• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * DNN OpenVINO backend implementation.
24  */
25 
26 #include "dnn_backend_openvino.h"
27 #include "dnn_io_proc.h"
28 #include "libavformat/avio.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/opt.h"
31 #include "libavutil/avstring.h"
32 #include "../internal.h"
33 #include "queue.h"
34 #include "safe_queue.h"
35 #include <c_api/ie_c_api.h>
36 
37 typedef struct OVOptions{
38     char *device_type;
39     int nireq;
40     int batch_size;
41     int input_resizable;
42 } OVOptions;
43 
44 typedef struct OVContext {
45     const AVClass *class;
46     OVOptions options;
47 } OVContext;
48 
49 typedef struct OVModel{
50     OVContext ctx;
51     DNNModel *model;
52     ie_core_t *core;
53     ie_network_t *network;
54     ie_executable_network_t *exe_network;
55     ie_infer_request_t *infer_request;
56 
57     /* for async execution */
58     SafeQueue *request_queue;   // holds RequestItem
59     Queue *task_queue;          // holds TaskItem
60 } OVModel;
61 
62 typedef struct TaskItem {
63     OVModel *ov_model;
64     const char *input_name;
65     AVFrame *in_frame;
66     const char *output_name;
67     AVFrame *out_frame;
68     int do_ioproc;
69     int async;
70     int done;
71 } TaskItem;
72 
73 typedef struct RequestItem {
74     ie_infer_request_t *infer_request;
75     TaskItem **tasks;
76     int task_count;
77     ie_complete_call_back_t callback;
78 } RequestItem;
79 
80 #define APPEND_STRING(generated_string, iterate_string)                                            \
81     generated_string = generated_string ? av_asprintf("%s %s", generated_string, iterate_string) : \
82                                           av_asprintf("%s", iterate_string);
83 
84 #define OFFSET(x) offsetof(OVContext, x)
85 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM
86 static const AVOption dnn_openvino_options[] = {
87     { "device", "device to run model", OFFSET(options.device_type), AV_OPT_TYPE_STRING, { .str = "CPU" }, 0, 0, FLAGS },
88     { "nireq",  "number of request",   OFFSET(options.nireq),       AV_OPT_TYPE_INT,    { .i64 = 0 },     0, INT_MAX, FLAGS },
89     { "batch_size",  "batch size per request", OFFSET(options.batch_size),  AV_OPT_TYPE_INT,    { .i64 = 1 },     1, 1000, FLAGS},
90     { "input_resizable", "can input be resizable or not", OFFSET(options.input_resizable), AV_OPT_TYPE_BOOL,   { .i64 = 0 },     0, 1, FLAGS },
91     { NULL }
92 };
93 
94 AVFILTER_DEFINE_CLASS(dnn_openvino);
95 
precision_to_datatype(precision_e precision)96 static DNNDataType precision_to_datatype(precision_e precision)
97 {
98     switch (precision)
99     {
100     case FP32:
101         return DNN_FLOAT;
102     case U8:
103         return DNN_UINT8;
104     default:
105         av_assert0(!"not supported yet.");
106         return DNN_FLOAT;
107     }
108 }
109 
get_datatype_size(DNNDataType dt)110 static int get_datatype_size(DNNDataType dt)
111 {
112     switch (dt)
113     {
114     case DNN_FLOAT:
115         return sizeof(float);
116     case DNN_UINT8:
117         return sizeof(uint8_t);
118     default:
119         av_assert0(!"not supported yet.");
120         return 1;
121     }
122 }
123 
fill_model_input_ov(OVModel * ov_model,RequestItem * request)124 static DNNReturnType fill_model_input_ov(OVModel *ov_model, RequestItem *request)
125 {
126     dimensions_t dims;
127     precision_e precision;
128     ie_blob_buffer_t blob_buffer;
129     OVContext *ctx = &ov_model->ctx;
130     IEStatusCode status;
131     DNNData input;
132     ie_blob_t *input_blob = NULL;
133     TaskItem *task = request->tasks[0];
134 
135     status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
136     if (status != OK) {
137         av_log(ctx, AV_LOG_ERROR, "Failed to get input blob with name %s\n", task->input_name);
138         return DNN_ERROR;
139     }
140 
141     status |= ie_blob_get_dims(input_blob, &dims);
142     status |= ie_blob_get_precision(input_blob, &precision);
143     if (status != OK) {
144         ie_blob_free(&input_blob);
145         av_log(ctx, AV_LOG_ERROR, "Failed to get input blob dims/precision\n");
146         return DNN_ERROR;
147     }
148 
149     status = ie_blob_get_buffer(input_blob, &blob_buffer);
150     if (status != OK) {
151         ie_blob_free(&input_blob);
152         av_log(ctx, AV_LOG_ERROR, "Failed to get input blob buffer\n");
153         return DNN_ERROR;
154     }
155 
156     input.height = dims.dims[2];
157     input.width = dims.dims[3];
158     input.channels = dims.dims[1];
159     input.data = blob_buffer.buffer;
160     input.dt = precision_to_datatype(precision);
161     // all models in openvino open model zoo use BGR as input,
162     // change to be an option when necessary.
