1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 #ifdef CONFIG_F2FS_GRADING_SSR
40 #define SSR_DEFALT_SPACE_LIMIT (5<<20) /* 5G default space limit */
41 #define SSR_DEFALT_WATERLINE 80 /* 80% default waterline */
42 #define SSR_HN_SAPCE_LIMIT_128G (8<<20) /* 8G default sapce limit for 128G devices */
43 #define SSR_HN_WATERLINE_128G 80 /* 80% default hot node waterline for 128G devices */
44 #define SSR_WN_SAPCE_LIMIT_128G (5<<20) /* 5G default warm node sapce limit for 128G devices */
45 #define SSR_WN_WATERLINE_128G 70 /* 70% default warm node waterline for 128G devices */
46 #define SSR_HD_SAPCE_LIMIT_128G (8<<20) /* 8G default hot data sapce limit for 128G devices */
47 #define SSR_HD_WATERLINE_128G 65 /* 65% default hot data waterline for 128G devices */
48 #define SSR_WD_SAPCE_LIMIT_128G (5<<20) /* 5G default warm data sapce limit for 128G devices */
49 #define SSR_WD_WATERLINE_128G 60 /* 60% default warm data waterline for 128G devices */
50 #endif
51
52 static struct kmem_cache *f2fs_inode_cachep;
53
54 #ifdef CONFIG_F2FS_FAULT_INJECTION
55
56 const char *f2fs_fault_name[FAULT_MAX] = {
57 [FAULT_KMALLOC] = "kmalloc",
58 [FAULT_KVMALLOC] = "kvmalloc",
59 [FAULT_PAGE_ALLOC] = "page alloc",
60 [FAULT_PAGE_GET] = "page get",
61 [FAULT_ALLOC_BIO] = "alloc bio",
62 [FAULT_ALLOC_NID] = "alloc nid",
63 [FAULT_ORPHAN] = "orphan",
64 [FAULT_BLOCK] = "no more block",
65 [FAULT_DIR_DEPTH] = "too big dir depth",
66 [FAULT_EVICT_INODE] = "evict_inode fail",
67 [FAULT_TRUNCATE] = "truncate fail",
68 [FAULT_READ_IO] = "read IO error",
69 [FAULT_CHECKPOINT] = "checkpoint error",
70 [FAULT_DISCARD] = "discard error",
71 [FAULT_WRITE_IO] = "write IO error",
72 };
73
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate,unsigned int type)74 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
75 unsigned int type)
76 {
77 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
78
79 if (rate) {
80 atomic_set(&ffi->inject_ops, 0);
81 ffi->inject_rate = rate;
82 }
83
84 if (type)
85 ffi->inject_type = type;
86
87 if (!rate && !type)
88 memset(ffi, 0, sizeof(struct f2fs_fault_info));
89 }
90 #endif
91
92 /* f2fs-wide shrinker description */
93 static struct shrinker f2fs_shrinker_info = {
94 .scan_objects = f2fs_shrink_scan,
95 .count_objects = f2fs_shrink_count,
96 .seeks = DEFAULT_SEEKS,
97 };
98
99 enum {
100 Opt_gc_background,
101 Opt_disable_roll_forward,
102 Opt_norecovery,
103 Opt_discard,
104 Opt_nodiscard,
105 Opt_noheap,
106 Opt_heap,
107 Opt_user_xattr,
108 Opt_nouser_xattr,
109 Opt_acl,
110 Opt_noacl,
111 Opt_active_logs,
112 Opt_disable_ext_identify,
113 Opt_inline_xattr,
114 Opt_noinline_xattr,
115 Opt_inline_xattr_size,
116 Opt_inline_data,
117 Opt_inline_dentry,
118 Opt_noinline_dentry,
119 Opt_flush_merge,
120 Opt_noflush_merge,
121 Opt_nobarrier,
122 Opt_fastboot,
123 Opt_extent_cache,
124 Opt_noextent_cache,
125 Opt_noinline_data,
126 Opt_data_flush,
127 Opt_reserve_root,
128 Opt_resgid,
129 Opt_resuid,
130 Opt_mode,
131 Opt_io_size_bits,
132 Opt_fault_injection,
133 Opt_fault_type,
134 Opt_lazytime,
135 Opt_nolazytime,
136 Opt_quota,
137 Opt_noquota,
138 Opt_usrquota,
139 Opt_grpquota,
140 Opt_prjquota,
141 Opt_usrjquota,
142 Opt_grpjquota,
143 Opt_prjjquota,
144 Opt_offusrjquota,
145 Opt_offgrpjquota,
146 Opt_offprjjquota,
147 Opt_jqfmt_vfsold,
148 Opt_jqfmt_vfsv0,
149 Opt_jqfmt_vfsv1,
150 Opt_whint,
151 Opt_alloc,
152 Opt_fsync,
153 Opt_test_dummy_encryption,
154 Opt_inlinecrypt,
155 Opt_checkpoint_disable,
156 Opt_checkpoint_disable_cap,
157 Opt_checkpoint_disable_cap_perc,
158 Opt_checkpoint_enable,
159 Opt_compress_algorithm,
160 Opt_compress_log_size,
161 Opt_compress_extension,
162 Opt_atgc,
163 Opt_gc_merge,
164 Opt_nogc_merge,
165 Opt_err,
166 };
167
168 static match_table_t f2fs_tokens = {
169 {Opt_gc_background, "background_gc=%s"},
170 {Opt_disable_roll_forward, "disable_roll_forward"},
171 {Opt_norecovery, "norecovery"},
172 {Opt_discard, "discard"},
173 {Opt_nodiscard, "nodiscard"},
174 {Opt_noheap, "no_heap"},
175 {Opt_heap, "heap"},
176 {Opt_user_xattr, "user_xattr"},
177 {Opt_nouser_xattr, "nouser_xattr"},
178 {Opt_acl, "acl"},
179 {Opt_noacl, "noacl"},
180 {Opt_active_logs, "active_logs=%u"},
181 {Opt_disable_ext_identify, "disable_ext_identify"},
182 {Opt_inline_xattr, "inline_xattr"},
183 {Opt_noinline_xattr, "noinline_xattr"},
184 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
185 {Opt_inline_data, "inline_data"},
186 {Opt_inline_dentry, "inline_dentry"},
187 {Opt_noinline_dentry, "noinline_dentry"},
188 {Opt_flush_merge, "flush_merge"},
189 {Opt_noflush_merge, "noflush_merge"},
190 {Opt_nobarrier, "nobarrier"},
191 {Opt_fastboot, "fastboot"},
192 {Opt_extent_cache, "extent_cache"},
193 {Opt_noextent_cache, "noextent_cache"},
194 {Opt_noinline_data, "noinline_data"},
195 {Opt_data_flush, "data_flush"},
196 {Opt_reserve_root, "reserve_root=%u"},
197 {Opt_resgid, "resgid=%u"},
198 {Opt_resuid, "resuid=%u"},
199 {Opt_mode, "mode=%s"},
200 {Opt_io_size_bits, "io_bits=%u"},
201 {Opt_fault_injection, "fault_injection=%u"},
202 {Opt_fault_type, "fault_type=%u"},
203 {Opt_lazytime, "lazytime"},
204 {Opt_nolazytime, "nolazytime"},
205 {Opt_quota, "quota"},
206 {Opt_noquota, "noquota"},
207 {Opt_usrquota, "usrquota"},
208 {Opt_grpquota, "grpquota"},
209 {Opt_prjquota, "prjquota"},
210 {Opt_usrjquota, "usrjquota=%s"},
211 {Opt_grpjquota, "grpjquota=%s"},
212 {Opt_prjjquota, "prjjquota=%s"},
213 {Opt_offusrjquota, "usrjquota="},
214 {Opt_offgrpjquota, "grpjquota="},
215 {Opt_offprjjquota, "prjjquota="},
216 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
217 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
218 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
219 {Opt_whint, "whint_mode=%s"},
220 {Opt_alloc, "alloc_mode=%s"},
221 {Opt_fsync, "fsync_mode=%s"},
222 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
223 {Opt_test_dummy_encryption, "test_dummy_encryption"},
224 {Opt_inlinecrypt, "inlinecrypt"},
225 {Opt_checkpoint_disable, "checkpoint=disable"},
226 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
227 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
228 {Opt_checkpoint_enable, "checkpoint=enable"},
229 {Opt_compress_algorithm, "compress_algorithm=%s"},
230 {Opt_compress_log_size, "compress_log_size=%u"},
231 {Opt_compress_extension, "compress_extension=%s"},
232 {Opt_atgc, "atgc"},
233 {Opt_gc_merge, "gc_merge"},
234 {Opt_nogc_merge, "nogc_merge"},
235 {Opt_err, NULL},
236 };
237
f2fs_printk(struct f2fs_sb_info * sbi,const char * fmt,...)238 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
239 {
240 struct va_format vaf;
241 va_list args;
242 int level;
243
244 va_start(args, fmt);
245
246 level = printk_get_level(fmt);
247 vaf.fmt = printk_skip_level(fmt);
248 vaf.va = &args;
249 printk("%c%cF2FS-fs (%s): %pV\n",
250 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
251
252 va_end(args);
253 }
254
255 #ifdef CONFIG_UNICODE
256 static const struct f2fs_sb_encodings {
257 __u16 magic;
258 char *name;
259 char *version;
260 } f2fs_sb_encoding_map[] = {
261 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
262 };
263
f2fs_sb_read_encoding(const struct f2fs_super_block * sb,const struct f2fs_sb_encodings ** encoding,__u16 * flags)264 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
265 const struct f2fs_sb_encodings **encoding,
266 __u16 *flags)
267 {
268 __u16 magic = le16_to_cpu(sb->s_encoding);
269 int i;
270
271 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
272 if (magic == f2fs_sb_encoding_map[i].magic)
273 break;
274
275 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
276 return -EINVAL;
277
278 *encoding = &f2fs_sb_encoding_map[i];
279 *flags = le16_to_cpu(sb->s_encoding_flags);
280
281 return 0;
282 }
283 #endif
284
limit_reserve_root(struct f2fs_sb_info * sbi)285 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
286 {
287 block_t limit = min((sbi->user_block_count << 1) / 1000,
288 sbi->user_block_count - sbi->reserved_blocks);
289
290 /* limit is 0.2% */
291 if (test_opt(sbi, RESERVE_ROOT) &&
292 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
293 F2FS_OPTION(sbi).root_reserved_blocks = limit;
294 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
295 F2FS_OPTION(sbi).root_reserved_blocks);
296 }
297 if (!test_opt(sbi, RESERVE_ROOT) &&
298 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
299 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
300 !gid_eq(F2FS_OPTION(sbi).s_resgid,
301 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
302 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
303 from_kuid_munged(&init_user_ns,
304 F2FS_OPTION(sbi).s_resuid),
305 from_kgid_munged(&init_user_ns,
306 F2FS_OPTION(sbi).s_resgid));
307 }
308
adjust_reserved_segment(struct f2fs_sb_info * sbi)309 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
310 {
311 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
312 unsigned int avg_vblocks;
313 unsigned int wanted_reserved_segments;
314 block_t avail_user_block_count;
315
316 if (!F2FS_IO_ALIGNED(sbi))
317 return 0;
318
319 /* average valid block count in section in worst case */
320 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
321
322 /*
323 * we need enough free space when migrating one section in worst case
324 */
325 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
326 reserved_segments(sbi);
327 wanted_reserved_segments -= reserved_segments(sbi);
328
329 avail_user_block_count = sbi->user_block_count -
330 sbi->current_reserved_blocks -
331 F2FS_OPTION(sbi).root_reserved_blocks;
332
333 if (wanted_reserved_segments * sbi->blocks_per_seg >
334 avail_user_block_count) {
335 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
336 wanted_reserved_segments,
337 avail_user_block_count >> sbi->log_blocks_per_seg);
338 return -ENOSPC;
339 }
340
341 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
342
343 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
344 wanted_reserved_segments);
345
346 return 0;
347 }
348
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)349 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
350 {
351 if (!F2FS_OPTION(sbi).unusable_cap_perc)
352 return;
353
354 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
355 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
356 else
357 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
358 F2FS_OPTION(sbi).unusable_cap_perc;
359
360 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
361 F2FS_OPTION(sbi).unusable_cap,
362 F2FS_OPTION(sbi).unusable_cap_perc);
363 }
364
init_once(void * foo)365 static void init_once(void *foo)
366 {
367 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
368
369 inode_init_once(&fi->vfs_inode);
370 }
371
372 #ifdef CONFIG_QUOTA
373 static const char * const quotatypes[] = INITQFNAMES;
374 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)375 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
376 substring_t *args)
377 {
378 struct f2fs_sb_info *sbi = F2FS_SB(sb);
379 char *qname;
380 int ret = -EINVAL;
381
382 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
383 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
384 return -EINVAL;
385 }
386 if (f2fs_sb_has_quota_ino(sbi)) {
387 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
388 return 0;
389 }
390
391 qname = match_strdup(args);
392 if (!qname) {
393 f2fs_err(sbi, "Not enough memory for storing quotafile name");
394 return -ENOMEM;
395 }
396 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
397 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
398 ret = 0;
399 else
400 f2fs_err(sbi, "%s quota file already specified",
401 QTYPE2NAME(qtype));
402 goto errout;
403 }
404 if (strchr(qname, '/')) {
405 f2fs_err(sbi, "quotafile must be on filesystem root");
406 goto errout;
407 }
408 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
409 set_opt(sbi, QUOTA);
410 return 0;
411 errout:
412 kfree(qname);
413 return ret;
414 }
415
f2fs_clear_qf_name(struct super_block * sb,int qtype)416 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
417 {
418 struct f2fs_sb_info *sbi = F2FS_SB(sb);
419
420 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
421 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
422 return -EINVAL;
423 }
424 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
425 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
426 return 0;
427 }
428
f2fs_check_quota_options(struct f2fs_sb_info * sbi)429 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
430 {
431 /*
432 * We do the test below only for project quotas. 'usrquota' and
433 * 'grpquota' mount options are allowed even without quota feature
434 * to support legacy quotas in quota files.
435 */
436 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
437 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
438 return -1;
439 }
440 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
441 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
442 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
443 if (test_opt(sbi, USRQUOTA) &&
444 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
445 clear_opt(sbi, USRQUOTA);
446
447 if (test_opt(sbi, GRPQUOTA) &&
448 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
449 clear_opt(sbi, GRPQUOTA);
450
451 if (test_opt(sbi, PRJQUOTA) &&
452 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
453 clear_opt(sbi, PRJQUOTA);
454
455 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
456 test_opt(sbi, PRJQUOTA)) {
457 f2fs_err(sbi, "old and new quota format mixing");
458 return -1;
459 }
460
461 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
462 f2fs_err(sbi, "journaled quota format not specified");
463 return -1;
464 }
465 }
466
467 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
468 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
469 F2FS_OPTION(sbi).s_jquota_fmt = 0;
470 }
471 return 0;
472 }
473 #endif
474
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)475 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
476 const char *opt,
477 const substring_t *arg,
478 bool is_remount)
479 {
480 struct f2fs_sb_info *sbi = F2FS_SB(sb);
481 #ifdef CONFIG_FS_ENCRYPTION
482 int err;
483
484 if (!f2fs_sb_has_encrypt(sbi)) {
485 f2fs_err(sbi, "Encrypt feature is off");
486 return -EINVAL;
487 }
488
489 /*
490 * This mount option is just for testing, and it's not worthwhile to
491 * implement the extra complexity (e.g. RCU protection) that would be
492 * needed to allow it to be set or changed during remount. We do allow
493 * it to be specified during remount, but only if there is no change.
494 */
495 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
496 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
497 return -EINVAL;
498 }
499 err = fscrypt_set_test_dummy_encryption(
500 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
501 if (err) {
502 if (err == -EEXIST)
503 f2fs_warn(sbi,
504 "Can't change test_dummy_encryption on remount");
505 else if (err == -EINVAL)
506 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
507 opt);
508 else
509 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
510 opt, err);
511 return -EINVAL;
512 }
513 f2fs_warn(sbi, "Test dummy encryption mode enabled");
514 #else
515 f2fs_warn(sbi, "Test dummy encryption mount option ignored");
516 #endif
517 return 0;
518 }
519
parse_options(struct super_block * sb,char * options,bool is_remount)520 static int parse_options(struct super_block *sb, char *options, bool is_remount)
521 {
522 struct f2fs_sb_info *sbi = F2FS_SB(sb);
523 substring_t args[MAX_OPT_ARGS];
524 #ifdef CONFIG_F2FS_FS_COMPRESSION
525 unsigned char (*ext)[F2FS_EXTENSION_LEN];
526 int ext_cnt;
527 #endif
528 char *p, *name;
529 int arg = 0;
530 kuid_t uid;
531 kgid_t gid;
532 int ret;
533
534 if (!options)
535 return 0;
536
537 while ((p = strsep(&options, ",")) != NULL) {
538 int token;
539 if (!*p)
540 continue;
541 /*
542 * Initialize args struct so we know whether arg was
543 * found; some options take optional arguments.
