false);
2407
2408 /*Put everything back to default values. */
2409 for_each_alloc_enabled_rdt_resource(r)
2410 reset_all_ctrls(r);
2411 cdp_disable_all();
2412 rmdir_all_sub();
2413 rdt_pseudo_lock_release();
2414 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2415 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2416 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2417 static_branch_disable_cpuslocked(&rdt_enable_key);
2418 kernfs_kill_sb(sb);
2419 mutex_unlock(&rdtgroup_mutex);
2420 cpus_read_unlock();
2421 }
2422
2423 static struct file_system_type rdt_fs_type = {
2424 .name = "resctrl",
2425 .init_fs_context = rdt_init_fs_context,
2426 .parameters = rdt_fs_parameters,
2427 .kill_sb = rdt_kill_sb,
2428 };
2429
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2430 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2431 void *priv)
2432 {
2433 struct kernfs_node *kn;
2434 int ret = 0;
2435
2436 kn = __kernfs_create_file(parent_kn, name, 0444,
2437 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2438 &kf_mondata_ops, priv, NULL, NULL);
2439 if (IS_ERR(kn))
2440 return PTR_ERR(kn);
2441
2442 ret = rdtgroup_kn_set_ugid(kn);
2443 if (ret) {
2444 kernfs_remove(kn);
2445 return ret;
2446 }
2447
2448 return ret;
2449 }
2450
2451 /*
2452 * Remove all subdirectories of mon_data of ctrl_mon groups
2453 * and monitor groups with given domain id.
2454 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2455 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2456 {
2457 struct rdtgroup *prgrp, *crgrp;
2458 char name[32];
2459
2460 if (!r->mon_enabled)
2461 return;
2462
2463 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2464 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2465 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2466
2467 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2468 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2469 }
2470 }
2471
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2472 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2473 struct rdt_domain *d,
2474 struct rdt_resource *r, struct rdtgroup *prgrp)
2475 {
2476 union mon_data_bits priv;
2477 struct kernfs_node *kn;
2478 struct mon_evt *mevt;
2479 struct rmid_read rr;
2480 char name[32];
2481 int ret;
2482
2483 sprintf(name, "mon_%s_%02d", r->name, d->id);
2484 /* create the directory */
2485 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2486 if (IS_ERR(kn))
2487 return PTR_ERR(kn);
2488
2489 ret = rdtgroup_kn_set_ugid(kn);
2490 if (ret)
2491 goto out_destroy;
2492
2493 if (WARN_ON(list_empty(&r->evt_list))) {
2494 ret = -EPERM;
2495 goto out_destroy;
2496 }
2497
2498 priv.u.rid = r->rid;
2499 priv.u.domid = d->id;
2500 list_for_each_entry(mevt, &r->evt_list, list) {
2501 priv.u.evtid = mevt->evtid;
2502 ret = mon_addfile(kn, mevt->name, priv.priv);
2503 if (ret)
2504 goto out_destroy;
2505
2506 if (is_mbm_event(mevt->evtid))
2507 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2508 }
2509 kernfs_activate(kn);
2510 return 0;
2511
2512 out_destroy:
2513 kernfs_remove(kn);
2514 return ret;
2515 }
2516
2517 /*
2518 * Add all subdirectories of mon_data for "ctrl_mon" groups
2519 * and "monitor" groups with given domain id.
2520 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2521 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2522 struct rdt_domain *d)
2523 {
2524 struct kernfs_node *parent_kn;
2525 struct rdtgroup *prgrp, *crgrp;
2526 struct list_head *head;
2527
2528 if (!r->mon_enabled)
2529 return;
2530
2531 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2532 parent_kn = prgrp->mon.mon_data_kn;
2533 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2534
2535 head = &prgrp->mon.crdtgrp_list;
2536 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2537 parent_kn = crgrp->mon.mon_data_kn;
2538 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2539 }
2540 }
2541 }
2542
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2543 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2544 struct rdt_resource *r,
2545 struct rdtgroup *prgrp)
2546 {
2547 struct rdt_domain *dom;
2548 int ret;
2549
2550 list_for_each_entry(dom, &r->domains, list) {
2551 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2552 if (ret)
2553 return ret;
2554 }
2555
2556 return 0;
2557 }
2558
2559 /*
2560 * This creates a directory mon_data which contains the monitored data.