163     input.order = DCO_BGR;
164 
165     av_assert0(request->task_count <= dims.dims[0]);
166     for (int i = 0; i < request->task_count; ++i) {
167         task = request->tasks[i];
168         if (task->do_ioproc) {
169             if (ov_model->model->pre_proc != NULL) {
170                 ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->filter_ctx);
171             } else {
172                 ff_proc_from_frame_to_dnn(task->in_frame, &input, ov_model->model->func_type, ctx);
173             }
174         }
175         input.data = (uint8_t *)input.data
176                      + input.width * input.height * input.channels * get_datatype_size(input.dt);
177     }
178     ie_blob_free(&input_blob);
179 
180     return DNN_SUCCESS;
181 }
182 
infer_completion_callback(void * args)183 static void infer_completion_callback(void *args)
184 {
185     dimensions_t dims;
186     precision_e precision;
187     IEStatusCode status;
188     RequestItem *request = args;
189     TaskItem *task = request->tasks[0];
190     SafeQueue *requestq = task->ov_model->request_queue;
191     ie_blob_t *output_blob = NULL;
192     ie_blob_buffer_t blob_buffer;
193     DNNData output;
194     OVContext *ctx = &task->ov_model->ctx;
195 
196     status = ie_infer_request_get_blob(request->infer_request, task->output_name, &output_blob);
197     if (status != OK) {
198         //incorrect output name
199         char *model_output_name = NULL;
200         char *all_output_names = NULL;
201         size_t model_output_count = 0;
202         av_log(ctx, AV_LOG_ERROR, "Failed to get model output data\n");
203         status = ie_network_get_outputs_number(task->ov_model->network, &model_output_count);
204         for (size_t i = 0; i < model_output_count; i++) {
205             status = ie_network_get_output_name(task->ov_model->network, i, &model_output_name);
206             APPEND_STRING(all_output_names, model_output_name)
207         }
208         av_log(ctx, AV_LOG_ERROR,
209                "output \"%s\" may not correct, all output(s) are: \"%s\"\n",
210                task->output_name, all_output_names);
211         return;
212     }
213 
214     status = ie_blob_get_buffer(output_blob, &blob_buffer);
215     if (status != OK) {
216         ie_blob_free(&output_blob);
217         av_log(ctx, AV_LOG_ERROR, "Failed to access output memory\n");
218         return;
219     }
220 
221     status |= ie_blob_get_dims(output_blob, &dims);
222     status |= ie_blob_get_precision(output_blob, &precision);
223     if (status != OK) {
224         ie_blob_free(&output_blob);
225         av_log(ctx, AV_LOG_ERROR, "Failed to get dims or precision of output\n");
226         return;
227     }
228 
229     output.channels = dims.dims[1];
230     output.height   = dims.dims[2];
231     output.width    = dims.dims[3];
232     output.dt       = precision_to_datatype(precision);
233     output.data     = blob_buffer.buffer;
234 
235     av_assert0(request->task_count <= dims.dims[0]);
236     av_assert0(request->task_count >= 1);
237     for (int i = 0; i < request->task_count; ++i) {
238         task = request->tasks[i];
239         if (task->do_ioproc) {
240             if (task->ov_model->model->post_proc != NULL) {
241                 task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->filter_ctx);
242             } else {
243                 ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx);
244             }
245         } else {
246             task->out_frame->width = output.width;
247             task->out_frame->height = output.height;
248         }
249         task->done = 1;
250         output.data = (uint8_t *)output.data
251                       + output.width * output.height * output.channels * get_datatype_size(output.dt);
252     }
253     ie_blob_free(&output_blob);
254 
255     request->task_count = 0;
256 
257     if (task->async) {
258         if (ff_safe_queue_push_back(requestq, request) < 0) {
259             av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
260             return;
261         }
262     }
263 }
264 
init_model_ov(OVModel * ov_model,const char * input_name,const char * output_name)265 static DNNReturnType init_model_ov(OVModel *ov_model, const char *input_name, const char *output_name)