544 */
545 args[0].to = args[0].from = NULL;
546 token = match_token(p, f2fs_tokens, args);
547
548 switch (token) {
549 case Opt_gc_background:
550 name = match_strdup(&args[0]);
551
552 if (!name)
553 return -ENOMEM;
554 if (!strcmp(name, "on")) {
555 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
556 } else if (!strcmp(name, "off")) {
557 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
558 } else if (!strcmp(name, "sync")) {
559 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
560 } else {
561 kfree(name);
562 return -EINVAL;
563 }
564 kfree(name);
565 break;
566 case Opt_disable_roll_forward:
567 set_opt(sbi, DISABLE_ROLL_FORWARD);
568 break;
569 case Opt_norecovery:
570 /* this option mounts f2fs with ro */
571 set_opt(sbi, NORECOVERY);
572 if (!f2fs_readonly(sb))
573 return -EINVAL;
574 break;
575 case Opt_discard:
576 set_opt(sbi, DISCARD);
577 break;
578 case Opt_nodiscard:
579 if (f2fs_sb_has_blkzoned(sbi)) {
580 f2fs_warn(sbi, "discard is required for zoned block devices");
581 return -EINVAL;
582 }
583 clear_opt(sbi, DISCARD);
584 break;
585 case Opt_noheap:
586 set_opt(sbi, NOHEAP);
587 break;
588 case Opt_heap:
589 clear_opt(sbi, NOHEAP);
590 break;
591 #ifdef CONFIG_F2FS_FS_XATTR
592 case Opt_user_xattr:
593 set_opt(sbi, XATTR_USER);
594 break;
595 case Opt_nouser_xattr:
596 clear_opt(sbi, XATTR_USER);
597 break;
598 case Opt_inline_xattr:
599 set_opt(sbi, INLINE_XATTR);
600 break;
601 case Opt_noinline_xattr:
602 clear_opt(sbi, INLINE_XATTR);
603 break;
604 case Opt_inline_xattr_size:
605 if (args->from && match_int(args, &arg))
606 return -EINVAL;
607 set_opt(sbi, INLINE_XATTR_SIZE);
608 F2FS_OPTION(sbi).inline_xattr_size = arg;
609 break;
610 #else
611 case Opt_user_xattr:
612 f2fs_info(sbi, "user_xattr options not supported");
613 break;
614 case Opt_nouser_xattr:
615 f2fs_info(sbi, "nouser_xattr options not supported");
616 break;
617 case Opt_inline_xattr:
618 f2fs_info(sbi, "inline_xattr options not supported");
619 break;
620 case Opt_noinline_xattr:
621 f2fs_info(sbi, "noinline_xattr options not supported");
622 break;
623 #endif
624 #ifdef CONFIG_F2FS_FS_POSIX_ACL
625 case Opt_acl:
626 set_opt(sbi, POSIX_ACL);
627 break;
628 case Opt_noacl:
629 clear_opt(sbi, POSIX_ACL);
630 break;
631 #else
632 case Opt_acl:
633 f2fs_info(sbi, "acl options not supported");
634 break;
635 case Opt_noacl:
636 f2fs_info(sbi, "noacl options not supported");
637 break;
638 #endif
639 case Opt_active_logs:
640 if (args->from && match_int(args, &arg))
641 return -EINVAL;
642 if (arg != 2 && arg != 4 &&
643 arg != NR_CURSEG_PERSIST_TYPE)
644 return -EINVAL;
645 F2FS_OPTION(sbi).active_logs = arg;
646 break;
647 case Opt_disable_ext_identify:
648 set_opt(sbi, DISABLE_EXT_IDENTIFY);
649 break;
650 case Opt_inline_data:
651 set_opt(sbi, INLINE_DATA);
652 break;
653 case Opt_inline_dentry:
654 set_opt(sbi, INLINE_DENTRY);
655 break;
656 case Opt_noinline_dentry:
657 clear_opt(sbi, INLINE_DENTRY);
658 break;
659 case Opt_flush_merge:
660 set_opt(sbi, FLUSH_MERGE);
661 break;
662 case Opt_noflush_merge:
663 clear_opt(sbi, FLUSH_MERGE);
664 break;
665 case Opt_nobarrier:
666 set_opt(sbi, NOBARRIER);
667 break;
668 case Opt_fastboot:
669 set_opt(sbi, FASTBOOT);
670 break;
671 case Opt_extent_cache:
672 set_opt(sbi, EXTENT_CACHE);
673 break;
674 case Opt_noextent_cache:
675 clear_opt(sbi, EXTENT_CACHE);
676 break;
677 case Opt_noinline_data:
678 clear_opt(sbi, INLINE_DATA);
679 break;
680 case Opt_data_flush:
681 set_opt(sbi, DATA_FLUSH);
682 break;
683 case Opt_reserve_root:
684 if (args->from && match_int(args, &arg))
685 return -EINVAL;
686 if (test_opt(sbi, RESERVE_ROOT)) {
687 f2fs_info(sbi, "Preserve previous reserve_root=%u",
688 F2FS_OPTION(sbi).root_reserved_blocks);
689 } else {
690 F2FS_OPTION(sbi).root_reserved_blocks = arg;
691 set_opt(sbi, RESERVE_ROOT);
692 }
693 break;
694 case Opt_resuid:
695 if (args->from && match_int(args, &arg))
696 return -EINVAL;
697 uid = make_kuid(current_user_ns(), arg);
698 if (!uid_valid(uid)) {
699 f2fs_err(sbi, "Invalid uid value %d", arg);
700 return -EINVAL;
701 }
702 F2FS_OPTION(sbi).s_resuid = uid;
703 break;
704 case Opt_resgid:
705 if (args->from && match_int(args, &arg))
706 return -EINVAL;
707 gid = make_kgid(current_user_ns(), arg);
708 if (!gid_valid(gid)) {
709 f2fs_err(sbi, "Invalid gid value %d", arg);
710 return -EINVAL;
711 }
712 F2FS_OPTION(sbi).s_resgid = gid;
713 break;
714 case Opt_mode:
715 name = match_strdup(&args[0]);
716
717 if (!name)
718 return -ENOMEM;
719 if (!strcmp(name, "adaptive")) {
720 if (f2fs_sb_has_blkzoned(sbi)) {
721 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
722 kfree(name);
723 return -EINVAL;
724 }
725 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
726 } else if (!strcmp(name, "lfs")) {
727 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
728 } else {
729 kfree(name);
730 return -EINVAL;
731 }
732 kfree(name);
733 break;
734 case Opt_io_size_bits:
735 if (args->from && match_int(args, &arg))
736 return -EINVAL;
737 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
738 f2fs_warn(sbi, "Not support %d, larger than %d",
739 1 << arg, BIO_MAX_PAGES);
740 return -EINVAL;
741 }
742 F2FS_OPTION(sbi).write_io_size_bits = arg;
743 break;
744 #ifdef CONFIG_F2FS_FAULT_INJECTION
745 case Opt_fault_injection:
746 if (args->from && match_int(args, &arg))
747 return -EINVAL;
748 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
749 set_opt(sbi, FAULT_INJECTION);
750 break;
751
752 case Opt_fault_type:
753 if (args->from && match_int(args, &arg))
754 return -EINVAL;
755 f2fs_build_fault_attr(sbi, 0, arg);
756 set_opt(sbi, FAULT_INJECTION);
757 break;
758 #else
759 case Opt_fault_injection:
760 f2fs_info(sbi, "fault_injection options not supported");
761 break;
762
763 case Opt_fault_type:
764 f2fs_info(sbi, "fault_type options not supported");
765 break;
766 #endif
767 case Opt_lazytime:
768 sb->s_flags |= SB_LAZYTIME;
769 break;
770 case Opt_nolazytime:
771 sb->s_flags &= ~SB_LAZYTIME;
772 break;
773 #ifdef CONFIG_QUOTA
774 case Opt_quota:
775 case Opt_usrquota:
776 set_opt(sbi, USRQUOTA);
777 break;
778 case Opt_grpquota:
779 set_opt(sbi, GRPQUOTA);
780 break;
781 case Opt_prjquota:
782 set_opt(sbi, PRJQUOTA);
783 break;
784 case Opt_usrjquota:
785 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
786 if (ret)
787 return ret;
788 break;
789 case Opt_grpjquota:
790 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
791 if (ret)
792 return ret;
793 break;
794 case Opt_prjjquota:
795 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
796 if (ret)
797 return ret;
798 break;
799 case Opt_offusrjquota:
800 ret = f2fs_clear_qf_name(sb, USRQUOTA);
801 if (ret)
802 return ret;
803 break;
804 case Opt_offgrpjquota:
805 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
806 if (ret)
807 return ret;
808 break;
809 case Opt_offprjjquota:
810 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
811 if (ret)
812 return ret;
813 break;
814 case Opt_jqfmt_vfsold:
815 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
816 break;
817 case Opt_jqfmt_vfsv0:
818 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
819 break;
820 case Opt_jqfmt_vfsv1:
821 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
822 break;
823 case Opt_noquota:
824 clear_opt(sbi, QUOTA);
825 clear_opt(sbi, USRQUOTA);
826 clear_opt(sbi, GRPQUOTA);
827 clear_opt(sbi, PRJQUOTA);
828 break;
829 #else
830 case Opt_quota:
831 case Opt_usrquota:
832 case Opt_grpquota:
833 case Opt_prjquota:
834 case Opt_usrjquota:
835 case Opt_grpjquota:
836 case Opt_prjjquota:
837 case Opt_offusrjquota:
838 case Opt_offgrpjquota:
839 case Opt_offprjjquota:
840 case Opt_jqfmt_vfsold:
841 case Opt_jqfmt_vfsv0:
842 case Opt_jqfmt_vfsv1:
843 case Opt_noquota:
844 f2fs_info(sbi, "quota operations not supported");
845 break;
846 #endif
847 case Opt_whint:
848 name = match_strdup(&args[0]);
849 if (!name)
850 return -ENOMEM;
851 if (!strcmp(name, "user-based")) {
852 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
853 } else if (!strcmp(name, "off")) {
854 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
855 } else if (!strcmp(name, "fs-based")) {
856 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
857 } else {
858 kfree(name);
859 return -EINVAL;
860 }
861 kfree(name);
862 break;
863 case Opt_alloc:
864 name = match_strdup(&args[0]);
865 if (!name)
866 return -ENOMEM;
867
868 if (!strcmp(name, "default")) {
869 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
870 } else if (!strcmp(name, "reuse")) {
871 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
872 } else {
873 kfree(name);
874 return -EINVAL;
875 }
876 kfree(name);
877 break;
878 case Opt_fsync:
879 name = match_strdup(&args[0]);
880 if (!name)
881 return -ENOMEM;
882 if (!strcmp(name, "posix")) {
883 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
884 } else if (!strcmp(name, "strict")) {
885 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
886 } else if (!strcmp(name, "nobarrier")) {
887 F2FS_OPTION(sbi).fsync_mode =
888 FSYNC_MODE_NOBARRIER;
889 } else {
890 kfree(name);
891 return -EINVAL;
892 }
893 kfree(name);
894 break;
895 case Opt_test_dummy_encryption:
896 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
897 is_remount);
898 if (ret)
899 return ret;
900 break;
901 case Opt_inlinecrypt:
902 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
903 sb->s_flags |= SB_INLINECRYPT;
904 #else
905 f2fs_info(sbi, "inline encryption not supported");
906 #endif
907 break;
908 case Opt_checkpoint_disable_cap_perc:
909 if (args->from && match_int(args, &arg))
910 return -EINVAL;
911 if (arg < 0 || arg > 100)
912 return -EINVAL;
913 F2FS_OPTION(sbi).unusable_cap_perc = arg;
914 set_opt(sbi, DISABLE_CHECKPOINT);
915 break;
916 case Opt_checkpoint_disable_cap:
917 if (args->from && match_int(args, &arg))
918 return -EINVAL;
919 F2FS_OPTION(sbi).unusable_cap = arg;
920 set_opt(sbi, DISABLE_CHECKPOINT);
921 break;
922 case Opt_checkpoint_disable:
923 set_opt(sbi, DISABLE_CHECKPOINT);
924 break;
925 case Opt_checkpoint_enable:
926 clear_opt(sbi, DISABLE_CHECKPOINT);
927 break;
928 #ifdef CONFIG_F2FS_FS_COMPRESSION
929 case Opt_compress_algorithm:
930 if (!f2fs_sb_has_compression(sbi)) {
931 f2fs_info(sbi, "Image doesn't support compression");
932 break;
933 }
934 name = match_strdup(&args[0]);
935 if (!name)
936 return -ENOMEM;
937 if (!strcmp(name, "lzo")) {
938 F2FS_OPTION(sbi).compress_algorithm =
939 COMPRESS_LZO;
940 } else if (!strcmp(name, "lz4")) {
941 F2FS_OPTION(sbi).compress_algorithm =
942 COMPRESS_LZ4;
943 } else if (!strcmp(name, "zstd")) {
944 F2FS_OPTION(sbi).compress_algorithm =
945 COMPRESS_ZSTD;
946 } else if (!strcmp(name, "lzo-rle")) {
947 F2FS_OPTION(sbi).compress_algorithm =
948 COMPRESS_LZORLE;
949 } else {
950 kfree(name);
951 return -EINVAL;
952 }
953 kfree(name);
954 break;
955 case Opt_compress_log_size:
956 if (!f2fs_sb_has_compression(sbi)) {
957 f2fs_info(sbi, "Image doesn't support compression");
958 break;
959 }
960 if (args->from && match_int(args, &arg))
961 return -EINVAL;
962 if (arg < MIN_COMPRESS_LOG_SIZE ||
963 arg > MAX_COMPRESS_LOG_SIZE) {
964 f2fs_err(sbi,
965 "Compress cluster log size is out of range");
966 return -EINVAL;
967 }
968 F2FS_OPTION(sbi).compress_log_size = arg;
969 break;
970 case Opt_compress_extension:
971 if (!f2fs_sb_has_compression(sbi)) {
972 f2fs_info(sbi, "Image doesn't support compression");
973 break;
974 }
975 name = match_strdup(&args[0]);
976 if (!name)
977 return -ENOMEM;
978
979 ext = F2FS_OPTION(sbi).extensions;
980 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
981
982 if (strlen(name) >= F2FS_EXTENSION_LEN ||
983 ext_cnt >= COMPRESS_EXT_NUM) {
984 f2fs_err(sbi,
985 "invalid extension length/number");
986 kfree(name);
987 return -EINVAL;
988 }
989
990 strcpy(ext[ext_cnt], name);
991 F2FS_OPTION(sbi).compress_ext_cnt++;
992 kfree(name);
993 break;
994 #else
995 case Opt_compress_algorithm:
996 case Opt_compress_log_size:
997 case Opt_compress_extension:
998 f2fs_info(sbi, "compression options not supported");
999 break;
1000 #endif
1001 case Opt_atgc:
1002 set_opt(sbi, ATGC);
1003 break;
1004 case Opt_gc_merge:
1005 set_opt(sbi, GC_MERGE);
1006 break;
1007 case Opt_nogc_merge:
1008 clear_opt(sbi, GC_MERGE);
1009 break;
1010 default:
1011 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1012 p);
1013 return -EINVAL;
1014 }
1015 }
1016 #ifdef CONFIG_QUOTA
1017 if (f2fs_check_quota_options(sbi))
1018 return -EINVAL;
1019 #else
1020 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1021 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1022 return -EINVAL;
1023 }
1024 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1025 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1026 return -EINVAL;
1027 }
1028 #endif
1029 #ifndef CONFIG_UNICODE
1030 if (f2fs_sb_has_casefold(sbi)) {
1031 f2fs_err(sbi,
1032 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1033 return -EINVAL;
1034 }
1035 #endif
1036 /*
1037 * The BLKZONED feature indicates that the drive was formatted with
1038 * zone alignment optimization. This is optional for host-aware
1039 * devices, but mandatory for host-managed zoned block devices.