2561 *
2562 * mon_data has one directory for each domain whic are named
2563 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2564 * with L3 domain looks as below:
2565 * ./mon_data:
2566 * mon_L3_00
2567 * mon_L3_01
2568 * mon_L3_02
2569 * ...
2570 *
2571 * Each domain directory has one file per event:
2572 * ./mon_L3_00/:
2573 * llc_occupancy
2574 *
2575 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2576 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2577 struct rdtgroup *prgrp,
2578 struct kernfs_node **dest_kn)
2579 {
2580 struct rdt_resource *r;
2581 struct kernfs_node *kn;
2582 int ret;
2583
2584 /*
2585 * Create the mon_data directory first.
2586 */
2587 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2588 if (ret)
2589 return ret;
2590
2591 if (dest_kn)
2592 *dest_kn = kn;
2593
2594 /*
2595 * Create the subdirectories for each domain. Note that all events
2596 * in a domain like L3 are grouped into a resource whose domain is L3
2597 */
2598 for_each_mon_enabled_rdt_resource(r) {
2599 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2600 if (ret)
2601 goto out_destroy;
2602 }
2603
2604 return 0;
2605
2606 out_destroy:
2607 kernfs_remove(kn);
2608 return ret;
2609 }
2610
2611 /**
2612 * cbm_ensure_valid - Enforce validity on provided CBM
2613 * @_val: Candidate CBM
2614 * @r: RDT resource to which the CBM belongs
2615 *
2616 * The provided CBM represents all cache portions available for use. This
2617 * may be represented by a bitmap that does not consist of contiguous ones
2618 * and thus be an invalid CBM.
2619 * Here the provided CBM is forced to be a valid CBM by only considering
2620 * the first set of contiguous bits as valid and clearing all bits.
2621 * The intention here is to provide a valid default CBM with which a new
2622 * resource group is initialized. The user can follow this with a
2623 * modification to the CBM if the default does not satisfy the
2624 * requirements.
2625 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2626 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2627 {
2628 unsigned int cbm_len = r->cache.cbm_len;
2629 unsigned long first_bit, zero_bit;
2630 unsigned long val = _val;
2631
2632 if (!val)
2633 return 0;
2634
2635 first_bit = find_first_bit(&val, cbm_len);
2636 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2637
2638 /* Clear any remaining bits to ensure contiguous region */
2639 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2640 return (u32)val;
2641 }
2642
2643 /*
2644 * Initialize cache resources per RDT domain
2645 *
2646 * Set the RDT domain up to start off with all usable allocations. That is,
2647 * all shareable and unused bits. All-zero CBM is invalid.
2648 */
__init_one_rdt_domain(struct rdt_domain * d,struct rdt_resource * r,u32 closid)2649 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2650 u32 closid)
2651 {
2652 struct rdt_resource *r_cdp = NULL;
2653 struct rdt_domain *d_cdp = NULL;
2654 u32 used_b = 0, unused_b = 0;
2655 unsigned long tmp_cbm;
2656 enum rdtgrp_mode mode;
2657 u32 peer_ctl, *ctrl;
2658 int i;
2659
2660 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2661 d->have_new_ctrl = false;
2662 d->new_ctrl = r->cache.shareable_bits;
2663 used_b = r->cache.shareable_bits;
2664 ctrl = d->ctrl_val;
2665 for (i = 0; i < closids_supported(); i++, ctrl++) {
2666 if (closid_allocated(i) && i != closid) {
2667 mode = rdtgroup_mode_by_closid(i);
2668 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2669 /*
2670 * ctrl values for locksetup aren't relevant
2671 * until the schemata is written, and the mode
2672 * becomes RDT_MODE_PSEUDO_LOCKED.
2673 */
2674 continue;
2675 /*
2676 * If CDP is active include peer domain's
2677 * usage to ensure there is no overlap
2678 * with an exclusive group.