266 {
267     OVContext *ctx = &ov_model->ctx;
268     IEStatusCode status;
269     ie_available_devices_t a_dev;
270     ie_config_t config = {NULL, NULL, NULL};
271     char *all_dev_names = NULL;
272 
273     // batch size
274     if (ctx->options.batch_size <= 0) {
275         ctx->options.batch_size = 1;
276     }
277 
278     if (ctx->options.batch_size > 1) {
279         input_shapes_t input_shapes;
280         status = ie_network_get_input_shapes(ov_model->network, &input_shapes);
281         if (status != OK)
282             goto err;
283         for (int i = 0; i < input_shapes.shape_num; i++)
284             input_shapes.shapes[i].shape.dims[0] = ctx->options.batch_size;
285         status = ie_network_reshape(ov_model->network, input_shapes);
286         ie_network_input_shapes_free(&input_shapes);
287         if (status != OK)
288             goto err;
289     }
290 
291     // The order of dims in the openvino is fixed and it is always NCHW for 4-D data.
292     // while we pass NHWC data from FFmpeg to openvino
293     status = ie_network_set_input_layout(ov_model->network, input_name, NHWC);
294     if (status != OK) {
295         av_log(ctx, AV_LOG_ERROR, "Failed to set layout as NHWC for input %s\n", input_name);
296         goto err;
297     }
298     status = ie_network_set_output_layout(ov_model->network, output_name, NHWC);
299     if (status != OK) {
300         av_log(ctx, AV_LOG_ERROR, "Failed to set layout as NHWC for output %s\n", output_name);
301         goto err;
302     }
303 
304     // all models in openvino open model zoo use BGR with range [0.0f, 255.0f] as input,
305     // we don't have a AVPixelFormat to descibe it, so we'll use AV_PIX_FMT_BGR24 and
306     // ask openvino to do the conversion internally.
307     // the current supported SR model (frame processing) is generated from tensorflow model,
308     // and its input is Y channel as float with range [0.0f, 1.0f], so do not set for this case.
309     // TODO: we need to get a final clear&general solution with all backends/formats considered.
310     if (ov_model->model->func_type != DFT_PROCESS_FRAME) {
311         status = ie_network_set_input_precision(ov_model->network, input_name, U8);
312         if (status != OK) {
313             av_log(ctx, AV_LOG_ERROR, "Failed to set input precision as U8 for %s\n", input_name);
314             goto err;
315         }
316     }
317 
318     status = ie_core_load_network(ov_model->core, ov_model->network, ctx->options.device_type, &config, &ov_model->exe_network);
319     if (status != OK) {
320         av_log(ctx, AV_LOG_ERROR, "Failed to load OpenVINO model network\n");
321         status = ie_core_get_available_devices(ov_model->core, &a_dev);
322         if (status != OK) {
323             av_log(ctx, AV_LOG_ERROR, "Failed to get available devices\n");
324             goto err;
325         }
326         for (int i = 0; i < a_dev.num_devices; i++) {
327             APPEND_STRING(all_dev_names, a_dev.devices[i])
328         }
329         av_log(ctx, AV_LOG_ERROR,"device %s may not be supported, all available devices are: \"%s\"\n",
330                ctx->options.device_type, all_dev_names);
331         goto err;
332     }
333 
334     // create infer_request for sync execution
335     status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request);
336     if (status != OK)
337         goto err;
338 
339     // create infer_requests for async execution
340     if (ctx->options.nireq <= 0) {
341         // the default value is a rough estimation
342         ctx->options.nireq = av_cpu_count() / 2 + 1;
343     }
344 
345     ov_model->request_queue = ff_safe_queue_create();
346     if (!ov_model->request_queue) {
347         goto err;
348     }
349 
350     for (int i = 0; i < ctx->options.nireq; i++) {
351         RequestItem *item = av_mallocz(sizeof(*item));
352         if (!item) {
353             goto err;
354         }
355 
356         item->callback.completeCallBackFunc = infer_completion_callback;
357         item->callback.args = item;
358         if (ff_safe_queue_push_back(ov_model->request_queue, item) < 0) {
359             av_freep(&item);
360             goto err;