1040 */
1041 #ifndef CONFIG_BLK_DEV_ZONED
1042 if (f2fs_sb_has_blkzoned(sbi)) {
1043 f2fs_err(sbi, "Zoned block device support is not enabled");
1044 return -EINVAL;
1045 }
1046 #endif
1047
1048 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1049 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1050 F2FS_IO_SIZE_KB(sbi));
1051 return -EINVAL;
1052 }
1053
1054 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1055 int min_size, max_size;
1056
1057 if (!f2fs_sb_has_extra_attr(sbi) ||
1058 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1059 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1060 return -EINVAL;
1061 }
1062 if (!test_opt(sbi, INLINE_XATTR)) {
1063 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1064 return -EINVAL;
1065 }
1066
1067 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1068 max_size = MAX_INLINE_XATTR_SIZE;
1069
1070 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1071 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1072 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1073 min_size, max_size);
1074 return -EINVAL;
1075 }
1076 }
1077
1078 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1079 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1080 return -EINVAL;
1081 }
1082
1083 /* Not pass down write hints if the number of active logs is lesser
1084 * than NR_CURSEG_PERSIST_TYPE.
1085 */
1086 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1087 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1088 return 0;
1089 }
1090
f2fs_alloc_inode(struct super_block * sb)1091 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1092 {
1093 struct f2fs_inode_info *fi;
1094
1095 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1096 if (!fi)
1097 return NULL;
1098
1099 init_once((void *) fi);
1100
1101 /* Initialize f2fs-specific inode info */
1102 atomic_set(&fi->dirty_pages, 0);
1103 atomic_set(&fi->i_compr_blocks, 0);
1104 init_rwsem(&fi->i_sem);
1105 spin_lock_init(&fi->i_size_lock);
1106 INIT_LIST_HEAD(&fi->dirty_list);
1107 INIT_LIST_HEAD(&fi->gdirty_list);
1108 INIT_LIST_HEAD(&fi->inmem_ilist);
1109 INIT_LIST_HEAD(&fi->inmem_pages);
1110 mutex_init(&fi->inmem_lock);
1111 init_rwsem(&fi->i_gc_rwsem[READ]);
1112 init_rwsem(&fi->i_gc_rwsem[WRITE]);
1113 init_rwsem(&fi->i_mmap_sem);
1114 init_rwsem(&fi->i_xattr_sem);
1115
1116 /* Will be used by directory only */
1117 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1118
1119 fi->ra_offset = -1;
1120
1121 return &fi->vfs_inode;
1122 }
1123
f2fs_drop_inode(struct inode * inode)1124 static int f2fs_drop_inode(struct inode *inode)
1125 {
1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 int ret;
1128
1129 /*
1130 * during filesystem shutdown, if checkpoint is disabled,
1131 * drop useless meta/node dirty pages.
1132 */
1133 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1134 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1135 inode->i_ino == F2FS_META_INO(sbi)) {
1136 trace_f2fs_drop_inode(inode, 1);
1137 return 1;
1138 }
1139 }
1140
1141 /*
1142 * This is to avoid a deadlock condition like below.
1143 * writeback_single_inode(inode)
1144 * - f2fs_write_data_page
1145 * - f2fs_gc -> iput -> evict
1146 * - inode_wait_for_writeback(inode)
1147 */
1148 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1149 if (!inode->i_nlink && !is_bad_inode(inode)) {
1150 /* to avoid evict_inode call simultaneously */
1151 atomic_inc(&inode->i_count);
1152 spin_unlock(&inode->i_lock);
1153
1154 /* some remained atomic pages should discarded */
1155 if (f2fs_is_atomic_file(inode))
1156 f2fs_drop_inmem_pages(inode);
1157
1158 /* should remain fi->extent_tree for writepage */
1159 f2fs_destroy_extent_node(inode);
1160
1161 sb_start_intwrite(inode->i_sb);
1162 f2fs_i_size_write(inode, 0);
1163
1164 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1165 inode, NULL, 0, DATA);
1166 truncate_inode_pages_final(inode->i_mapping);
1167
1168 if (F2FS_HAS_BLOCKS(inode))
1169 f2fs_truncate(inode);
1170
1171 sb_end_intwrite(inode->i_sb);
1172
1173 spin_lock(&inode->i_lock);
1174 atomic_dec(&inode->i_count);
1175 }
1176 trace_f2fs_drop_inode(inode, 0);
1177 return 0;
1178 }
1179 ret = generic_drop_inode(inode);
1180 if (!ret)
1181 ret = fscrypt_drop_inode(inode);
1182 trace_f2fs_drop_inode(inode, ret);
1183 return ret;
1184 }
1185
f2fs_inode_dirtied(struct inode * inode,bool sync)1186 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1187 {
1188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 int ret = 0;
1190
1191 spin_lock(&sbi->inode_lock[DIRTY_META]);
1192 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1193 ret = 1;
1194 } else {
1195 set_inode_flag(inode, FI_DIRTY_INODE);
1196 stat_inc_dirty_inode(sbi, DIRTY_META);
1197 }
1198 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1199 list_add_tail(&F2FS_I(inode)->gdirty_list,
1200 &sbi->inode_list[DIRTY_META]);
1201 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1202 }
1203 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1204 return ret;
1205 }
1206
f2fs_inode_synced(struct inode * inode)1207 void f2fs_inode_synced(struct inode *inode)
1208 {
1209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1210
1211 spin_lock(&sbi->inode_lock[DIRTY_META]);
1212 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1213 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1214 return;
1215 }
1216 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1217 list_del_init(&F2FS_I(inode)->gdirty_list);
1218 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1219 }
1220 clear_inode_flag(inode, FI_DIRTY_INODE);
1221 clear_inode_flag(inode, FI_AUTO_RECOVER);
1222 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1223 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1224 }
1225
1226 /*
1227 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1228 *
1229 * We should call set_dirty_inode to write the dirty inode through write_inode.
1230 */
f2fs_dirty_inode(struct inode * inode,int flags)1231 static void f2fs_dirty_inode(struct inode *inode, int flags)
1232 {
1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1234
1235 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1236 inode->i_ino == F2FS_META_INO(sbi))
1237 return;
1238
1239 if (flags == I_DIRTY_TIME)
1240 return;
1241
1242 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1243 clear_inode_flag(inode, FI_AUTO_RECOVER);
1244
1245 f2fs_inode_dirtied(inode, false);
1246 }
1247
f2fs_free_inode(struct inode * inode)1248 static void f2fs_free_inode(struct inode *inode)
1249 {
1250 fscrypt_free_inode(inode);
1251 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1252 }
1253
destroy_percpu_info(struct f2fs_sb_info * sbi)1254 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1255 {
1256 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1257 percpu_counter_destroy(&sbi->total_valid_inode_count);
1258 }
1259
destroy_device_list(struct f2fs_sb_info * sbi)1260 static void destroy_device_list(struct f2fs_sb_info *sbi)
1261 {
1262 int i;
1263
1264 for (i = 0; i < sbi->s_ndevs; i++) {
1265 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1266 #ifdef CONFIG_BLK_DEV_ZONED
1267 kvfree(FDEV(i).blkz_seq);
1268 kfree(FDEV(i).zone_capacity_blocks);
1269 #endif
1270 }
1271 kvfree(sbi->devs);
1272 }
1273
f2fs_put_super(struct super_block * sb)1274 static void f2fs_put_super(struct super_block *sb)
1275 {
1276 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1277 int i;
1278 bool dropped;
1279
1280 /* unregister procfs/sysfs entries in advance to avoid race case */
1281 f2fs_unregister_sysfs(sbi);
1282
1283 f2fs_quota_off_umount(sb);
1284
1285 /* prevent remaining shrinker jobs */
1286 mutex_lock(&sbi->umount_mutex);
1287
1288 /*
1289 * We don't need to do checkpoint when superblock is clean.
1290 * But, the previous checkpoint was not done by umount, it needs to do
1291 * clean checkpoint again.
1292 */
1293 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1294 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1295 struct cp_control cpc = {
1296 .reason = CP_UMOUNT,
1297 };
1298 f2fs_write_checkpoint(sbi, &cpc);
1299 }
1300
1301 /* be sure to wait for any on-going discard commands */
1302 dropped = f2fs_issue_discard_timeout(sbi);
1303
1304 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1305 !sbi->discard_blks && !dropped) {
1306 struct cp_control cpc = {
1307 .reason = CP_UMOUNT | CP_TRIMMED,
1308 };
1309 f2fs_write_checkpoint(sbi, &cpc);
1310 }
1311
1312 /*
1313 * normally superblock is clean, so we need to release this.
1314 * In addition, EIO will skip do checkpoint, we need this as well.
1315 */
1316 f2fs_release_ino_entry(sbi, true);
1317
1318 f2fs_leave_shrinker(sbi);
1319 mutex_unlock(&sbi->umount_mutex);
1320
1321 /* our cp_error case, we can wait for any writeback page */
1322 f2fs_flush_merged_writes(sbi);
1323
1324 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1325
1326 f2fs_bug_on(sbi, sbi->fsync_node_num);
1327
1328 iput(sbi->node_inode);
1329 sbi->node_inode = NULL;
1330
1331 iput(sbi->meta_inode);
1332 sbi->meta_inode = NULL;
1333
1334 /*
1335 * iput() can update stat information, if f2fs_write_checkpoint()
1336 * above failed with error.
1337 */
1338 f2fs_destroy_stats(sbi);
1339
1340 /* destroy f2fs internal modules */
1341 f2fs_destroy_node_manager(sbi);
1342 f2fs_destroy_segment_manager(sbi);
1343
1344 f2fs_destroy_post_read_wq(sbi);
1345
1346 kvfree(sbi->ckpt);
1347
1348 sb->s_fs_info = NULL;
1349 if (sbi->s_chksum_driver)
1350 crypto_free_shash(sbi->s_chksum_driver);
1351 kfree(sbi->raw_super);
1352
1353 destroy_device_list(sbi);
1354 f2fs_destroy_page_array_cache(sbi);
1355 f2fs_destroy_xattr_caches(sbi);
1356 mempool_destroy(sbi->write_io_dummy);
1357 #ifdef CONFIG_QUOTA
1358 for (i = 0; i < MAXQUOTAS; i++)
1359 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1360 #endif
1361 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1362 destroy_percpu_info(sbi);
1363 for (i = 0; i < NR_PAGE_TYPE; i++)
1364 kvfree(sbi->write_io[i]);
1365 #ifdef CONFIG_UNICODE
1366 utf8_unload(sb->s_encoding);
1367 #endif
1368 kfree(sbi);
1369 }
1370
f2fs_sync_fs(struct super_block * sb,int sync)1371 int f2fs_sync_fs(struct super_block *sb, int sync)
1372 {
1373 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1374 int err = 0;
1375
1376 if (unlikely(f2fs_cp_error(sbi)))
1377 return 0;
1378 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1379 return 0;
1380
1381 trace_f2fs_sync_fs(sb, sync);
1382
1383 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1384 return -EAGAIN;
1385
1386 if (sync) {
1387 struct cp_control cpc;
1388
1389 cpc.reason = __get_cp_reason(sbi);
1390
1391 down_write(&sbi->gc_lock);
1392 err = f2fs_write_checkpoint(sbi, &cpc);
1393 up_write(&sbi->gc_lock);
1394 }
1395 f2fs_trace_ios(NULL, 1);
1396
1397 return err;
1398 }
1399
f2fs_freeze(struct super_block * sb)1400 static int f2fs_freeze(struct super_block *sb)
1401 {
1402 if (f2fs_readonly(sb))
1403 return 0;
1404
1405 /* IO error happened before */
1406 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1407 return -EIO;
1408
1409 /* must be clean, since sync_filesystem() was already called */
1410 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1411 return -EINVAL;
1412 return 0;
1413 }
1414
f2fs_unfreeze(struct super_block * sb)1415 static int f2fs_unfreeze(struct super_block *sb)
1416 {
1417 return 0;
1418 }
1419
1420 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1421 static int f2fs_statfs_project(struct super_block *sb,
1422 kprojid_t projid, struct kstatfs *buf)
1423 {
1424 struct kqid qid;
1425 struct dquot *dquot;
1426 u64 limit;
1427 u64 curblock;
1428
1429 qid = make_kqid_projid(projid);
1430 dquot = dqget(sb, qid);
1431 if (IS_ERR(dquot))
1432 return PTR_ERR(dquot);
1433 spin_lock(&dquot->dq_dqb_lock);
1434
1435 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1436 dquot->dq_dqb.dqb_bhardlimit);
1437 if (limit)
1438 limit >>= sb->s_blocksize_bits;
1439
1440 if (limit && buf->f_blocks > limit) {
1441 curblock = (dquot->dq_dqb.dqb_curspace +
1442 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1443 buf->f_blocks = limit;
1444 buf->f_bfree = buf->f_bavail =
1445 (buf->f_blocks > curblock) ?