2679 */
2680 if (d_cdp)
2681 peer_ctl = d_cdp->ctrl_val[i];
2682 else
2683 peer_ctl = 0;
2684 used_b |= *ctrl | peer_ctl;
2685 if (mode == RDT_MODE_SHAREABLE)
2686 d->new_ctrl |= *ctrl | peer_ctl;
2687 }
2688 }
2689 if (d->plr && d->plr->cbm > 0)
2690 used_b |= d->plr->cbm;
2691 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2692 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2693 d->new_ctrl |= unused_b;
2694 /*
2695 * Force the initial CBM to be valid, user can
2696 * modify the CBM based on system availability.
2697 */
2698 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2699 /*
2700 * Assign the u32 CBM to an unsigned long to ensure that
2701 * bitmap_weight() does not access out-of-bound memory.
2702 */
2703 tmp_cbm = d->new_ctrl;
2704 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2705 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2706 return -ENOSPC;
2707 }
2708 d->have_new_ctrl = true;
2709
2710 return 0;
2711 }
2712
2713 /*
2714 * Initialize cache resources with default values.
2715 *
2716 * A new RDT group is being created on an allocation capable (CAT)
2717 * supporting system. Set this group up to start off with all usable
2718 * allocations.
2719 *
2720 * If there are no more shareable bits available on any domain then
2721 * the entire allocation will fail.
2722 */
rdtgroup_init_cat(struct rdt_resource * r,u32 closid)2723 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2724 {
2725 struct rdt_domain *d;
2726 int ret;
2727
2728 list_for_each_entry(d, &r->domains, list) {
2729 ret = __init_one_rdt_domain(d, r, closid);
2730 if (ret < 0)
2731 return ret;
2732 }
2733
2734 return 0;
2735 }
2736
2737 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r)2738 static void rdtgroup_init_mba(struct rdt_resource *r)
2739 {
2740 struct rdt_domain *d;
2741
2742 list_for_each_entry(d, &r->domains, list) {
2743 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2744 d->have_new_ctrl = true;
2745 }
2746 }
2747
2748 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2749 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2750 {
2751 struct rdt_resource *r;
2752 int ret;
2753
2754 for_each_alloc_enabled_rdt_resource(r) {
2755 if (r->rid == RDT_RESOURCE_MBA) {
2756 rdtgroup_init_mba(r);
2757 } else {
2758 ret = rdtgroup_init_cat(r, rdtgrp->closid);
2759 if (ret < 0)
2760 return ret;
2761 }
2762
2763 ret = update_domains(r, rdtgrp->closid);
2764 if (ret < 0) {
2765 rdt_last_cmd_puts("Failed to initialize allocations\n");
2766 return ret;
2767 }
2768
2769 }
2770
2771 rdtgrp->mode = RDT_MODE_SHAREABLE;
2772
2773 return 0;
2774 }
2775
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2776 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2777 const char *name, umode_t mode,
2778 enum rdt_group_type rtype, struct rdtgroup **r)
2779 {
2780 struct rdtgroup *prdtgrp, *rdtgrp;
2781 struct kernfs_node *kn;
2782 uint files = 0;
2783 int ret;
2784
2785 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2786 if (!prdtgrp) {
2787 ret = -ENODEV;
2788 goto out_unlock;
2789 }
2790
2791 if (rtype == RDTMON_GROUP &&
2792 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2793 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2794 ret = -EINVAL;
2795 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2796 goto out_unlock;
2797 }
2798
2799 /* allocate the rdtgroup. */
2800 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2801 if (!rdtgrp) {
2802 ret = -ENOSPC;
2803 rdt_last_cmd_puts("Kernel out of memory\n");
2804 goto out_unlock;
2805 }
2806 *r = rdtgrp;
2807 rdtgrp->mon.parent = prdtgrp;
2808 rdtgrp->type = rtype;
2809 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2810
2811 /* kernfs creates the directory for rdtgrp */
2812 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2813 if (IS_ERR(kn)) {
2814 ret = PTR_ERR(kn);
2815 rdt_last_cmd_puts("kernfs create error\n");
2816 goto out_free_rgrp;
2817 }
2818 rdtgrp->kn = kn;
2819
2820 /*
2821 * kernfs_remove() will drop the reference count on "kn" which
2822 * will free it. But we still need it to stick around for the
2823 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2824 * which will be dropped by kernfs_put() in rdtgroup_remove().