361         }
362 
363         status = ie_exec_network_create_infer_request(ov_model->exe_network, &item->infer_request);
364         if (status != OK) {
365             goto err;
366         }
367 
368         item->tasks = av_malloc_array(ctx->options.batch_size, sizeof(*item->tasks));
369         if (!item->tasks) {
370             goto err;
371         }
372         item->task_count = 0;
373     }
374 
375     ov_model->task_queue = ff_queue_create();
376     if (!ov_model->task_queue) {
377         goto err;
378     }
379 
380     return DNN_SUCCESS;
381 
382 err:
383     ff_dnn_free_model_ov(&ov_model->model);
384     return DNN_ERROR;
385 }
386 
execute_model_ov(RequestItem * request)387 static DNNReturnType execute_model_ov(RequestItem *request)
388 {
389     IEStatusCode status;
390     DNNReturnType ret;
391     TaskItem *task = request->tasks[0];
392     OVContext *ctx = &task->ov_model->ctx;
393 
394     if (task->async) {
395         if (request->task_count < ctx->options.batch_size) {
396             if (ff_safe_queue_push_front(task->ov_model->request_queue, request) < 0) {
397                 av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
398                 return DNN_ERROR;
399             }
400             return DNN_SUCCESS;
401         }
402         ret = fill_model_input_ov(task->ov_model, request);
403         if (ret != DNN_SUCCESS) {
404             return ret;
405         }
406         status = ie_infer_set_completion_callback(request->infer_request, &request->callback);
407         if (status != OK) {
408             av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n");
409             return DNN_ERROR;
410         }
411         status = ie_infer_request_infer_async(request->infer_request);
412         if (status != OK) {
413             av_log(ctx, AV_LOG_ERROR, "Failed to start async inference\n");
414             return DNN_ERROR;
415         }
416         return DNN_SUCCESS;
417     } else {
418         ret = fill_model_input_ov(task->ov_model, request);
419         if (ret != DNN_SUCCESS) {
420             return ret;
421         }
422         status = ie_infer_request_infer(request->infer_request);
423         if (status != OK) {
424             av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
425             return DNN_ERROR;
426         }
427         infer_completion_callback(request);
428         return task->done ? DNN_SUCCESS : DNN_ERROR;
429     }
430 }
431 
get_input_ov(void * model,DNNData * input,const char * input_name)432 static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input_name)
433 {
434     OVModel *ov_model = model;
435     OVContext *ctx = &ov_model->ctx;
436     char *model_input_name = NULL;
437     char *all_input_names = NULL;
438     IEStatusCode status;
439     size_t model_input_count = 0;
440     dimensions_t dims;
441     precision_e precision;
442     int input_resizable = ctx->options.input_resizable;
443 
444     status = ie_network_get_inputs_number(ov_model->network, &model_input_count);
445     if (status != OK) {
446         av_log(ctx, AV_LOG_ERROR, "Failed to get input count\n");
447         return DNN_ERROR;
448     }
449 
450     for (size_t i = 0; i < model_input_count; i++) {
451         status = ie_network_get_input_name(ov_model->network, i, &model_input_name);
452         if (status != OK) {
453             av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's name\n", (int)i);
454             return DNN_ERROR;
455         }
456         if (strcmp(model_input_name, input_name) == 0) {
457             ie_network_name_free(&model_input_name);
458             status |= ie_network_get_input_dims(ov_model->network, input_name, &dims);
459             status |= ie_network_get_input_precision(ov_model->network, input_name, &precision);
460             if (status != OK) {
461                 av_log(ctx, AV_LOG_ERROR, "Failed to get No.%d input's dims or precision\n", (int)i);
462                 return DNN_ERROR;
463             }
464 
465             input->channels = dims.dims[1];
466             input->height   = input_resizable ? -1 : dims.dims[2];
467             input->width    = input_resizable ? -1 : dims.dims[3];
468             input->dt       = precision_to_datatype(precision);