1446 (buf->f_blocks - curblock) : 0;
1447 }
1448
1449 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1450 dquot->dq_dqb.dqb_ihardlimit);
1451
1452 if (limit && buf->f_files > limit) {
1453 buf->f_files = limit;
1454 buf->f_ffree =
1455 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1456 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1457 }
1458
1459 spin_unlock(&dquot->dq_dqb_lock);
1460 dqput(dquot);
1461 return 0;
1462 }
1463 #endif
1464
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1465 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1466 {
1467 struct super_block *sb = dentry->d_sb;
1468 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1469 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1470 block_t total_count, user_block_count, start_count;
1471 u64 avail_node_count;
1472
1473 total_count = le64_to_cpu(sbi->raw_super->block_count);
1474 user_block_count = sbi->user_block_count;
1475 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1476 buf->f_type = F2FS_SUPER_MAGIC;
1477 buf->f_bsize = sbi->blocksize;
1478
1479 buf->f_blocks = total_count - start_count;
1480 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1481 sbi->current_reserved_blocks;
1482
1483 spin_lock(&sbi->stat_lock);
1484 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1485 buf->f_bfree = 0;
1486 else
1487 buf->f_bfree -= sbi->unusable_block_count;
1488 spin_unlock(&sbi->stat_lock);
1489
1490 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1491 buf->f_bavail = buf->f_bfree -
1492 F2FS_OPTION(sbi).root_reserved_blocks;
1493 else
1494 buf->f_bavail = 0;
1495
1496 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1497
1498 if (avail_node_count > user_block_count) {
1499 buf->f_files = user_block_count;
1500 buf->f_ffree = buf->f_bavail;
1501 } else {
1502 buf->f_files = avail_node_count;
1503 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1504 buf->f_bavail);
1505 }
1506
1507 buf->f_namelen = F2FS_NAME_LEN;
1508 buf->f_fsid = u64_to_fsid(id);
1509
1510 #ifdef CONFIG_QUOTA
1511 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1512 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1513 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1514 }
1515 #endif
1516 return 0;
1517 }
1518
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1519 static inline void f2fs_show_quota_options(struct seq_file *seq,
1520 struct super_block *sb)
1521 {
1522 #ifdef CONFIG_QUOTA
1523 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1524
1525 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1526 char *fmtname = "";
1527
1528 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1529 case QFMT_VFS_OLD:
1530 fmtname = "vfsold";
1531 break;
1532 case QFMT_VFS_V0:
1533 fmtname = "vfsv0";
1534 break;
1535 case QFMT_VFS_V1:
1536 fmtname = "vfsv1";
1537 break;
1538 }
1539 seq_printf(seq, ",jqfmt=%s", fmtname);
1540 }
1541
1542 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1543 seq_show_option(seq, "usrjquota",
1544 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1545
1546 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1547 seq_show_option(seq, "grpjquota",
1548 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1549
1550 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1551 seq_show_option(seq, "prjjquota",
1552 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1553 #endif
1554 }
1555
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1556 static inline void f2fs_show_compress_options(struct seq_file *seq,
1557 struct super_block *sb)
1558 {
1559 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1560 char *algtype = "";
1561 int i;
1562
1563 if (!f2fs_sb_has_compression(sbi))
1564 return;
1565
1566 switch (F2FS_OPTION(sbi).compress_algorithm) {
1567 case COMPRESS_LZO:
1568 algtype = "lzo";
1569 break;
1570 case COMPRESS_LZ4:
1571 algtype = "lz4";
1572 break;
1573 case COMPRESS_ZSTD:
1574 algtype = "zstd";
1575 break;
1576 case COMPRESS_LZORLE:
1577 algtype = "lzo-rle";
1578 break;
1579 }
1580 seq_printf(seq, ",compress_algorithm=%s", algtype);
1581
1582 seq_printf(seq, ",compress_log_size=%u",
1583 F2FS_OPTION(sbi).compress_log_size);
1584
1585 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1586 seq_printf(seq, ",compress_extension=%s",
1587 F2FS_OPTION(sbi).extensions[i]);
1588 }
1589 }
1590
f2fs_show_options(struct seq_file * seq,struct dentry * root)1591 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1592 {
1593 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1594
1595 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1596 seq_printf(seq, ",background_gc=%s", "sync");
1597 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1598 seq_printf(seq, ",background_gc=%s", "on");
1599 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1600 seq_printf(seq, ",background_gc=%s", "off");
1601
1602 if (test_opt(sbi, GC_MERGE))
1603 seq_puts(seq, ",gc_merge");
1604
1605 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1606 seq_puts(seq, ",disable_roll_forward");
1607 if (test_opt(sbi, NORECOVERY))
1608 seq_puts(seq, ",norecovery");
1609 if (test_opt(sbi, DISCARD))
1610 seq_puts(seq, ",discard");
1611 else
1612 seq_puts(seq, ",nodiscard");
1613 if (test_opt(sbi, NOHEAP))
1614 seq_puts(seq, ",no_heap");
1615 else
1616 seq_puts(seq, ",heap");
1617 #ifdef CONFIG_F2FS_FS_XATTR
1618 if (test_opt(sbi, XATTR_USER))
1619 seq_puts(seq, ",user_xattr");
1620 else
1621 seq_puts(seq, ",nouser_xattr");
1622 if (test_opt(sbi, INLINE_XATTR))
1623 seq_puts(seq, ",inline_xattr");
1624 else
1625 seq_puts(seq, ",noinline_xattr");
1626 if (test_opt(sbi, INLINE_XATTR_SIZE))
1627 seq_printf(seq, ",inline_xattr_size=%u",
1628 F2FS_OPTION(sbi).inline_xattr_size);
1629 #endif
1630 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1631 if (test_opt(sbi, POSIX_ACL))
1632 seq_puts(seq, ",acl");
1633 else
1634 seq_puts(seq, ",noacl");
1635 #endif
1636 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1637 seq_puts(seq, ",disable_ext_identify");
1638 if (test_opt(sbi, INLINE_DATA))
1639 seq_puts(seq, ",inline_data");
1640 else
1641 seq_puts(seq, ",noinline_data");
1642 if (test_opt(sbi, INLINE_DENTRY))
1643 seq_puts(seq, ",inline_dentry");
1644 else
1645 seq_puts(seq, ",noinline_dentry");
1646 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1647 seq_puts(seq, ",flush_merge");
1648 if (test_opt(sbi, NOBARRIER))
1649 seq_puts(seq, ",nobarrier");
1650 if (test_opt(sbi, FASTBOOT))
1651 seq_puts(seq, ",fastboot");
1652 if (test_opt(sbi, EXTENT_CACHE))
1653 seq_puts(seq, ",extent_cache");
1654 else
1655 seq_puts(seq, ",noextent_cache");
1656 if (test_opt(sbi, DATA_FLUSH))
1657 seq_puts(seq, ",data_flush");
1658
1659 seq_puts(seq, ",mode=");
1660 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1661 seq_puts(seq, "adaptive");
1662 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1663 seq_puts(seq, "lfs");
1664 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1665 if (test_opt(sbi, RESERVE_ROOT))
1666 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1667 F2FS_OPTION(sbi).root_reserved_blocks,
1668 from_kuid_munged(&init_user_ns,
1669 F2FS_OPTION(sbi).s_resuid),
1670 from_kgid_munged(&init_user_ns,
1671 F2FS_OPTION(sbi).s_resgid));
1672 if (F2FS_IO_SIZE_BITS(sbi))
1673 seq_printf(seq, ",io_bits=%u",
1674 F2FS_OPTION(sbi).write_io_size_bits);
1675 #ifdef CONFIG_F2FS_FAULT_INJECTION
1676 if (test_opt(sbi, FAULT_INJECTION)) {
1677 seq_printf(seq, ",fault_injection=%u",
1678 F2FS_OPTION(sbi).fault_info.inject_rate);
1679 seq_printf(seq, ",fault_type=%u",
1680 F2FS_OPTION(sbi).fault_info.inject_type);
1681 }
1682 #endif
1683 #ifdef CONFIG_QUOTA
1684 if (test_opt(sbi, QUOTA))
1685 seq_puts(seq, ",quota");
1686 if (test_opt(sbi, USRQUOTA))
1687 seq_puts(seq, ",usrquota");
1688 if (test_opt(sbi, GRPQUOTA))
1689 seq_puts(seq, ",grpquota");
1690 if (test_opt(sbi, PRJQUOTA))
1691 seq_puts(seq, ",prjquota");
1692 #endif
1693 f2fs_show_quota_options(seq, sbi->sb);
1694 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1695 seq_printf(seq, ",whint_mode=%s", "user-based");
1696 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1697 seq_printf(seq, ",whint_mode=%s", "fs-based");
1698
1699 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1700
1701 if (sbi->sb->s_flags & SB_INLINECRYPT)
1702 seq_puts(seq, ",inlinecrypt");
1703
1704 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1705 seq_printf(seq, ",alloc_mode=%s", "default");
1706 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1707 seq_printf(seq, ",alloc_mode=%s", "reuse");
1708
1709 if (test_opt(sbi, DISABLE_CHECKPOINT))
1710 seq_printf(seq, ",checkpoint=disable:%u",
1711 F2FS_OPTION(sbi).unusable_cap);
1712 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1713 seq_printf(seq, ",fsync_mode=%s", "posix");
1714 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1715 seq_printf(seq, ",fsync_mode=%s", "strict");
1716 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1717 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1718
1719 #ifdef CONFIG_F2FS_FS_COMPRESSION
1720 f2fs_show_compress_options(seq, sbi->sb);
1721 #endif
1722
1723 if (test_opt(sbi, ATGC))
1724 seq_puts(seq, ",atgc");
1725 return 0;
1726 }
1727
default_options(struct f2fs_sb_info * sbi)1728 static void default_options(struct f2fs_sb_info *sbi)
1729 {
1730 /* init some FS parameters */
1731 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1732 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1733 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1734 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1735 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1736 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1737 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1738 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1739 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1740 F2FS_OPTION(sbi).compress_ext_cnt = 0;
1741 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1742
1743 sbi->sb->s_flags &= ~SB_INLINECRYPT;
1744
1745 set_opt(sbi, INLINE_XATTR);
1746 set_opt(sbi, INLINE_DATA);
1747 set_opt(sbi, INLINE_DENTRY);
1748 set_opt(sbi, EXTENT_CACHE);
1749 set_opt(sbi, NOHEAP);
1750 clear_opt(sbi, DISABLE_CHECKPOINT);
1751 F2FS_OPTION(sbi).unusable_cap = 0;
1752 sbi->sb->s_flags |= SB_LAZYTIME;
1753 set_opt(sbi, FLUSH_MERGE);
1754 set_opt(sbi, DISCARD);
1755 if (f2fs_sb_has_blkzoned(sbi))
1756 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1757 else
1758 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1759
1760 #ifdef CONFIG_F2FS_FS_XATTR
1761 set_opt(sbi, XATTR_USER);
1762 #endif
1763 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1764 set_opt(sbi, POSIX_ACL);
1765 #endif
1766
1767 f2fs_build_fault_attr(sbi, 0, 0);
1768 }
1769
1770 #ifdef CONFIG_QUOTA
1771 static int f2fs_enable_quotas(struct super_block *sb);
1772 #endif
1773
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)1774 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1775 {
1776 unsigned int s_flags = sbi->sb->s_flags;
1777 struct cp_control cpc;
1778 int err = 0;
1779 int ret;
1780 block_t unusable;
1781
1782 if (s_flags & SB_RDONLY) {
1783 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1784 return -EINVAL;
1785 }
1786 sbi->sb->s_flags |= SB_ACTIVE;
1787
1788 f2fs_update_time(sbi, DISABLE_TIME);
1789
1790 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1791 down_write(&sbi->gc_lock);
1792 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1793 if (err == -ENODATA) {
1794 err = 0;
1795 break;
1796 }
1797 if (err && err != -EAGAIN)
1798 break;
1799 }
1800
1801 ret = sync_filesystem(sbi->sb);
1802 if (ret || err) {
1803 err = ret ? ret: err;
1804 goto restore_flag;
1805 }
1806
1807 unusable = f2fs_get_unusable_blocks(sbi);
1808 if (f2fs_disable_cp_again(sbi, unusable)) {
1809 err = -EAGAIN;
1810 goto restore_flag;
1811 }
1812
1813 down_write(&sbi->gc_lock);
1814 cpc.reason = CP_PAUSE;
1815 set_sbi_flag(sbi, SBI_CP_DISABLED);
1816 err = f2fs_write_checkpoint(sbi, &cpc);
1817 if (err)
1818 goto out_unlock;
1819
1820 spin_lock(&sbi->stat_lock);
1821 sbi->unusable_block_count = unusable;
1822 spin_unlock(&sbi->stat_lock);
1823
1824 out_unlock:
1825 up_write(&sbi->gc_lock);
1826 restore_flag:
1827 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
1828 return err;
1829 }
1830
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)1831 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1832 {
1833 int retry = DEFAULT_RETRY_IO_COUNT;
1834
1835 /* we should flush all the data to keep data consistency */
1836 do {
1837 sync_inodes_sb(sbi->sb);
1838 cond_resched();
1839 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
1840 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
1841
1842 if (unlikely(retry < 0))
1843 f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
1844
1845 down_write(&sbi->gc_lock);
1846 f2fs_dirty_to_prefree(sbi);
1847
1848 clear_sbi_flag(sbi, SBI_CP_DISABLED);
1849 set_sbi_flag(sbi, SBI_IS_DIRTY);
1850 up_write(&sbi->gc_lock);
1851
1852 f2fs_sync_fs(sbi->sb, 1);
1853 }
1854
f2fs_remount(struct super_block * sb,int * flags,char * data)1855 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1856 {
1857 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1858 struct f2fs_mount_info org_mount_opt;
1859 unsigned long old_sb_flags;
1860 int err;
1861 bool need_restart_gc = false;
1862 bool need_stop_gc = false;
1863 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1864 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1865 bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1866 bool no_atgc = !test_opt(sbi, ATGC);
1867 bool checkpoint_changed;
1868 #ifdef CONFIG_QUOTA
1869 int i, j;
1870 #endif
1871
1872 /*
1873 * Save the old mount options in case we
1874 * need to restore them.
1875 */
1876 org_mount_opt = sbi->mount_opt;
1877 old_sb_flags = sb->s_flags;
1878
1879 #ifdef CONFIG_QUOTA
1880 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1881 for (i = 0; i < MAXQUOTAS; i++) {
1882 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1883 org_mount_opt.s_qf_names[i] =
1884 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1885 GFP_KERNEL);
1886 if (!org_mount_opt.s_qf_names[i]) {
1887 for (j = 0; j < i; j++)
1888 kfree(org_mount_opt.s_qf_names[j]);
1889 return -ENOMEM;
1890 }
1891 } else {
1892 org_mount_opt.s_qf_names[i] = NULL;
1893 }
1894 }
1895 #endif
1896
1897 /* recover superblocks we couldn't write due to previous RO mount */
1898 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1899 err = f2fs_commit_super(sbi, false);
1900 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1901 err);
1902 if (!err)
1903 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1904 }
1905
1906 default_options(sbi);
1907
1908 /* parse mount options */
1909 err = parse_options(sb, data, true);
1910 if (err)
1911 goto restore_opts;
1912 checkpoint_changed =
1913 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1914
1915 /*
1916 * Previous and new state of filesystem is RO,
1917 * so skip checking GC and FLUSH_MERGE conditions.
1918 */
1919 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1920 goto skip;
1921
1922 #ifdef CONFIG_QUOTA
1923 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1924 err = dquot_suspend(sb, -1);
1925 if (err < 0)
1926 goto restore_opts;
1927 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1928 /* dquot_resume needs RW */
1929 sb->s_flags &= ~SB_RDONLY;
1930 if (sb_any_quota_suspended(sb)) {
1931 dquot_resume(sb, -1);
1932 } else if (f2fs_sb_has_quota_ino(sbi)) {
1933 err = f2fs_enable_quotas(sb);
1934 if (err)
1935 goto restore_opts;
1936 }
1937 }
1938 #endif
1939 /* disallow enable atgc dynamically */
1940 if (no_atgc == !!test_opt(sbi, ATGC)) {
1941 err = -EINVAL;
1942 f2fs_warn(sbi, "switch atgc option is not allowed");
1943 goto restore_opts;
1944 }
1945
1946 /* disallow enable/disable extent_cache dynamically */
1947 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1948 err = -EINVAL;
1949 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1950 goto restore_opts;
1951 }
1952
1953 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1954 err = -EINVAL;
1955 f2fs_warn(sbi, "switch io_bits option is not allowed");
1956 goto restore_opts;
1957 }
1958
1959 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1960 err = -EINVAL;
1961 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1962 goto restore_opts;
1963 }
1964
1965 /*
1966 * We stop the GC thread if FS is mounted as RO
1967 * or if background_gc = off is passed in mount
1968 * option. Also sync the filesystem.
1969 */
1970 if ((*flags & SB_RDONLY) ||
1971 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
1972 !test_opt(sbi, GC_MERGE))) {
1973 if (sbi->gc_thread) {
1974 f2fs_stop_gc_thread(sbi);
1975 need_restart_gc = true;
1976 }
1977 } else if (!sbi->gc_thread) {
1978 err = f2fs_start_gc_thread(sbi);
1979 if (err)
1980 goto restore_opts;
1981 need_stop_gc = true;
1982 }
1983
1984 if (*flags & SB_RDONLY ||
1985 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1986 writeback_inodes_sb(sb, WB_REASON_SYNC);
1987 sync_inodes_sb(sb);
1988
1989 set_sbi_flag(sbi, SBI_IS_DIRTY);
1990 set_sbi_flag(sbi, SBI_IS_CLOSE);
1991 f2fs_sync_fs(sb, 1);
1992 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1993 }
1994
1995 if (checkpoint_changed) {
1996 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1997 err = f2fs_disable_checkpoint(sbi);
1998 if (err)
1999 goto restore_gc;
2000 } else {
2001 f2fs_enable_checkpoint(sbi);
2002 }
2003 }
2004
2005 /*
2006 * We stop issue flush thread if FS is mounted as RO
2007 * or if flush_merge is not passed in mount option.