2825 */
2826 kernfs_get(kn);
2827
2828 ret = rdtgroup_kn_set_ugid(kn);
2829 if (ret) {
2830 rdt_last_cmd_puts("kernfs perm error\n");
2831 goto out_destroy;
2832 }
2833
2834 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2835 ret = rdtgroup_add_files(kn, files);
2836 if (ret) {
2837 rdt_last_cmd_puts("kernfs fill error\n");
2838 goto out_destroy;
2839 }
2840
2841 if (rdt_mon_capable) {
2842 ret = alloc_rmid();
2843 if (ret < 0) {
2844 rdt_last_cmd_puts("Out of RMIDs\n");
2845 goto out_destroy;
2846 }
2847 rdtgrp->mon.rmid = ret;
2848
2849 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2850 if (ret) {
2851 rdt_last_cmd_puts("kernfs subdir error\n");
2852 goto out_idfree;
2853 }
2854 }
2855 kernfs_activate(kn);
2856
2857 /*
2858 * The caller unlocks the parent_kn upon success.
2859 */
2860 return 0;
2861
2862 out_idfree:
2863 free_rmid(rdtgrp->mon.rmid);
2864 out_destroy:
2865 kernfs_put(rdtgrp->kn);
2866 kernfs_remove(rdtgrp->kn);
2867 out_free_rgrp:
2868 kfree(rdtgrp);
2869 out_unlock:
2870 rdtgroup_kn_unlock(parent_kn);
2871 return ret;
2872 }
2873
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2874 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2875 {
2876 kernfs_remove(rgrp->kn);
2877 free_rmid(rgrp->mon.rmid);
2878 rdtgroup_remove(rgrp);
2879 }
2880
2881 /*
2882 * Create a monitor group under "mon_groups" directory of a control
2883 * and monitor group(ctrl_mon). This is a resource group
2884 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2885 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2886 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2887 const char *name, umode_t mode)
2888 {
2889 struct rdtgroup *rdtgrp, *prgrp;
2890 int ret;
2891
2892 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2893 if (ret)
2894 return ret;
2895
2896 prgrp = rdtgrp->mon.parent;
2897 rdtgrp->closid = prgrp->closid;
2898
2899 /*
2900 * Add the rdtgrp to the list of rdtgrps the parent
2901 * ctrl_mon group has to track.
2902 */
2903 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2904
2905 rdtgroup_kn_unlock(parent_kn);
2906 return ret;
2907 }
2908
2909 /*
2910 * These are rdtgroups created under the root directory. Can be used
2911 * to allocate and monitor resources.
2912 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2913 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2914 const char *name, umode_t mode)
2915 {
2916 struct rdtgroup *rdtgrp;
2917 struct kernfs_node *kn;
2918 u32 closid;
2919 int ret;
2920
2921 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2922 if (ret)
2923 return ret;
2924
2925 kn = rdtgrp->kn;
2926 ret = closid_alloc();
2927 if (ret < 0) {
2928 rdt_last_cmd_puts("Out of CLOSIDs\n");
2929 goto out_common_fail;
2930 }
2931 closid = ret;
2932 ret = 0;
2933
2934 rdtgrp->closid = closid;
2935 ret = rdtgroup_init_alloc(rdtgrp);
2936 if (ret < 0)
2937 goto out_id_free;
2938
2939 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2940
2941 if (rdt_mon_capable) {
2942 /*
2943 * Create an empty mon_groups directory to hold the subset
2944 * of tasks and cpus to monitor.
2945 */
2946 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2947 if (ret) {
2948 rdt_last_cmd_puts("kernfs subdir error\n");
2949 goto out_del_list;
2950 }
2951 }
2952
2953 goto out_unlock;
2954
2955 out_del_list:
2956 list_del(&rdtgrp->rdtgroup_list);
2957 out_id_free:
2958 closid_free(closid);
2959 out_common_fail:
2960 mkdir_rdt_prepare_clean(rdtgrp);
2961 out_unlock:
2962 rdtgroup_kn_unlock(parent_kn);
2963 return ret;
2964 }
2965
2966 /*
2967 * We allow creating mon groups only with in a directory called "mon_groups"
2968 * which is present in every ctrl_mon group. Check if this is a valid
2969 * "mon_groups" directory.