469             return DNN_SUCCESS;
470         } else {
471             //incorrect input name
472             APPEND_STRING(all_input_names, model_input_name)
473         }
474 
475         ie_network_name_free(&model_input_name);
476     }
477 
478     av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model, all input(s) are: \"%s\"\n", input_name, all_input_names);
479     return DNN_ERROR;
480 }
481 
get_output_ov(void * model,const char * input_name,int input_width,int input_height,const char * output_name,int * output_width,int * output_height)482 static DNNReturnType get_output_ov(void *model, const char *input_name, int input_width, int input_height,
483                                    const char *output_name, int *output_width, int *output_height)
484 {
485     DNNReturnType ret;
486     OVModel *ov_model = model;
487     OVContext *ctx = &ov_model->ctx;
488     TaskItem task;
489     RequestItem request;
490     AVFrame *in_frame = NULL;
491     AVFrame *out_frame = NULL;
492     TaskItem *ptask = &task;
493     IEStatusCode status;
494     input_shapes_t input_shapes;
495 
496     if (ctx->options.input_resizable) {
497         status = ie_network_get_input_shapes(ov_model->network, &input_shapes);
498         input_shapes.shapes->shape.dims[2] = input_height;
499         input_shapes.shapes->shape.dims[3] = input_width;
500         status |= ie_network_reshape(ov_model->network, input_shapes);
501         ie_network_input_shapes_free(&input_shapes);
502         if (status != OK) {
503             av_log(ctx, AV_LOG_ERROR, "Failed to reshape input size for %s\n", input_name);
504             return DNN_ERROR;
505         }
506     }
507 
508     if (!ov_model->exe_network) {
509         if (init_model_ov(ov_model, input_name, output_name) != DNN_SUCCESS) {
510             av_log(ctx, AV_LOG_ERROR, "Failed init OpenVINO exectuable network or inference request\n");
511             return DNN_ERROR;
512         }
513     }
514 
515     in_frame = av_frame_alloc();
516     if (!in_frame) {
517         av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
518         return DNN_ERROR;
519     }
520     in_frame->width = input_width;
521     in_frame->height = input_height;
522 
523     out_frame = av_frame_alloc();
524     if (!out_frame) {
525         av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n");
526         av_frame_free(&in_frame);
527         return DNN_ERROR;
528     }
529 
530     task.done = 0;
531     task.do_ioproc = 0;
532     task.async = 0;
533     task.input_name = input_name;
534     task.in_frame = in_frame;
535     task.output_name = output_name;
536     task.out_frame = out_frame;
537     task.ov_model = ov_model;
538 
539     request.infer_request = ov_model->infer_request;
540     request.task_count = 1;
541     request.tasks = &ptask;
542 
543     ret = execute_model_ov(&request);
544     *output_width = out_frame->width;
545     *output_height = out_frame->height;
546 
547     av_frame_free(&out_frame);
548     av_frame_free(&in_frame);
549     return ret;
550 }
551 
ff_dnn_load_model_ov(const char * model_filename,DNNFunctionType func_type,const char * options,AVFilterContext * filter_ctx)552 DNNModel *ff_dnn_load_model_ov(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
553 {
554     DNNModel *model = NULL;
555     OVModel *ov_model = NULL;
556     OVContext *ctx = NULL;
557     IEStatusCode status;
558 
559     model = av_mallocz(sizeof(DNNModel));
560     if (!model){
561         return NULL;
562     }
563 
564     ov_model = av_mallocz(sizeof(OVModel));
565     if (!ov_model) {
566         av_freep(&model);
567         return NULL;
568     }
569     model->model = ov_model;
570     ov_model->model = model;
571     ov_model->ctx.class = &dnn_openvino_class;
572     ctx = &ov_model->ctx;
573 
574     //parse options
575     av_opt_set_defaults(ctx);
576     if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
577         av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
578         goto err;
579     }
580 
581     status = ie_core_create("", &ov_model->core);
582     if (status != OK)
583         goto err;
584 
585     status = ie_core_read_network(ov_model->core, model_filename, NULL, &ov_model->network);