2008 */
2009 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2010 clear_opt(sbi, FLUSH_MERGE);
2011 f2fs_destroy_flush_cmd_control(sbi, false);
2012 } else {
2013 err = f2fs_create_flush_cmd_control(sbi);
2014 if (err)
2015 goto restore_gc;
2016 }
2017 skip:
2018 #ifdef CONFIG_QUOTA
2019 /* Release old quota file names */
2020 for (i = 0; i < MAXQUOTAS; i++)
2021 kfree(org_mount_opt.s_qf_names[i]);
2022 #endif
2023 /* Update the POSIXACL Flag */
2024 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2025 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2026
2027 limit_reserve_root(sbi);
2028 adjust_unusable_cap_perc(sbi);
2029 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2030 return 0;
2031 restore_gc:
2032 if (need_restart_gc) {
2033 if (f2fs_start_gc_thread(sbi))
2034 f2fs_warn(sbi, "background gc thread has stopped");
2035 } else if (need_stop_gc) {
2036 f2fs_stop_gc_thread(sbi);
2037 }
2038 restore_opts:
2039 #ifdef CONFIG_QUOTA
2040 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2041 for (i = 0; i < MAXQUOTAS; i++) {
2042 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2043 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2044 }
2045 #endif
2046 sbi->mount_opt = org_mount_opt;
2047 sb->s_flags = old_sb_flags;
2048 return err;
2049 }
2050
2051 #ifdef CONFIG_QUOTA
2052 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)2053 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2054 size_t len, loff_t off)
2055 {
2056 struct inode *inode = sb_dqopt(sb)->files[type];
2057 struct address_space *mapping = inode->i_mapping;
2058 block_t blkidx = F2FS_BYTES_TO_BLK(off);
2059 int offset = off & (sb->s_blocksize - 1);
2060 int tocopy;
2061 size_t toread;
2062 loff_t i_size = i_size_read(inode);
2063 struct page *page;
2064 char *kaddr;
2065
2066 if (off > i_size)
2067 return 0;
2068
2069 if (off + len > i_size)
2070 len = i_size - off;
2071 toread = len;
2072 while (toread > 0) {
2073 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2074 repeat:
2075 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2076 if (IS_ERR(page)) {
2077 if (PTR_ERR(page) == -ENOMEM) {
2078 congestion_wait(BLK_RW_ASYNC,
2079 DEFAULT_IO_TIMEOUT);
2080 goto repeat;
2081 }
2082 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2083 return PTR_ERR(page);
2084 }
2085
2086 lock_page(page);
2087
2088 if (unlikely(page->mapping != mapping)) {
2089 f2fs_put_page(page, 1);
2090 goto repeat;
2091 }
2092 if (unlikely(!PageUptodate(page))) {
2093 f2fs_put_page(page, 1);
2094 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2095 return -EIO;
2096 }
2097
2098 kaddr = kmap_atomic(page);
2099 memcpy(data, kaddr + offset, tocopy);
2100 kunmap_atomic(kaddr);
2101 f2fs_put_page(page, 1);
2102
2103 offset = 0;
2104 toread -= tocopy;
2105 data += tocopy;
2106 blkidx++;
2107 }
2108 return len;
2109 }
2110
2111 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2112 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2113 const char *data, size_t len, loff_t off)
2114 {
2115 struct inode *inode = sb_dqopt(sb)->files[type];
2116 struct address_space *mapping = inode->i_mapping;
2117 const struct address_space_operations *a_ops = mapping->a_ops;
2118 int offset = off & (sb->s_blocksize - 1);
2119 size_t towrite = len;
2120 struct page *page;
2121 void *fsdata = NULL;
2122 char *kaddr;
2123 int err = 0;
2124 int tocopy;
2125
2126 while (towrite > 0) {
2127 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2128 towrite);
2129 retry:
2130 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2131 &page, &fsdata);
2132 if (unlikely(err)) {
2133 if (err == -ENOMEM) {
2134 congestion_wait(BLK_RW_ASYNC,
2135 DEFAULT_IO_TIMEOUT);
2136 goto retry;
2137 }
2138 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2139 break;
2140 }
2141
2142 kaddr = kmap_atomic(page);
2143 memcpy(kaddr + offset, data, tocopy);
2144 kunmap_atomic(kaddr);
2145 flush_dcache_page(page);
2146
2147 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2148 page, fsdata);
2149 offset = 0;
2150 towrite -= tocopy;
2151 off += tocopy;
2152 data += tocopy;
2153 cond_resched();
2154 }
2155
2156 if (len == towrite)
2157 return err;
2158 inode->i_mtime = inode->i_ctime = current_time(inode);
2159 f2fs_mark_inode_dirty_sync(inode, false);
2160 return len - towrite;
2161 }
2162
f2fs_get_dquots(struct inode * inode)2163 static struct dquot **f2fs_get_dquots(struct inode *inode)
2164 {
2165 return F2FS_I(inode)->i_dquot;
2166 }
2167
f2fs_get_reserved_space(struct inode * inode)2168 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2169 {
2170 return &F2FS_I(inode)->i_reserved_quota;
2171 }
2172
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2173 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2174 {
2175 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2176 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2177 return 0;
2178 }
2179
2180 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2181 F2FS_OPTION(sbi).s_jquota_fmt, type);
2182 }
2183
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2184 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2185 {
2186 int enabled = 0;
2187 int i, err;
2188
2189 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2190 err = f2fs_enable_quotas(sbi->sb);
2191 if (err) {
2192 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2193 return 0;
2194 }
2195 return 1;
2196 }
2197
2198 for (i = 0; i < MAXQUOTAS; i++) {
2199 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2200 err = f2fs_quota_on_mount(sbi, i);
2201 if (!err) {
2202 enabled = 1;
2203 continue;
2204 }
2205 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2206 err, i);
2207 }
2208 }
2209 return enabled;
2210 }
2211
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2212 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2213 unsigned int flags)
2214 {
2215 struct inode *qf_inode;
2216 unsigned long qf_inum;
2217 int err;
2218
2219 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2220
2221 qf_inum = f2fs_qf_ino(sb, type);
2222 if (!qf_inum)
2223 return -EPERM;
2224
2225 qf_inode = f2fs_iget(sb, qf_inum);
2226 if (IS_ERR(qf_inode)) {
2227 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2228 return PTR_ERR(qf_inode);
2229 }
2230
2231 /* Don't account quota for quota files to avoid recursion */
2232 qf_inode->i_flags |= S_NOQUOTA;
2233 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2234 iput(qf_inode);
2235 return err;
2236 }
2237
f2fs_enable_quotas(struct super_block * sb)2238 static int f2fs_enable_quotas(struct super_block *sb)
2239 {
2240 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2241 int type, err = 0;
2242 unsigned long qf_inum;
2243 bool quota_mopt[MAXQUOTAS] = {
2244 test_opt(sbi, USRQUOTA),
2245 test_opt(sbi, GRPQUOTA),
2246 test_opt(sbi, PRJQUOTA),
2247 };
2248
2249 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2250 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2251 return 0;
2252 }
2253
2254 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2255
2256 for (type = 0; type < MAXQUOTAS; type++) {
2257 qf_inum = f2fs_qf_ino(sb, type);
2258 if (qf_inum) {
2259 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2260 DQUOT_USAGE_ENABLED |
2261 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2262 if (err) {
2263 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2264 type, err);
2265 for (type--; type >= 0; type--)
2266 dquot_quota_off(sb, type);
2267 set_sbi_flag(F2FS_SB(sb),
2268 SBI_QUOTA_NEED_REPAIR);
2269 return err;
2270 }
2271 }
2272 }
2273 return 0;
2274 }
2275
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2276 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2277 {
2278 struct quota_info *dqopt = sb_dqopt(sbi->sb);
2279 struct address_space *mapping = dqopt->files[type]->i_mapping;
2280 int ret = 0;
2281
2282 ret = dquot_writeback_dquots(sbi->sb, type);
2283 if (ret)
2284 goto out;
2285
2286 ret = filemap_fdatawrite(mapping);
2287 if (ret)
2288 goto out;
2289
2290 /* if we are using journalled quota */
2291 if (is_journalled_quota(sbi))
2292 goto out;
2293
2294 ret = filemap_fdatawait(mapping);
2295
2296 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2297 out:
2298 if (ret)
2299 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2300 return ret;
2301 }
2302
f2fs_quota_sync(struct super_block * sb,int type)2303 int f2fs_quota_sync(struct super_block *sb, int type)
2304 {
2305 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2306 struct quota_info *dqopt = sb_dqopt(sb);
2307 int cnt;
2308 int ret;
2309
2310 /*
2311 * Now when everything is written we can discard the pagecache so
2312 * that userspace sees the changes.
2313 */
2314 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2315
2316 if (type != -1 && cnt != type)
2317 continue;
2318
2319 if (!sb_has_quota_active(sb, type))
2320 return 0;
2321
2322 inode_lock(dqopt->files[cnt]);
2323
2324 /*
2325 * do_quotactl
2326 * f2fs_quota_sync
2327 * down_read(quota_sem)
2328 * dquot_writeback_dquots()
2329 * f2fs_dquot_commit
2330 * block_operation
2331 * down_read(quota_sem)
2332 */
2333 f2fs_lock_op(sbi);
2334 down_read(&sbi->quota_sem);
2335
2336 ret = f2fs_quota_sync_file(sbi, cnt);
2337
2338 up_read(&sbi->quota_sem);
2339 f2fs_unlock_op(sbi);
2340
2341 inode_unlock(dqopt->files[cnt]);
2342
2343 if (ret)
2344 break;
2345 }
2346 return ret;
2347 }
2348
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2349 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2350 const struct path *path)
2351 {
2352 struct inode *inode;
2353 int err;
2354
2355 /* if quota sysfile exists, deny enabling quota with specific file */
2356 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2357 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2358 return -EBUSY;
2359 }
2360
2361 err = f2fs_quota_sync(sb, type);
2362 if (err)
2363 return err;
2364
2365 err = dquot_quota_on(sb, type, format_id, path);
2366 if (err)
2367 return err;
2368
2369 inode = d_inode(path->dentry);
2370
2371 inode_lock(inode);
2372 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2373 f2fs_set_inode_flags(inode);
2374 inode_unlock(inode);
2375 f2fs_mark_inode_dirty_sync(inode, false);
2376
2377 return 0;
2378 }
2379
__f2fs_quota_off(struct super_block * sb,int type)2380 static int __f2fs_quota_off(struct super_block *sb, int type)
2381 {
2382 struct inode *inode = sb_dqopt(sb)->files[type];
2383 int err;
2384
2385 if (!inode || !igrab(inode))
2386 return dquot_quota_off(sb, type);
2387
2388 err = f2fs_quota_sync(sb, type);
2389 if (err)
2390 goto out_put;
2391
2392 err = dquot_quota_off(sb, type);
2393 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2394 goto out_put;
2395
2396 inode_lock(inode);
2397 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2398 f2fs_set_inode_flags(inode);
2399 inode_unlock(inode);
2400 f2fs_mark_inode_dirty_sync(inode, false);
2401 out_put:
2402 iput(inode);
2403 return err;
2404 }
2405
f2fs_quota_off(struct super_block * sb,int type)2406 static int f2fs_quota_off(struct super_block *sb, int type)
2407 {
2408 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2409 int err;
2410
2411 err = __f2fs_quota_off(sb, type);
2412
2413 /*
2414 * quotactl can shutdown journalled quota, result in inconsistence
2415 * between quota record and fs data by following updates, tag the
2416 * flag to let fsck be aware of it.
2417 */
2418 if (is_journalled_quota(sbi))
2419 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2420 return err;
2421 }
2422
f2fs_quota_off_umount(struct super_block * sb)2423 void f2fs_quota_off_umount(struct super_block *sb)
2424 {
2425 int type;
2426 int err;
2427
2428 for (type = 0; type < MAXQUOTAS; type++) {
2429 err = __f2fs_quota_off(sb, type);
2430 if (err) {
2431 int ret = dquot_quota_off(sb, type);
2432
2433 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2434 type, err, ret);
2435 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2436 }
2437 }
2438 /*
2439 * In case of checkpoint=disable, we must flush quota blocks.
2440 * This can cause NULL exception for node_inode in end_io, since
2441 * put_super already dropped it.
2442 */
2443 sync_filesystem(sb);
2444 }
2445
f2fs_truncate_quota_inode_pages(struct super_block * sb)2446 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2447 {
2448 struct quota_info *dqopt = sb_dqopt(sb);
2449 int type;
2450
2451 for (type = 0; type < MAXQUOTAS; type++) {
2452 if (!dqopt->files[type])
2453 continue;
2454 f2fs_inode_synced(dqopt->files[type]);
2455 }
2456 }
2457
f2fs_dquot_commit(struct dquot * dquot)2458 static int f2fs_dquot_commit(struct dquot *dquot)
2459 {
2460 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2461 int ret;
2462
2463 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2464 ret = dquot_commit(dquot);
2465 if (ret < 0)
2466 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2467 up_read(&sbi->quota_sem);
2468 return ret;
2469 }
2470
f2fs_dquot_acquire(struct dquot * dquot)2471 static int f2fs_dquot_acquire(struct dquot *dquot)
2472 {
2473 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2474 int ret;
2475
2476 down_read(&sbi->quota_sem);
2477 ret = dquot_acquire(dquot);
2478 if (ret < 0)
2479 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2480 up_read(&sbi->quota_sem);
2481 return ret;
2482 }
2483
f2fs_dquot_release(struct dquot * dquot)2484 static int f2fs_dquot_release(struct dquot *dquot)
2485 {
2486 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2487 int ret = dquot_release(dquot);
2488
2489 if (ret < 0)
2490 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2491 return ret;
2492 }
2493
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)2494 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2495 {
2496 struct super_block *sb = dquot->dq_sb;
2497 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2498 int ret = dquot_mark_dquot_dirty(dquot);
2499
2500 /* if we are using journalled quota */
2501 if (is_journalled_quota(sbi))
2502 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2503
2504 return ret;
2505 }
2506
f2fs_dquot_commit_info(struct super_block * sb,int type)2507 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2508 {
2509 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2510 int ret = dquot_commit_info(sb, type);
2511
2512 if (ret < 0)
2513 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2514 return ret;
2515 }
2516
f2fs_get_projid(struct inode * inode,kprojid_t * projid)2517 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2518 {
2519 *projid = F2FS_I(inode)->i_projid;
2520 return 0;
2521 }
2522
2523 static const struct dquot_operations f2fs_quota_operations = {
2524 .get_reserved_space = f2fs_get_reserved_space,
2525 .write_dquot = f2fs_dquot_commit,
2526 .acquire_dquot = f2fs_dquot_acquire,
2527 .release_dquot = f2fs_dquot_release,
2528 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
2529 .write_info = f2fs_dquot_commit_info,
2530 .alloc_dquot = dquot_alloc,
2531 .destroy_dquot = dquot_destroy,
2532 .get_projid = f2fs_get_projid,
2533 .get_next_id = dquot_get_next_id,
2534 };
2535
2536 static const struct quotactl_ops f2fs_quotactl_ops = {
2537 .quota_on = f2fs_quota_on,
2538 .quota_off = f2fs_quota_off,
2539 .quota_sync = f2fs_quota_sync,
2540 .get_state = dquot_get_state,
2541 .set_info = dquot_set_dqinfo,
2542 .get_dqblk = dquot_get_dqblk,
2543 .set_dqblk = dquot_set_dqblk,
2544 .get_nextdqblk = dquot_get_next_dqblk,
2545 };
2546 #else
f2fs_quota_sync(struct super_block * sb,int type)2547 int f2fs_quota_sync(struct super_block *sb, int type)
2548 {
2549 return 0;
2550 }
2551
f2fs_quota_off_umount(struct super_block * sb)2552 void f2fs_quota_off_umount(struct super_block *sb)
2553 {
2554 }
2555 #endif
2556
2557 static const struct super_operations f2fs_sops = {
2558 .alloc_inode = f2fs_alloc_inode,
2559 .free_inode = f2fs_free_inode,
2560 .drop_inode = f2fs_drop_inode,
2561 .write_inode = f2fs_write_inode,
2562 .dirty_inode = f2fs_dirty_inode,
2563 .show_options = f2fs_show_options,
2564 #ifdef CONFIG_QUOTA
2565 .quota_read = f2fs_quota_read,
2566 .quota_write = f2fs_quota_write,
2567 .get_dquots = f2fs_get_dquots,
2568 #endif
2569 .evict_inode = f2fs_evict_inode,
2570 .put_super = f2fs_put_super,
2571 .sync_fs = f2fs_sync_fs,
2572 .freeze_fs = f2fs_freeze,
2573 .unfreeze_fs = f2fs_unfreeze,
2574 .statfs = f2fs_statfs,
2575 .remount_fs = f2fs_remount,
2576 };
2577
2578 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)2579 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2580 {
2581 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2582 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2583 ctx, len, NULL);
2584 }
2585
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)2586 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2587 void *fs_data)
2588 {
2589 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2590
2591 /*
2592 * Encrypting the root directory is not allowed because fsck
2593 * expects lost+found directory to exist and remain unencrypted
2594 * if LOST_FOUND feature is enabled.
2595 *
2596 */
2597 if (f2fs_sb_has_lost_found(sbi) &&
2598 inode->i_ino == F2FS_ROOT_INO(sbi))
2599 return -EPERM;
2600
2601 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2602 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2603 ctx, len, fs_data, XATTR_CREATE);
2604 }
2605
f2fs_get_dummy_policy(struct super_block * sb)2606 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2607 {
2608 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2609 }
2610
f2fs_has_stable_inodes(struct super_block * sb)2611 static bool f2fs_has_stable_inodes(struct super_block *sb)
2612 {
2613 return true;
2614 }
2615
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)2616 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2617 int *ino_bits_ret, int *lblk_bits_ret)
2618 {
2619 *ino_bits_ret = 8 * sizeof(nid_t);
2620 *lblk_bits_ret = 8 * sizeof(block_t);
2621 }
2622
f2fs_get_num_devices(struct super_block * sb)2623 static int f2fs_get_num_devices(struct super_block *sb)
2624 {
2625 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2626
2627 if (f2fs_is_multi_device(sbi))
2628 return sbi->s_ndevs;
2629 return 1;
2630 }
2631
f2fs_get_devices(struct super_block * sb,struct request_queue ** devs)2632 static void f2fs_get_devices(struct super_block *sb,
2633 struct request_queue **devs)
2634 {
2635 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2636 int i;
2637
2638 for (i = 0; i < sbi->s_ndevs; i++)
2639 devs[i] = bdev_get_queue(FDEV(i).bdev);
2640 }
2641
2642 static const struct fscrypt_operations f2fs_cryptops = {
2643 .key_prefix = "f2fs:",
2644 .get_context = f2fs_get_context,
2645 .set_context = f2fs_set_context,
2646 .get_dummy_policy = f2fs_get_dummy_policy,
2647 .empty_dir = f2fs_empty_dir,
2648 .max_namelen = F2FS_NAME_LEN,
2649 .has_stable_inodes = f2fs_has_stable_inodes,
2650 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits,
2651 .get_num_devices = f2fs_get_num_devices,
2652 .get_devices = f2fs_get_devices,
2653 };
2654 #endif
2655
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)2656 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2657 u64 ino, u32 generation)
2658 {
2659 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2660 struct inode *inode;
2661
2662 if (f2fs_check_nid_range(sbi, ino))
2663 return ERR_PTR(-ESTALE);
2664
2665 /*
2666 * f2fs_iget isn't quite right if the inode is currently unallocated!