2970 *
2971 * 1. The directory should be named "mon_groups".
2972 * 2. The mon group itself should "not" be named "mon_groups".
2973 * This makes sure "mon_groups" directory always has a ctrl_mon group
2974 * as parent.
2975 */
is_mon_groups(struct kernfs_node * kn,const char * name)2976 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2977 {
2978 return (!strcmp(kn->name, "mon_groups") &&
2979 strcmp(name, "mon_groups"));
2980 }
2981
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2982 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2983 umode_t mode)
2984 {
2985 /* Do not accept '\n' to avoid unparsable situation. */
2986 if (strchr(name, '\n'))
2987 return -EINVAL;
2988
2989 /*
2990 * If the parent directory is the root directory and RDT
2991 * allocation is supported, add a control and monitoring
2992 * subdirectory
2993 */
2994 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2995 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
2996
2997 /*
2998 * If RDT monitoring is supported and the parent directory is a valid
2999 * "mon_groups" directory, add a monitoring subdirectory.
3000 */
3001 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3002 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3003
3004 return -EPERM;
3005 }
3006
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3007 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3008 cpumask_var_t tmpmask)
3009 {
3010 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3011 int cpu;
3012
3013 /* Give any tasks back to the parent group */
3014 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3015
3016 /* Update per cpu rmid of the moved CPUs first */
3017 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3018 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3019 /*
3020 * Update the MSR on moved CPUs and CPUs which have moved
3021 * task running on them.
3022 */
3023 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3024 update_closid_rmid(tmpmask, NULL);
3025
3026 rdtgrp->flags = RDT_DELETED;
3027 free_rmid(rdtgrp->mon.rmid);
3028
3029 /*
3030 * Remove the rdtgrp from the parent ctrl_mon group's list
3031 */
3032 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3033 list_del(&rdtgrp->mon.crdtgrp_list);
3034
3035 kernfs_remove(rdtgrp->kn);
3036
3037 return 0;
3038 }
3039
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)3040 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3041 struct rdtgroup *rdtgrp)
3042 {
3043 rdtgrp->flags = RDT_DELETED;
3044 list_del(&rdtgrp->rdtgroup_list);
3045
3046 kernfs_remove(rdtgrp->kn);
3047 return 0;
3048 }
3049
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3050 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3051 cpumask_var_t tmpmask)
3052 {
3053 int cpu;
3054
3055 /* Give any tasks back to the default group */
3056 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3057
3058 /* Give any CPUs back to the default group */
3059 cpumask_or(&rdtgroup_default.cpu_mask,
3060 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3061
3062 /* Update per cpu closid and rmid of the moved CPUs first */
3063 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3064 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3065 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3066 }
3067
3068 /*
3069 * Update the MSR on moved CPUs and CPUs which have moved
3070 * task running on them.
3071 */
3072 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3073 update_closid_rmid(tmpmask, NULL);
3074
3075 closid_free(rdtgrp->closid);
3076 free_rmid(rdtgrp->mon.rmid);
3077
3078 rdtgroup_ctrl_remove(kn, rdtgrp);
3079
3080 /*
3081 * Free all the child monitor group rmids.
3082 */
3083 free_all_child_rdtgrp(rdtgrp);
3084
3085 return 0;
3086 }
3087
rdtgroup_rmdir(struct kernfs_node * kn)3088 static int rdtgroup_rmdir(struct kernfs_node *kn)
3089 {
3090 struct kernfs_node *parent_kn = kn->parent;
3091 struct rdtgroup *rdtgrp;
3092 cpumask_var_t tmpmask;
3093 int ret = 0;
3094
3095 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3096 return -ENOMEM;
3097
3098 rdtgrp = rdtgroup_kn_lock_live(kn);
3099 if (!rdtgrp) {
3100 ret = -EPERM;
3101 goto out;
3102 }
3103
3104 /*
3105 * If the rdtgroup is a ctrl_mon group and parent directory
3106 * is the root directory, remove the ctrl_mon group.
3107 *
3108 * If the rdtgroup is a mon group and parent directory
3109 * is a valid "mon_groups" directory, remove the mon group.