586     if (status != OK) {
587         ie_version_t ver;
588         ver = ie_c_api_version();
589         av_log(ctx, AV_LOG_ERROR, "Failed to read the network from model file %s,\n"
590                                   "Please check if the model version matches the runtime OpenVINO %s\n",
591                                    model_filename, ver.api_version);
592         ie_version_free(&ver);
593         goto err;
594     }
595 
596     model->get_input = &get_input_ov;
597     model->get_output = &get_output_ov;
598     model->options = options;
599     model->filter_ctx = filter_ctx;
600     model->func_type = func_type;
601 
602     return model;
603 
604 err:
605     ff_dnn_free_model_ov(&model);
606     return NULL;
607 }
608 
ff_dnn_execute_model_ov(const DNNModel * model,const char * input_name,AVFrame * in_frame,const char ** output_names,uint32_t nb_output,AVFrame * out_frame)609 DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
610                                       const char **output_names, uint32_t nb_output, AVFrame *out_frame)
611 {
612     OVModel *ov_model = model->model;
613     OVContext *ctx = &ov_model->ctx;
614     TaskItem task;
615     RequestItem request;
616     TaskItem *ptask = &task;
617 
618     if (!in_frame) {
619         av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n");
620         return DNN_ERROR;
621     }
622 
623     if (!out_frame && model->func_type == DFT_PROCESS_FRAME) {
624         av_log(ctx, AV_LOG_ERROR, "out frame is NULL when execute model.\n");
625         return DNN_ERROR;
626     }
627 
628     if (nb_output != 1) {
629         // currently, the filter does not need multiple outputs,
630         // so we just pending the support until we really need it.
631         avpriv_report_missing_feature(ctx, "multiple outputs");
632         return DNN_ERROR;
633     }
634 
635     if (ctx->options.batch_size > 1) {
636         avpriv_report_missing_feature(ctx, "batch mode for sync execution");
637         return DNN_ERROR;
638     }
639 
640     if (!ov_model->exe_network) {
641         if (init_model_ov(ov_model, input_name, output_names[0]) != DNN_SUCCESS) {
642             av_log(ctx, AV_LOG_ERROR, "Failed init OpenVINO exectuable network or inference request\n");
643             return DNN_ERROR;
644         }
645     }
646 
647     task.done = 0;
648     task.do_ioproc = 1;
649     task.async = 0;
650     task.input_name = input_name;
651     task.in_frame = in_frame;
652     task.output_name = output_names[0];
653     task.out_frame = out_frame;
654     task.ov_model = ov_model;
655 
656     request.infer_request = ov_model->infer_request;
657     request.task_count = 1;
658     request.tasks = &ptask;
659 
660     return execute_model_ov(&request);
661 }
662 
ff_dnn_execute_model_async_ov(const DNNModel * model,const char * input_name,AVFrame * in_frame,const char ** output_names,uint32_t nb_output,AVFrame * out_frame)663 DNNReturnType ff_dnn_execute_model_async_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
664                                             const char **output_names, uint32_t nb_output, AVFrame *out_frame)
665 {
666     OVModel *ov_model = model->model;
667     OVContext *ctx = &ov_model->ctx;
668     RequestItem *request;
669     TaskItem *task;
670 
671     if (!in_frame) {
672         av_log(ctx, AV_LOG_ERROR, "in frame is NULL when async execute model.\n");
673         return DNN_ERROR;
674     }
675 
676     if (!out_frame && model->func_type == DFT_PROCESS_FRAME) {
677         av_log(ctx, AV_LOG_ERROR, "out frame is NULL when async execute model.\n");
678         return DNN_ERROR;
679     }
680 
681     if (!ov_model->exe_network) {
682         if (init_model_ov(ov_model, input_name, output_names[0]) != DNN_SUCCESS) {
683             av_log(ctx, AV_LOG_ERROR, "Failed init OpenVINO exectuable network or inference request\n");
684             return DNN_ERROR;
685         }
686     }
687 
688     task = av_malloc(sizeof(*task));
689     if (!task) {
690         av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
691         return DNN_ERROR;
692     }
693 
694     task->done = 0;
695     task->do_ioproc = 1;
696     task->async = 1;