2667 * However f2fs_iget currently does appropriate checks to handle stale
2668 * inodes so everything is OK.
2669 */
2670 inode = f2fs_iget(sb, ino);
2671 if (IS_ERR(inode))
2672 return ERR_CAST(inode);
2673 if (unlikely(generation && inode->i_generation != generation)) {
2674 /* we didn't find the right inode.. */
2675 iput(inode);
2676 return ERR_PTR(-ESTALE);
2677 }
2678 return inode;
2679 }
2680
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2681 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2682 int fh_len, int fh_type)
2683 {
2684 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2685 f2fs_nfs_get_inode);
2686 }
2687
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2688 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2689 int fh_len, int fh_type)
2690 {
2691 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2692 f2fs_nfs_get_inode);
2693 }
2694
2695 static const struct export_operations f2fs_export_ops = {
2696 .fh_to_dentry = f2fs_fh_to_dentry,
2697 .fh_to_parent = f2fs_fh_to_parent,
2698 .get_parent = f2fs_get_parent,
2699 };
2700
max_file_blocks(void)2701 static loff_t max_file_blocks(void)
2702 {
2703 loff_t result = 0;
2704 loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2705
2706 /*
2707 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2708 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2709 * space in inode.i_addr, it will be more safe to reassign
2710 * result as zero.
2711 */
2712
2713 /* two direct node blocks */
2714 result += (leaf_count * 2);
2715
2716 /* two indirect node blocks */
2717 leaf_count *= NIDS_PER_BLOCK;
2718 result += (leaf_count * 2);
2719
2720 /* one double indirect node block */
2721 leaf_count *= NIDS_PER_BLOCK;
2722 result += leaf_count;
2723
2724 return result;
2725 }
2726
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2727 static int __f2fs_commit_super(struct buffer_head *bh,
2728 struct f2fs_super_block *super)
2729 {
2730 lock_buffer(bh);
2731 if (super)
2732 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2733 set_buffer_dirty(bh);
2734 unlock_buffer(bh);
2735
2736 /* it's rare case, we can do fua all the time */
2737 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2738 }
2739
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2740 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2741 struct buffer_head *bh)
2742 {
2743 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2744 (bh->b_data + F2FS_SUPER_OFFSET);
2745 struct super_block *sb = sbi->sb;
2746 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2747 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2748 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2749 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2750 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2751 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2752 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2753 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2754 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2755 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2756 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2757 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2758 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2759 u64 main_end_blkaddr = main_blkaddr +
2760 (segment_count_main << log_blocks_per_seg);
2761 u64 seg_end_blkaddr = segment0_blkaddr +
2762 (segment_count << log_blocks_per_seg);
2763
2764 if (segment0_blkaddr != cp_blkaddr) {
2765 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2766 segment0_blkaddr, cp_blkaddr);
2767 return true;
2768 }
2769
2770 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2771 sit_blkaddr) {
2772 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2773 cp_blkaddr, sit_blkaddr,
2774 segment_count_ckpt << log_blocks_per_seg);
2775 return true;
2776 }
2777
2778 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2779 nat_blkaddr) {
2780 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2781 sit_blkaddr, nat_blkaddr,
2782 segment_count_sit << log_blocks_per_seg);
2783 return true;
2784 }
2785
2786 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2787 ssa_blkaddr) {
2788 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2789 nat_blkaddr, ssa_blkaddr,
2790 segment_count_nat << log_blocks_per_seg);
2791 return true;
2792 }
2793
2794 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2795 main_blkaddr) {
2796 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2797 ssa_blkaddr, main_blkaddr,
2798 segment_count_ssa << log_blocks_per_seg);
2799 return true;
2800 }
2801
2802 if (main_end_blkaddr > seg_end_blkaddr) {
2803 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2804 main_blkaddr, seg_end_blkaddr,
2805 segment_count_main << log_blocks_per_seg);
2806 return true;
2807 } else if (main_end_blkaddr < seg_end_blkaddr) {
2808 int err = 0;
2809 char *res;
2810
2811 /* fix in-memory information all the time */
2812 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2813 segment0_blkaddr) >> log_blocks_per_seg);
2814
2815 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2816 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2817 res = "internally";
2818 } else {
2819 err = __f2fs_commit_super(bh, NULL);
2820 res = err ? "failed" : "done";
2821 }
2822 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2823 res, main_blkaddr, seg_end_blkaddr,
2824 segment_count_main << log_blocks_per_seg);
2825 if (err)
2826 return true;
2827 }
2828 return false;
2829 }
2830
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2831 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2832 struct buffer_head *bh)
2833 {
2834 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2835 block_t total_sections, blocks_per_seg;
2836 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2837 (bh->b_data + F2FS_SUPER_OFFSET);
2838 size_t crc_offset = 0;
2839 __u32 crc = 0;
2840
2841 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2842 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2843 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2844 return -EINVAL;
2845 }
2846
2847 /* Check checksum_offset and crc in superblock */
2848 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2849 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2850 if (crc_offset !=
2851 offsetof(struct f2fs_super_block, crc)) {
2852 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2853 crc_offset);
2854 return -EFSCORRUPTED;
2855 }
2856 crc = le32_to_cpu(raw_super->crc);
2857 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2858 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2859 return -EFSCORRUPTED;
2860 }
2861 }
2862
2863 /* Currently, support only 4KB page cache size */
2864 if (F2FS_BLKSIZE != PAGE_SIZE) {
2865 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2866 PAGE_SIZE);
2867 return -EFSCORRUPTED;
2868 }
2869
2870 /* Currently, support only 4KB block size */
2871 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2872 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2873 le32_to_cpu(raw_super->log_blocksize),
2874 F2FS_BLKSIZE_BITS);
2875 return -EFSCORRUPTED;
2876 }
2877
2878 /* check log blocks per segment */
2879 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2880 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2881 le32_to_cpu(raw_super->log_blocks_per_seg));
2882 return -EFSCORRUPTED;
2883 }
2884
2885 /* Currently, support 512/1024/2048/4096 bytes sector size */
2886 if (le32_to_cpu(raw_super->log_sectorsize) >
2887 F2FS_MAX_LOG_SECTOR_SIZE ||
2888 le32_to_cpu(raw_super->log_sectorsize) <
2889 F2FS_MIN_LOG_SECTOR_SIZE) {
2890 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2891 le32_to_cpu(raw_super->log_sectorsize));
2892 return -EFSCORRUPTED;
2893 }
2894 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2895 le32_to_cpu(raw_super->log_sectorsize) !=
2896 F2FS_MAX_LOG_SECTOR_SIZE) {
2897 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2898 le32_to_cpu(raw_super->log_sectors_per_block),
2899 le32_to_cpu(raw_super->log_sectorsize));
2900 return -EFSCORRUPTED;
2901 }
2902
2903 segment_count = le32_to_cpu(raw_super->segment_count);
2904 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2905 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2906 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2907 total_sections = le32_to_cpu(raw_super->section_count);
2908
2909 /* blocks_per_seg should be 512, given the above check */
2910 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2911
2912 if (segment_count > F2FS_MAX_SEGMENT ||
2913 segment_count < F2FS_MIN_SEGMENTS) {
2914 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2915 return -EFSCORRUPTED;
2916 }
2917
2918 if (total_sections > segment_count_main || total_sections < 1 ||
2919 segs_per_sec > segment_count || !segs_per_sec) {
2920 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2921 segment_count, total_sections, segs_per_sec);
2922 return -EFSCORRUPTED;
2923 }
2924
2925 if (segment_count_main != total_sections * segs_per_sec) {
2926 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2927 segment_count_main, total_sections, segs_per_sec);
2928 return -EFSCORRUPTED;
2929 }
2930
2931 if ((segment_count / segs_per_sec) < total_sections) {
2932 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2933 segment_count, segs_per_sec, total_sections);
2934 return -EFSCORRUPTED;
2935 }
2936
2937 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2938 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2939 segment_count, le64_to_cpu(raw_super->block_count));
2940 return -EFSCORRUPTED;
2941 }
2942
2943 if (RDEV(0).path[0]) {
2944 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2945 int i = 1;
2946
2947 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2948 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2949 i++;
2950 }
2951 if (segment_count != dev_seg_count) {
2952 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2953 segment_count, dev_seg_count);
2954 return -EFSCORRUPTED;
2955 }
2956 } else {
2957 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2958 !bdev_is_zoned(sbi->sb->s_bdev)) {
2959 f2fs_info(sbi, "Zoned block device path is missing");
2960 return -EFSCORRUPTED;
2961 }
2962 }
2963
2964 if (secs_per_zone > total_sections || !secs_per_zone) {
2965 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2966 secs_per_zone, total_sections);
2967 return -EFSCORRUPTED;
2968 }
2969 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2970 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2971 (le32_to_cpu(raw_super->extension_count) +
2972 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2973 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2974 le32_to_cpu(raw_super->extension_count),
2975 raw_super->hot_ext_count,
2976 F2FS_MAX_EXTENSION);
2977 return -EFSCORRUPTED;
2978 }
2979
2980 if (le32_to_cpu(raw_super->cp_payload) >=
2981 (blocks_per_seg - F2FS_CP_PACKS -
2982 NR_CURSEG_PERSIST_TYPE)) {
2983 f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
2984 le32_to_cpu(raw_super->cp_payload),
2985 blocks_per_seg - F2FS_CP_PACKS -
2986 NR_CURSEG_PERSIST_TYPE);
2987 return -EFSCORRUPTED;
2988 }
2989
2990 /* check reserved ino info */
2991 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2992 le32_to_cpu(raw_super->meta_ino) != 2 ||
2993 le32_to_cpu(raw_super->root_ino) != 3) {
2994 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2995 le32_to_cpu(raw_super->node_ino),
2996 le32_to_cpu(raw_super->meta_ino),
2997 le32_to_cpu(raw_super->root_ino));
2998 return -EFSCORRUPTED;
2999 }
3000
3001 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3002 if (sanity_check_area_boundary(sbi, bh))
3003 return -EFSCORRUPTED;
3004
3005 return 0;
3006 }
3007
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)3008 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3009 {
3010 unsigned int total, fsmeta;
3011 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3012 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3013 unsigned int ovp_segments, reserved_segments;
3014 unsigned int main_segs, blocks_per_seg;
3015 unsigned int sit_segs, nat_segs;
3016 unsigned int sit_bitmap_size, nat_bitmap_size;
3017 unsigned int log_blocks_per_seg;
3018 unsigned int segment_count_main;
3019 unsigned int cp_pack_start_sum, cp_payload;
3020 block_t user_block_count, valid_user_blocks;
3021 block_t avail_node_count, valid_node_count;
3022 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3023 int i, j;
3024
3025 total = le32_to_cpu(raw_super->segment_count);
3026 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3027 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3028 fsmeta += sit_segs;
3029 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3030 fsmeta += nat_segs;
3031 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3032 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3033
3034 if (unlikely(fsmeta >= total))
3035 return 1;
3036
3037 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3038 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3039
3040 if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3041 ovp_segments == 0 || reserved_segments == 0)) {
3042 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3043 return 1;
3044 }
3045
3046 user_block_count = le64_to_cpu(ckpt->user_block_count);
3047 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3048 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3049 if (!user_block_count || user_block_count >=
3050 segment_count_main << log_blocks_per_seg) {
3051 f2fs_err(sbi, "Wrong user_block_count: %u",
3052 user_block_count);
3053 return 1;
3054 }
3055
3056 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3057 if (valid_user_blocks > user_block_count) {
3058 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3059 valid_user_blocks, user_block_count);
3060 return 1;
3061 }
3062
3063 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3064 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3065 if (valid_node_count > avail_node_count) {
3066 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3067 valid_node_count, avail_node_count);
3068 return 1;
3069 }
3070
3071 main_segs = le32_to_cpu(raw_super->segment_count_main);
3072 blocks_per_seg = sbi->blocks_per_seg;
3073
3074 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3075 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3076 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3077 return 1;
3078 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3079 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3080 le32_to_cpu(ckpt->cur_node_segno[j])) {
3081 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3082 i, j,
3083 le32_to_cpu(ckpt->cur_node_segno[i]));
3084 return 1;
3085 }
3086 }
3087 }
3088 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3089 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3090 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3091 return 1;
3092 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3093 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3094 le32_to_cpu(ckpt->cur_data_segno[j])) {
3095 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3096 i, j,
3097 le32_to_cpu(ckpt->cur_data_segno[i]));
3098 return 1;
3099 }
3100 }
3101 }
3102 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3103 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3104 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3105 le32_to_cpu(ckpt->cur_data_segno[j])) {
3106 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3107 i, j,
3108 le32_to_cpu(ckpt->cur_node_segno[i]));
3109 return 1;
3110 }
3111 }
3112 }
3113
3114 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3115 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3116
3117 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3118 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3119 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3120 sit_bitmap_size, nat_bitmap_size);
3121 return 1;
3122 }
3123
3124 cp_pack_start_sum = __start_sum_addr(sbi);
3125 cp_payload = __cp_payload(sbi);
3126 if (cp_pack_start_sum < cp_payload + 1 ||
3127 cp_pack_start_sum > blocks_per_seg - 1 -
3128 NR_CURSEG_PERSIST_TYPE) {
3129 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3130 cp_pack_start_sum);
3131 return 1;
3132 }
3133
3134 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3135 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3136 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3137 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3138 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3139 le32_to_cpu(ckpt->checksum_offset));
3140 return 1;
3141 }
3142
3143 nat_blocks = nat_segs << log_blocks_per_seg;
3144 nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3145 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3146 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3147 (cp_payload + F2FS_CP_PACKS +
3148 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3149 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3150 cp_payload, nat_bits_blocks);
3151 return 1;
3152 }
3153
3154 if (unlikely(f2fs_cp_error(sbi))) {
3155 f2fs_err(sbi, "A bug case: need to run fsck");
3156 return 1;
3157 }
3158 return 0;
3159 }
3160
init_sb_info(struct f2fs_sb_info * sbi)3161 static void init_sb_info(struct f2fs_sb_info *sbi)
3162 {
3163 struct f2fs_super_block *raw_super = sbi->raw_super;
3164 int i;
3165
3166 sbi->log_sectors_per_block =
3167 le32_to_cpu(raw_super->log_sectors_per_block);
3168 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3169 sbi->blocksize = 1 << sbi->log_blocksize;
3170 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3171 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3172 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3173 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3174 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3175 sbi->total_node_count =
3176 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3177 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3178 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3179 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3180 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3181 sbi->cur_victim_sec = NULL_SECNO;
3182 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3183 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3184 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3185 sbi->migration_granularity = sbi->segs_per_sec;
3186
3187 sbi->dir_level = DEF_DIR_LEVEL;
3188 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3189 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3190 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3191 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3192 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3193 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3194 DEF_UMOUNT_DISCARD_TIMEOUT;
3195 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3196
3197 for (i = 0; i < NR_COUNT_TYPE; i++)
3198 atomic_set(&sbi->nr_pages[i], 0);
3199
3200 for (i = 0; i < META; i++)
3201 atomic_set(&sbi->wb_sync_req[i], 0);
3202
3203 INIT_LIST_HEAD(&sbi->s_list);
3204 mutex_init(&sbi->umount_mutex);
3205 init_rwsem(&sbi->io_order_lock);
3206 spin_lock_init(&sbi->cp_lock);
3207
3208 sbi->dirty_device = 0;
3209 spin_lock_init(&sbi->dev_lock);
3210
3211 init_rwsem(&sbi->sb_lock);
3212 init_rwsem(&sbi->pin_sem);
3213 }
3214
init_percpu_info(struct f2fs_sb_info * sbi)3215 static int init_percpu_info(struct f2fs_sb_info *sbi)
3216 {
3217 int err;
3218
3219 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3220 if (err)
3221 return err;
3222
3223 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3224 GFP_KERNEL);
3225 if (err)
3226 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3227
3228 return err;
3229 }
3230
3231 #ifdef CONFIG_BLK_DEV_ZONED
3232
3233 struct f2fs_report_zones_args {
3234 struct f2fs_dev_info *dev;
3235 bool zone_cap_mismatch;
3236 };
3237
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3238 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3239 void *data)
3240 {
3241 struct f2fs_report_zones_args *rz_args = data;
3242
3243 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3244 return 0;
3245
3246 set_bit(idx, rz_args->dev->blkz_seq);
3247 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3248 F2FS_LOG_SECTORS_PER_BLOCK;
3249 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3250 rz_args->zone_cap_mismatch = true;
3251
3252 return 0;
3253 }
3254
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3255 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3256 {
3257 struct block_device *bdev = FDEV(devi).bdev;
3258 sector_t nr_sectors = bdev->bd_part->nr_sects;
3259 struct f2fs_report_zones_args rep_zone_arg;
3260 int ret;
3261
3262 if (!f2fs_sb_has_blkzoned(sbi))
3263 return 0;
3264
3265 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3266 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3267 return -EINVAL;
3268 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3269 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3270 __ilog2_u32(sbi->blocks_per_blkz))
3271 return -EINVAL;
3272 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3273 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3274 sbi->log_blocks_per_blkz;
3275 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3276 FDEV(devi).nr_blkz++;
3277
3278 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3279 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3280 * sizeof(unsigned long),
3281 GFP_KERNEL);
3282 if (!FDEV(devi).blkz_seq)
3283 return -ENOMEM;
3284
3285 /* Get block zones type and zone-capacity */
3286 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3287 FDEV(devi).nr_blkz * sizeof(block_t),
3288 GFP_KERNEL);
3289 if (!FDEV(devi).zone_capacity_blocks)
3290 return -ENOMEM;
3291
3292 rep_zone_arg.dev = &FDEV(devi);
3293 rep_zone_arg.zone_cap_mismatch = false;
3294
3295 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3296 &rep_zone_arg);
3297 if (ret < 0)
3298 return ret;
3299
3300 if (!rep_zone_arg.zone_cap_mismatch) {
3301 kfree(FDEV(devi).zone_capacity_blocks);
3302 FDEV(devi).zone_capacity_blocks = NULL;
3303 }
3304
3305 return 0;
3306 }
3307 #endif
3308
3309 /*
3310 * Read f2fs raw super block.