3110 */
3111 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3112 rdtgrp != &rdtgroup_default) {
3113 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3114 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3115 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3116 } else {
3117 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3118 }
3119 } else if (rdtgrp->type == RDTMON_GROUP &&
3120 is_mon_groups(parent_kn, kn->name)) {
3121 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3122 } else {
3123 ret = -EPERM;
3124 }
3125
3126 out:
3127 rdtgroup_kn_unlock(kn);
3128 free_cpumask_var(tmpmask);
3129 return ret;
3130 }
3131
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3132 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3133 {
3134 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3135 seq_puts(seq, ",cdp");
3136
3137 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3138 seq_puts(seq, ",cdpl2");
3139
3140 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3141 seq_puts(seq, ",mba_MBps");
3142
3143 return 0;
3144 }
3145
3146 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3147 .mkdir = rdtgroup_mkdir,
3148 .rmdir = rdtgroup_rmdir,
3149 .show_options = rdtgroup_show_options,
3150 };
3151
rdtgroup_setup_root(void)3152 static int __init rdtgroup_setup_root(void)
3153 {
3154 int ret;
3155
3156 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3157 KERNFS_ROOT_CREATE_DEACTIVATED |
3158 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3159 &rdtgroup_default);
3160 if (IS_ERR(rdt_root))
3161 return PTR_ERR(rdt_root);
3162
3163 mutex_lock(&rdtgroup_mutex);
3164
3165 rdtgroup_default.closid = 0;
3166 rdtgroup_default.mon.rmid = 0;
3167 rdtgroup_default.type = RDTCTRL_GROUP;
3168 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3169
3170 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3171
3172 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3173 if (ret) {
3174 kernfs_destroy_root(rdt_root);
3175 goto out;
3176 }
3177
3178 rdtgroup_default.kn = rdt_root->kn;
3179 kernfs_activate(rdtgroup_default.kn);
3180
3181 out:
3182 mutex_unlock(&rdtgroup_mutex);
3183
3184 return ret;
3185 }
3186
3187 /*
3188 * rdtgroup_init - rdtgroup initialization
3189 *
3190 * Setup resctrl file system including set up root, create mount point,
3191 * register rdtgroup filesystem, and initialize files under root directory.
3192 *
3193 * Return: 0 on success or -errno
3194 */
rdtgroup_init(void)3195 int __init rdtgroup_init(void)
3196 {
3197 int ret = 0;
3198
3199 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3200 sizeof(last_cmd_status_buf));
3201
3202 ret = rdtgroup_setup_root();
3203 if (ret)
3204 return ret;
3205
3206 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3207 if (ret)
3208 goto cleanup_root;
3209
3210 ret = register_filesystem(&rdt_fs_type);
3211 if (ret)
3212 goto cleanup_mountpoint;
3213
3214 /*
3215 * Adding the resctrl debugfs directory here may not be ideal since
3216 * it would let the resctrl debugfs directory appear on the debugfs
3217 * filesystem before the resctrl filesystem is mounted.
3218 * It may also be ok since that would enable debugging of RDT before
3219 * resctrl is mounted.
3220 * The reason why the debugfs directory is created here and not in
3221 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3222 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3223 * (the lockdep class of inode->i_rwsem). Other filesystem
3224 * interactions (eg. SyS_getdents) have the lock ordering:
3225 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3226 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3227 * is taken, thus creating dependency:
3228 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3229 * issues considering the other two lock dependencies.
3230 * By creating the debugfs directory here we avoid a dependency
3231 * that may cause deadlock (even though file operations cannot
3232 * occur until the filesystem is mounted, but I do not know how to
3233 * tell lockdep that).
3234 */
3235 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3236
3237 return 0;
3238
3239 cleanup_mountpoint:
3240 sysfs_remove_mount_point(fs_kobj, "resctrl");
3241 cleanup_root:
3242 kernfs_destroy_root(rdt_root);
3243
3244 return ret;
3245 }
3246
rdtgroup_exit(void)3247 void __exit rdtgroup_exit(void)
3248 {
3249 debugfs_remove_recursive(debugfs_resctrl);
3250 unregister_filesystem(&rdt_fs_type);
3251 sysfs_remove_mount_point(fs_kobj, "resctrl");
3252 kernfs_destroy_root(rdt_root);
3253 }
3254