697     task->input_name = input_name;
698     task->in_frame = in_frame;
699     task->output_name = output_names[0];
700     task->out_frame = out_frame;
701     task->ov_model = ov_model;
702     if (ff_queue_push_back(ov_model->task_queue, task) < 0) {
703         av_freep(&task);
704         av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
705         return DNN_ERROR;
706     }
707 
708     request = ff_safe_queue_pop_front(ov_model->request_queue);
709     if (!request) {
710         av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
711         return DNN_ERROR;
712     }
713 
714     request->tasks[request->task_count++] = task;
715     return execute_model_ov(request);
716 }
717 
ff_dnn_get_async_result_ov(const DNNModel * model,AVFrame ** in,AVFrame ** out)718 DNNAsyncStatusType ff_dnn_get_async_result_ov(const DNNModel *model, AVFrame **in, AVFrame **out)
719 {
720     OVModel *ov_model = model->model;
721     TaskItem *task = ff_queue_peek_front(ov_model->task_queue);
722 
723     if (!task) {
724         return DAST_EMPTY_QUEUE;
725     }
726 
727     if (!task->done) {
728         return DAST_NOT_READY;
729     }
730 
731     *in = task->in_frame;
732     *out = task->out_frame;
733     ff_queue_pop_front(ov_model->task_queue);
734     av_freep(&task);
735 
736     return DAST_SUCCESS;
737 }
738 
ff_dnn_flush_ov(const DNNModel * model)739 DNNReturnType ff_dnn_flush_ov(const DNNModel *model)
740 {
741     OVModel *ov_model = model->model;
742     OVContext *ctx = &ov_model->ctx;
743     RequestItem *request;
744     IEStatusCode status;
745     DNNReturnType ret;
746 
747     request = ff_safe_queue_pop_front(ov_model->request_queue);
748     if (!request) {
749         av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
750         return DNN_ERROR;
751     }
752 
753     if (request->task_count == 0) {
754         // no pending task need to flush
755         if (ff_safe_queue_push_back(ov_model->request_queue, request) < 0) {
756             av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
757             return DNN_ERROR;
758         }
759         return DNN_SUCCESS;
760     }
761 
762     ret = fill_model_input_ov(ov_model, request);
763     if (ret != DNN_SUCCESS) {
764         av_log(ctx, AV_LOG_ERROR, "Failed to fill model input.\n");
765         return ret;
766     }
767     status = ie_infer_set_completion_callback(request->infer_request, &request->callback);
768     if (status != OK) {
769         av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n");
770         return DNN_ERROR;
771     }
772     status = ie_infer_request_infer_async(request->infer_request);
773     if (status != OK) {
774         av_log(ctx, AV_LOG_ERROR, "Failed to start async inference\n");
775         return DNN_ERROR;
776     }
777 
778     return DNN_SUCCESS;
779 }
780 
ff_dnn_free_model_ov(DNNModel ** model)781 void ff_dnn_free_model_ov(DNNModel **model)
782 {
783     if (*model){
784         OVModel *ov_model = (*model)->model;
785         while (ff_safe_queue_size(ov_model->request_queue) != 0) {
786             RequestItem *item = ff_safe_queue_pop_front(ov_model->request_queue);
787             if (item && item->infer_request) {
788                 ie_infer_request_free(&item->infer_request);
789             }
790             av_freep(&item->tasks);
791             av_freep(&item);
792         }
793         ff_safe_queue_destroy(ov_model->request_queue);
794 
795         while (ff_queue_size(ov_model->task_queue) != 0) {
796             TaskItem *item = ff_queue_pop_front(ov_model->task_queue);
797             av_frame_free(&item->in_frame);
798             av_frame_free(&item->out_frame);
799             av_freep(&item);
800         }
801         ff_queue_destroy(ov_model->task_queue);
802 
803         if (ov_model->infer_request)
804             ie_infer_request_free(&ov_model->infer_request);
805         if (ov_model->exe_network)
806             ie_exec_network_free(&ov_model->exe_network);
807         if (ov_model->network)
808             ie_network_free(&ov_model->network);
809         if (ov_model->core)
810             ie_core_free(&ov_model->core);
811         av_freep(&ov_model);
812         av_freep(model);
813     }
814 }
815