3311 * Because we have two copies of super block, so read both of them
3312 * to get the first valid one. If any one of them is broken, we pass
3313 * them recovery flag back to the caller.
3314 */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3315 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3316 struct f2fs_super_block **raw_super,
3317 int *valid_super_block, int *recovery)
3318 {
3319 struct super_block *sb = sbi->sb;
3320 int block;
3321 struct buffer_head *bh;
3322 struct f2fs_super_block *super;
3323 int err = 0;
3324
3325 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3326 if (!super)
3327 return -ENOMEM;
3328
3329 for (block = 0; block < 2; block++) {
3330 bh = sb_bread(sb, block);
3331 if (!bh) {
3332 f2fs_err(sbi, "Unable to read %dth superblock",
3333 block + 1);
3334 err = -EIO;
3335 *recovery = 1;
3336 continue;
3337 }
3338
3339 /* sanity checking of raw super */
3340 err = sanity_check_raw_super(sbi, bh);
3341 if (err) {
3342 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3343 block + 1);
3344 brelse(bh);
3345 *recovery = 1;
3346 continue;
3347 }
3348
3349 if (!*raw_super) {
3350 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3351 sizeof(*super));
3352 *valid_super_block = block;
3353 *raw_super = super;
3354 }
3355 brelse(bh);
3356 }
3357
3358 /* No valid superblock */
3359 if (!*raw_super)
3360 kfree(super);
3361 else
3362 err = 0;
3363
3364 return err;
3365 }
3366
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3367 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3368 {
3369 struct buffer_head *bh;
3370 __u32 crc = 0;
3371 int err;
3372
3373 if ((recover && f2fs_readonly(sbi->sb)) ||
3374 bdev_read_only(sbi->sb->s_bdev)) {
3375 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3376 return -EROFS;
3377 }
3378
3379 /* we should update superblock crc here */
3380 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3381 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3382 offsetof(struct f2fs_super_block, crc));
3383 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3384 }
3385
3386 /* write back-up superblock first */
3387 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3388 if (!bh)
3389 return -EIO;
3390 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3391 brelse(bh);
3392
3393 /* if we are in recovery path, skip writing valid superblock */
3394 if (recover || err)
3395 return err;
3396
3397 /* write current valid superblock */
3398 bh = sb_bread(sbi->sb, sbi->valid_super_block);
3399 if (!bh)
3400 return -EIO;
3401 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3402 brelse(bh);
3403 return err;
3404 }
3405
f2fs_scan_devices(struct f2fs_sb_info * sbi)3406 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3407 {
3408 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3409 unsigned int max_devices = MAX_DEVICES;
3410 int i;
3411
3412 /* Initialize single device information */
3413 if (!RDEV(0).path[0]) {
3414 if (!bdev_is_zoned(sbi->sb->s_bdev))
3415 return 0;
3416 max_devices = 1;
3417 }
3418
3419 /*
3420 * Initialize multiple devices information, or single
3421 * zoned block device information.
3422 */
3423 sbi->devs = f2fs_kzalloc(sbi,
3424 array_size(max_devices,
3425 sizeof(struct f2fs_dev_info)),
3426 GFP_KERNEL);
3427 if (!sbi->devs)
3428 return -ENOMEM;
3429
3430 for (i = 0; i < max_devices; i++) {
3431
3432 if (i > 0 && !RDEV(i).path[0])
3433 break;
3434
3435 if (max_devices == 1) {
3436 /* Single zoned block device mount */
3437 FDEV(0).bdev =
3438 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3439 sbi->sb->s_mode, sbi->sb->s_type);
3440 } else {
3441 /* Multi-device mount */
3442 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3443 FDEV(i).total_segments =
3444 le32_to_cpu(RDEV(i).total_segments);
3445 if (i == 0) {
3446 FDEV(i).start_blk = 0;
3447 FDEV(i).end_blk = FDEV(i).start_blk +
3448 (FDEV(i).total_segments <<
3449 sbi->log_blocks_per_seg) - 1 +
3450 le32_to_cpu(raw_super->segment0_blkaddr);
3451 } else {
3452 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3453 FDEV(i).end_blk = FDEV(i).start_blk +
3454 (FDEV(i).total_segments <<
3455 sbi->log_blocks_per_seg) - 1;
3456 }
3457 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3458 sbi->sb->s_mode, sbi->sb->s_type);
3459 }
3460 if (IS_ERR(FDEV(i).bdev))
3461 return PTR_ERR(FDEV(i).bdev);
3462
3463 /* to release errored devices */
3464 sbi->s_ndevs = i + 1;
3465
3466 #ifdef CONFIG_BLK_DEV_ZONED
3467 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3468 !f2fs_sb_has_blkzoned(sbi)) {
3469 f2fs_err(sbi, "Zoned block device feature not enabled\n");
3470 return -EINVAL;
3471 }
3472 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3473 if (init_blkz_info(sbi, i)) {
3474 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3475 return -EINVAL;
3476 }
3477 if (max_devices == 1)
3478 break;
3479 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3480 i, FDEV(i).path,
3481 FDEV(i).total_segments,
3482 FDEV(i).start_blk, FDEV(i).end_blk,
3483 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3484 "Host-aware" : "Host-managed");
3485 continue;
3486 }
3487 #endif
3488 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3489 i, FDEV(i).path,
3490 FDEV(i).total_segments,
3491 FDEV(i).start_blk, FDEV(i).end_blk);
3492 }
3493 f2fs_info(sbi,
3494 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3495 return 0;
3496 }
3497
f2fs_setup_casefold(struct f2fs_sb_info * sbi)3498 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3499 {
3500 #ifdef CONFIG_UNICODE
3501 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3502 const struct f2fs_sb_encodings *encoding_info;
3503 struct unicode_map *encoding;
3504 __u16 encoding_flags;
3505
3506 if (f2fs_sb_has_encrypt(sbi)) {
3507 f2fs_err(sbi,
3508 "Can't mount with encoding and encryption");
3509 return -EINVAL;
3510 }
3511
3512 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3513 &encoding_flags)) {
3514 f2fs_err(sbi,
3515 "Encoding requested by superblock is unknown");
3516 return -EINVAL;
3517 }
3518
3519 encoding = utf8_load(encoding_info->version);
3520 if (IS_ERR(encoding)) {
3521 f2fs_err(sbi,
3522 "can't mount with superblock charset: %s-%s "
3523 "not supported by the kernel. flags: 0x%x.",
3524 encoding_info->name, encoding_info->version,
3525 encoding_flags);
3526 return PTR_ERR(encoding);
3527 }
3528 f2fs_info(sbi, "Using encoding defined by superblock: "
3529 "%s-%s with flags 0x%hx", encoding_info->name,
3530 encoding_info->version?:"\b", encoding_flags);
3531
3532 sbi->sb->s_encoding = encoding;
3533 sbi->sb->s_encoding_flags = encoding_flags;
3534 sbi->sb->s_d_op = &f2fs_dentry_ops;
3535 }
3536 #else
3537 if (f2fs_sb_has_casefold(sbi)) {
3538 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3539 return -EINVAL;
3540 }
3541 #endif
3542 return 0;
3543 }
3544
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)3545 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3546 {
3547 struct f2fs_sm_info *sm_i = SM_I(sbi);
3548
3549 /* adjust parameters according to the volume size */
3550 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3551 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3552 sm_i->dcc_info->discard_granularity = 1;
3553 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3554 }
3555
3556 sbi->readdir_ra = 1;
3557 }
3558
3559 #ifdef CONFIG_F2FS_GRADING_SSR
f2fs_init_grading_ssr(struct f2fs_sb_info * sbi)3560 static void f2fs_init_grading_ssr(struct f2fs_sb_info *sbi)
3561 {
3562 u32 total_blocks = le64_to_cpu(sbi->raw_super->block_count) >> 18;
3563
3564 if (total_blocks > 64) { /* 64G */
3565 sbi->hot_cold_params.hot_data_lower_limit = SSR_HD_SAPCE_LIMIT_128G;
3566 sbi->hot_cold_params.hot_data_waterline = SSR_HD_WATERLINE_128G;
3567 sbi->hot_cold_params.warm_data_lower_limit = SSR_WD_SAPCE_LIMIT_128G;
3568 sbi->hot_cold_params.warm_data_waterline = SSR_WD_WATERLINE_128G;
3569 sbi->hot_cold_params.hot_node_lower_limit = SSR_HD_SAPCE_LIMIT_128G;
3570 sbi->hot_cold_params.hot_node_waterline = SSR_HN_WATERLINE_128G;
3571 sbi->hot_cold_params.warm_node_lower_limit = SSR_WN_SAPCE_LIMIT_128G;
3572 sbi->hot_cold_params.warm_node_waterline = SSR_WN_WATERLINE_128G;
3573 sbi->hot_cold_params.enable = GRADING_SSR_OFF;
3574 } else {
3575 sbi->hot_cold_params.hot_data_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3576 sbi->hot_cold_params.hot_data_waterline = SSR_DEFALT_WATERLINE;
3577 sbi->hot_cold_params.warm_data_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3578 sbi->hot_cold_params.warm_data_waterline = SSR_DEFALT_WATERLINE;
3579 sbi->hot_cold_params.hot_node_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3580 sbi->hot_cold_params.hot_node_waterline = SSR_DEFALT_WATERLINE;
3581 sbi->hot_cold_params.warm_node_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3582 sbi->hot_cold_params.warm_node_waterline = SSR_DEFALT_WATERLINE;
3583 sbi->hot_cold_params.enable = GRADING_SSR_OFF;
3584 }
3585 }
3586 #endif
3587
f2fs_fill_super(struct super_block * sb,void * data,int silent)3588 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3589 {
3590 struct f2fs_sb_info *sbi;
3591 struct f2fs_super_block *raw_super;
3592 struct inode *root;
3593 int err;
3594 bool skip_recovery = false, need_fsck = false;
3595 char *options = NULL;
3596 int recovery, i, valid_super_block;
3597 struct curseg_info *seg_i;
3598 int retry_cnt = 1;
3599
3600 try_onemore:
3601 err = -EINVAL;
3602 raw_super = NULL;
3603 valid_super_block = -1;
3604 recovery = 0;
3605
3606 /* allocate memory for f2fs-specific super block info */
3607 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3608 if (!sbi)
3609 return -ENOMEM;
3610
3611 sbi->sb = sb;
3612
3613 /* Load the checksum driver */
3614 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3615 if (IS_ERR(sbi->s_chksum_driver)) {
3616 f2fs_err(sbi, "Cannot load crc32 driver.");
3617 err = PTR_ERR(sbi->s_chksum_driver);
3618 sbi->s_chksum_driver = NULL;
3619 goto free_sbi;
3620 }
3621
3622 /* set a block size */
3623 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3624 f2fs_err(sbi, "unable to set blocksize");
3625 goto free_sbi;
3626 }
3627
3628 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3629 &recovery);
3630 if (err)
3631 goto free_sbi;
3632
3633 sb->s_fs_info = sbi;
3634 sbi->raw_super = raw_super;
3635
3636 /* precompute checksum seed for metadata */
3637 if (f2fs_sb_has_inode_chksum(sbi))
3638 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3639 sizeof(raw_super->uuid));
3640
3641 default_options(sbi);
3642 /* parse mount options */
3643 options = kstrdup((const char *)data, GFP_KERNEL);
3644 if (data && !options) {
3645 err = -ENOMEM;
3646 goto free_sb_buf;
3647 }
3648
3649 err = parse_options(sb, options, false);
3650 if (err)
3651 goto free_options;
3652
3653 sbi->max_file_blocks = max_file_blocks();
3654 sb->s_maxbytes = sbi->max_file_blocks <<
3655 le32_to_cpu(raw_super->log_blocksize);
3656 sb->s_max_links = F2FS_LINK_MAX;
3657
3658 err = f2fs_setup_casefold(sbi);
3659 if (err)
3660 goto free_options;
3661
3662 #ifdef CONFIG_QUOTA
3663 sb->dq_op = &f2fs_quota_operations;
3664 sb->s_qcop = &f2fs_quotactl_ops;
3665 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3666
3667 if (f2fs_sb_has_quota_ino(sbi)) {
3668 for (i = 0; i < MAXQUOTAS; i++) {
3669 if (f2fs_qf_ino(sbi->sb, i))
3670 sbi->nquota_files++;
3671 }
3672 }
3673 #endif
3674
3675 sb->s_op = &f2fs_sops;
3676 #ifdef CONFIG_FS_ENCRYPTION
3677 sb->s_cop = &f2fs_cryptops;
3678 #endif
3679 #ifdef CONFIG_FS_VERITY
3680 sb->s_vop = &f2fs_verityops;
3681 #endif
3682 sb->s_xattr = f2fs_xattr_handlers;
3683 sb->s_export_op = &f2fs_export_ops;
3684 sb->s_magic = F2FS_SUPER_MAGIC;
3685 sb->s_time_gran = 1;
3686 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3687 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3688 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3689 sb->s_iflags |= SB_I_CGROUPWB;
3690
3691 /* init f2fs-specific super block info */
3692 sbi->valid_super_block = valid_super_block;
3693 init_rwsem(&sbi->gc_lock);
3694 mutex_init(&sbi->writepages);
3695 mutex_init(&sbi->cp_mutex);
3696 init_rwsem(&sbi->node_write);
3697 init_rwsem(&sbi->node_change);
3698
3699 /* disallow all the data/node/meta page writes */
3700 set_sbi_flag(sbi, SBI_POR_DOING);
3701 spin_lock_init(&sbi->stat_lock);
3702
3703 /* init iostat info */
3704 spin_lock_init(&sbi->iostat_lock);
3705 sbi->iostat_enable = false;
3706 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3707
3708 for (i = 0; i < NR_PAGE_TYPE; i++) {
3709 int n = (i == META) ? 1: NR_TEMP_TYPE;
3710 int j;
3711
3712 sbi->write_io[i] =
3713 f2fs_kmalloc(sbi,
3714 array_size(n,
3715 sizeof(struct f2fs_bio_info)),
3716 GFP_KERNEL);
3717 if (!sbi->write_io[i]) {
3718 err = -ENOMEM;
3719 goto free_bio_info;
3720 }
3721
3722 for (j = HOT; j < n; j++) {
3723 init_rwsem(&sbi->write_io[i][j].io_rwsem);
3724 sbi->write_io[i][j].sbi = sbi;
3725 sbi->write_io[i][j].bio = NULL;
3726 spin_lock_init(&sbi->write_io[i][j].io_lock);
3727 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3728 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3729 init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3730 }
3731 }
3732
3733 init_rwsem(&sbi->cp_rwsem);
3734 init_rwsem(&sbi->quota_sem);
3735 init_waitqueue_head(&sbi->cp_wait);
3736 init_sb_info(sbi);
3737
3738 err = init_percpu_info(sbi);
3739 if (err)
3740 goto free_bio_info;
3741
3742 if (F2FS_IO_ALIGNED(sbi)) {
3743 sbi->write_io_dummy =
3744 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3745 if (!sbi->write_io_dummy) {
3746 err = -ENOMEM;
3747 goto free_percpu;
3748 }
3749 }
3750
3751 /* init per sbi slab cache */
3752 err = f2fs_init_xattr_caches(sbi);
3753 if (err)
3754 goto free_io_dummy;
3755 err = f2fs_init_page_array_cache(sbi);
3756 if (err)
3757 goto free_xattr_cache;
3758
3759 /* get an inode for meta space */
3760 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3761 if (IS_ERR(sbi->meta_inode)) {
3762 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3763 err = PTR_ERR(sbi->meta_inode);
3764 goto free_page_array_cache;
3765 }
3766
3767 err = f2fs_get_valid_checkpoint(sbi);
3768 if (err) {
3769 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3770 goto free_meta_inode;
3771 }
3772
3773 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3774 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3775 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3776 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3777 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3778 }
3779
3780 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3781 set_sbi_flag(sbi, SBI_NEED_FSCK);
3782
3783 /* Initialize device list */
3784 err = f2fs_scan_devices(sbi);
3785 if (err) {
3786 f2fs_err(sbi, "Failed to find devices");
3787 goto free_devices;
3788 }
3789
3790 err = f2fs_init_post_read_wq(sbi);
3791 if (err) {
3792 f2fs_err(sbi, "Failed to initialize post read workqueue");
3793 goto free_devices;
3794 }
3795
3796 sbi->total_valid_node_count =
3797 le32_to_cpu(sbi->ckpt->valid_node_count);
3798 percpu_counter_set(&sbi->total_valid_inode_count,
3799 le32_to_cpu(sbi->ckpt->valid_inode_count));
3800 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3801 sbi->total_valid_block_count =
3802 le64_to_cpu(sbi->ckpt->valid_block_count);
3803 sbi->last_valid_block_count = sbi->total_valid_block_count;
3804 sbi->reserved_blocks = 0;
3805 sbi->current_reserved_blocks = 0;
3806 limit_reserve_root(sbi);
3807 adjust_unusable_cap_perc(sbi);
3808
3809 for (i = 0; i < NR_INODE_TYPE; i++) {
3810 INIT_LIST_HEAD(&sbi->inode_list[i]);
3811 spin_lock_init(&sbi->inode_lock[i]);
3812 }
3813 mutex_init(&sbi->flush_lock);
3814
3815 f2fs_init_extent_cache_info(sbi);
3816
3817 f2fs_init_ino_entry_info(sbi);
3818
3819 f2fs_init_fsync_node_info(sbi);
3820
3821 /* setup f2fs internal modules */
3822 err = f2fs_build_segment_manager(sbi);
3823 if (err) {
3824 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3825 err);
3826 goto free_sm;
3827 }
3828 err = f2fs_build_node_manager(sbi);
3829 if (err) {
3830 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3831 err);
3832 goto free_nm;
3833 }
3834
3835 err = adjust_reserved_segment(sbi);
3836 if (err)
3837 goto free_nm;
3838
3839 /* For write statistics */
3840 if (sb->s_bdev->bd_part)
3841 sbi->sectors_written_start =
3842 (u64)part_stat_read(sb->s_bdev->bd_part,
3843 sectors[STAT_WRITE]);
3844
3845 /* Read accumulated write IO statistics if exists */
3846 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3847 if (__exist_node_summaries(sbi))
3848 sbi->kbytes_written =
3849 le64_to_cpu(seg_i->journal->info.kbytes_written);
3850
3851 f2fs_build_gc_manager(sbi);
3852
3853 err = f2fs_build_stats(sbi);
3854 if (err)
3855 goto free_nm;
3856
3857 /* get an inode for node space */
3858 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3859 if (IS_ERR(sbi->node_inode)) {
3860 f2fs_err(sbi, "Failed to read node inode");
3861 err = PTR_ERR(sbi->node_inode);
3862 goto free_stats;
3863 }
3864
3865 /* read root inode and dentry */
3866 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3867 if (IS_ERR(root)) {
3868 f2fs_err(sbi, "Failed to read root inode");
3869 err = PTR_ERR(root);
3870 goto free_node_inode;
3871 }
3872 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3873 !root->i_size || !root->i_nlink) {
3874 iput(root);
3875 err = -EINVAL;
3876 goto free_node_inode;
3877 }
3878
3879 sb->s_root = d_make_root(root); /* allocate root dentry */
3880 if (!sb->s_root) {
3881 err = -ENOMEM;
3882 goto free_node_inode;
3883 }
3884 #ifdef CONFIG_F2FS_GRADING_SSR
3885 f2fs_init_grading_ssr(sbi);
3886 #endif
3887 err = f2fs_register_sysfs(sbi);
3888 if (err)
3889 goto free_root_inode;
3890
3891 #ifdef CONFIG_QUOTA
3892 /* Enable quota usage during mount */
3893 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3894 err = f2fs_enable_quotas(sb);
3895 if (err)
3896 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3897 }
3898 #endif
3899 /* if there are any orphan inodes, free them */
3900 err = f2fs_recover_orphan_inodes(sbi);
3901 if (err)
3902 goto free_meta;
3903
3904 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3905 goto reset_checkpoint;
3906
3907 /* recover fsynced data */
3908 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3909 !test_opt(sbi, NORECOVERY)) {
3910 /*
3911 * mount should be failed, when device has readonly mode, and
3912 * previous checkpoint was not done by clean system shutdown.
3913 */
3914 if (f2fs_hw_is_readonly(sbi)) {
3915 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3916 err = -EROFS;
3917 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3918 goto free_meta;
3919 }
3920 f2fs_info(sbi, "write access unavailable, skipping recovery");
3921 goto reset_checkpoint;
3922 }
3923
3924 if (need_fsck)
3925 set_sbi_flag(sbi, SBI_NEED_FSCK);
3926
3927 if (skip_recovery)
3928 goto reset_checkpoint;
3929
3930 err = f2fs_recover_fsync_data(sbi, false);
3931 if (err < 0) {
3932 if (err != -ENOMEM)
3933 skip_recovery = true;
3934 need_fsck = true;
3935 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3936 err);
3937 goto free_meta;
3938 }
3939 } else {
3940 err = f2fs_recover_fsync_data(sbi, true);
3941
3942 if (!f2fs_readonly(sb) && err > 0) {
3943 err = -EINVAL;
3944 f2fs_err(sbi, "Need to recover fsync data");
3945 goto free_meta;
3946 }
3947 }
3948
3949 /*
3950 * If the f2fs is not readonly and fsync data recovery succeeds,
3951 * check zoned block devices' write pointer consistency.
3952 */
3953 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3954 err = f2fs_check_write_pointer(sbi);
3955 if (err)
3956 goto free_meta;
3957 }
3958
3959 reset_checkpoint:
3960 f2fs_init_inmem_curseg(sbi);
3961
3962 /* f2fs_recover_fsync_data() cleared this already */
3963 clear_sbi_flag(sbi, SBI_POR_DOING);
3964
3965 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3966 err = f2fs_disable_checkpoint(sbi);
3967 if (err)
3968 goto sync_free_meta;
3969 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3970 f2fs_enable_checkpoint(sbi);
3971 }
3972
3973 /*
3974 * If filesystem is not mounted as read-only then
3975 * do start the gc_thread.
3976 */
3977 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
3978 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
3979 /* After POR, we can run background GC thread.*/
3980 err = f2fs_start_gc_thread(sbi);
3981 if (err)
3982 goto sync_free_meta;
3983 }
3984 kvfree(options);
3985
3986 /* recover broken superblock */
3987 if (recovery) {
3988 err = f2fs_commit_super(sbi, true);
3989 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3990 sbi->valid_super_block ? 1 : 2, err);
3991 }
3992
3993 f2fs_join_shrinker(sbi);
3994
3995 f2fs_tuning_parameters(sbi);
3996
3997 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3998 cur_cp_version(F2FS_CKPT(sbi)));
3999 f2fs_update_time(sbi, CP_TIME);
4000 f2fs_update_time(sbi, REQ_TIME);
4001 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4002 return 0;
4003
4004 sync_free_meta:
4005 /* safe to flush all the data */
4006 sync_filesystem(sbi->sb);
4007 retry_cnt = 0;
4008
4009 free_meta:
4010 #ifdef CONFIG_QUOTA
4011 f2fs_truncate_quota_inode_pages(sb);
4012 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4013 f2fs_quota_off_umount(sbi->sb);
4014 #endif
4015 /*
4016 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4017 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4018 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4019 * falls into an infinite loop in f2fs_sync_meta_pages().
4020 */
4021 truncate_inode_pages_final(META_MAPPING(sbi));
4022 /* evict some inodes being cached by GC */
4023 evict_inodes(sb);
4024 f2fs_unregister_sysfs(sbi);
4025 free_root_inode:
4026 dput(sb->s_root);
4027 sb->s_root = NULL;
4028 free_node_inode:
4029 f2fs_release_ino_entry(sbi, true);
4030 truncate_inode_pages_final(NODE_MAPPING(sbi));
4031 iput(sbi->node_inode);
4032 sbi->node_inode = NULL;
4033 free_stats:
4034 f2fs_destroy_stats(sbi);
4035 free_nm:
4036 f2fs_destroy_node_manager(sbi);
4037 free_sm:
4038 f2fs_destroy_segment_manager(sbi);
4039 f2fs_destroy_post_read_wq(sbi);
4040 free_devices:
4041 destroy_device_list(sbi);
4042 kvfree(sbi->ckpt);
4043 free_meta_inode:
4044 make_bad_inode(sbi->meta_inode);
4045 iput(sbi->meta_inode);
4046 sbi->meta_inode = NULL;
4047 free_page_array_cache:
4048 f2fs_destroy_page_array_cache(sbi);
4049 free_xattr_cache:
4050 f2fs_destroy_xattr_caches(sbi);
4051 free_io_dummy:
4052 mempool_destroy(sbi->write_io_dummy);
4053 free_percpu:
4054 destroy_percpu_info(sbi);
4055 free_bio_info:
4056 for (i = 0; i < NR_PAGE_TYPE; i++)
4057 kvfree(sbi->write_io[i]);
4058
4059 #ifdef CONFIG_UNICODE
4060 utf8_unload(sb->s_encoding);
4061 sb->s_encoding = NULL;
4062 #endif
4063 free_options:
4064 #ifdef CONFIG_QUOTA
4065 for (i = 0; i < MAXQUOTAS; i++)
4066 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4067 #endif
4068 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4069 kvfree(options);
4070 free_sb_buf:
4071 kfree(raw_super);
4072 free_sbi:
4073 if (sbi->s_chksum_driver)
4074 crypto_free_shash(sbi->s_chksum_driver);
4075 kfree(sbi);
4076
4077 /* give only one another chance */
4078 if (retry_cnt > 0 && skip_recovery) {
4079 retry_cnt--;
4080 shrink_dcache_sb(sb);
4081 goto try_onemore;
4082 }
4083 return err;
4084 }
4085
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4086 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4087 const char *dev_name, void *data)
4088 {
4089 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4090 }
4091
kill_f2fs_super(struct super_block * sb)4092 static void kill_f2fs_super(struct super_block *sb)
4093 {
4094 if (sb->s_root) {
4095 struct f2fs_sb_info *sbi = F2FS_SB(sb);
4096
4097 set_sbi_flag(sbi, SBI_IS_CLOSE);
4098 f2fs_stop_gc_thread(sbi);
4099 f2fs_stop_discard_thread(sbi);
4100
4101 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4102 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4103 struct cp_control cpc = {
4104 .reason = CP_UMOUNT,
4105 };
4106 f2fs_write_checkpoint(sbi, &cpc);
4107 }
4108
4109 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4110 sb->s_flags &= ~SB_RDONLY;
4111 }
4112 kill_block_super(sb);
4113 }
4114
4115 static struct file_system_type f2fs_fs_type = {
4116 .owner = THIS_MODULE,
4117 .name = "f2fs",
4118 .mount = f2fs_mount,
4119 .kill_sb = kill_f2fs_super,
4120 .fs_flags = FS_REQUIRES_DEV,
4121 };
4122 MODULE_ALIAS_FS("f2fs");
4123
init_inodecache(void)4124 static int __init init_inodecache(void)
4125 {
4126 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4127 sizeof(struct f2fs_inode_info), 0,
4128 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4129 if (!f2fs_inode_cachep)
4130 return -ENOMEM;
4131 return 0;
4132 }
4133
destroy_inodecache(void)4134 static void destroy_inodecache(void)
4135 {
4136 /*
4137 * Make sure all delayed rcu free inodes are flushed before we
4138 * destroy cache.
4139 */
4140 rcu_barrier();
4141 kmem_cache_destroy(f2fs_inode_cachep);
4142 }
4143
init_f2fs_fs(void)4144 static int __init init_f2fs_fs(void)
4145 {
4146 int err;
4147
4148 if (PAGE_SIZE != F2FS_BLKSIZE) {
4149 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4150 PAGE_SIZE, F2FS_BLKSIZE);
4151 return -EINVAL;
4152 }
4153
4154 f2fs_build_trace_ios();
4155
4156 err = init_inodecache();
4157 if (err)
4158 goto fail;
4159 err = f2fs_create_node_manager_caches();
4160 if (err)
4161 goto free_inodecache;
4162 err = f2fs_create_segment_manager_caches();
4163 if (err)
4164 goto free_node_manager_caches;
4165 err = f2fs_create_checkpoint_caches();
4166 if (err)
4167 goto free_segment_manager_caches;
4168 err = f2fs_create_recovery_cache();
4169 if (err)
4170 goto free_checkpoint_caches;
4171 err = f2fs_create_extent_cache();
4172 if (err)
4173 goto free_recovery_cache;
4174 err = f2fs_create_garbage_collection_cache();
4175 if (err)
4176 goto free_extent_cache;
4177 err = f2fs_init_sysfs();
4178 if (err)
4179 goto free_garbage_collection_cache;
4180 err = register_shrinker(&f2fs_shrinker_info);
4181 if (err)
4182 goto free_sysfs;
4183 err = register_filesystem(&f2fs_fs_type);
4184 if (err)
4185 goto free_shrinker;
4186 f2fs_create_root_stats();
4187 err = f2fs_init_post_read_processing();
4188 if (err)
4189 goto free_root_stats;
4190 err = f2fs_init_bio_entry_cache();
4191 if (err)
4192 goto free_post_read;
4193 err = f2fs_init_bioset();
4194 if (err)
4195 goto free_bio_enrty_cache;
4196 err = f2fs_init_compress_mempool();
4197 if (err)
4198 goto free_bioset;
4199 err = f2fs_init_compress_cache();
4200 if (err)
4201 goto free_compress_mempool;
4202 return 0;
4203 free_compress_mempool:
4204 f2fs_destroy_compress_mempool();
4205 free_bioset:
4206 f2fs_destroy_bioset();
4207 free_bio_enrty_cache:
4208 f2fs_destroy_bio_entry_cache();
4209 free_post_read:
4210 f2fs_destroy_post_read_processing();
4211 free_root_stats:
4212 f2fs_destroy_root_stats();
4213 unregister_filesystem(&f2fs_fs_type);
4214 free_shrinker:
4215 unregister_shrinker(&f2fs_shrinker_info);
4216 free_sysfs:
4217 f2fs_exit_sysfs();
4218 free_garbage_collection_cache:
4219 f2fs_destroy_garbage_collection_cache();
4220 free_extent_cache:
4221 f2fs_destroy_extent_cache();
4222 free_recovery_cache:
4223 f2fs_destroy_recovery_cache();
4224 free_checkpoint_caches:
4225 f2fs_destroy_checkpoint_caches();
4226 free_segment_manager_caches:
4227 f2fs_destroy_segment_manager_caches();
4228 free_node_manager_caches:
4229 f2fs_destroy_node_manager_caches();
4230 free_inodecache:
4231 destroy_inodecache();
4232 fail:
4233 return err;
4234 }
4235
exit_f2fs_fs(void)4236 static void __exit exit_f2fs_fs(void)
4237 {
4238 f2fs_destroy_compress_cache();
4239 f2fs_destroy_compress_mempool();
4240 f2fs_destroy_bioset();
4241 f2fs_destroy_bio_entry_cache();
4242 f2fs_destroy_post_read_processing();
4243 f2fs_destroy_root_stats();
4244 unregister_filesystem(&f2fs_fs_type);
4245 unregister_shrinker(&f2fs_shrinker_info);
4246 f2fs_exit_sysfs();
4247 f2fs_destroy_garbage_collection_cache();
4248 f2fs_destroy_extent_cache();
4249 f2fs_destroy_recovery_cache();
4250 f2fs_destroy_checkpoint_caches();
4251 f2fs_destroy_segment_manager_caches();
4252 f2fs_destroy_node_manager_caches();
4253 destroy_inodecache();
4254 f2fs_destroy_trace_ios();
4255 }
4256
4257 module_init(init_f2fs_fs)
4258 module_exit(exit_f2fs_fs)
4259
4260 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4261 MODULE_DESCRIPTION("Flash Friendly File System");
4262 MODULE_LICENSE("GPL");
4263 MODULE_SOFTDEP("pre: crc32");
4264
4265