• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2016 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 // FramebufferVk.cpp:
7 //    Implements the class methods for FramebufferVk.
8 //
9 
10 #include "libANGLE/renderer/vulkan/FramebufferVk.h"
11 
12 #include <vulkan/vulkan.h>
13 #include <array>
14 
15 #include "common/debug.h"
16 #include "libANGLE/Context.h"
17 #include "libANGLE/Display.h"
18 #include "libANGLE/formatutils.h"
19 #include "libANGLE/renderer/renderer_utils.h"
20 #include "libANGLE/renderer/vulkan/CommandGraph.h"
21 #include "libANGLE/renderer/vulkan/ContextVk.h"
22 #include "libANGLE/renderer/vulkan/DisplayVk.h"
23 #include "libANGLE/renderer/vulkan/RenderTargetVk.h"
24 #include "libANGLE/renderer/vulkan/RendererVk.h"
25 #include "libANGLE/renderer/vulkan/SurfaceVk.h"
26 #include "libANGLE/renderer/vulkan/vk_format_utils.h"
27 #include "libANGLE/trace.h"
28 
29 namespace rx
30 {
31 
32 namespace
33 {
34 // The value to assign an alpha channel that's emulated.  The type is unsigned int, though it will
35 // automatically convert to the actual data type.
36 constexpr unsigned int kEmulatedAlphaValue = 1;
37 
38 constexpr size_t kMinReadPixelsBufferSize = 128000;
39 
40 // Alignment value to accommodate the largest known, for now, uncompressed Vulkan format
41 // VK_FORMAT_R64G64B64A64_SFLOAT
42 constexpr size_t kReadPixelsBufferAlignment = 32;
43 
44 // Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp.  When starting a
45 // new render pass, the clear value is set to an unlikely value (bright pink) to stand out better
46 // in case of a bug.
47 constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}};
48 
GetReadAttachmentInfo(const gl::Context * context,RenderTargetVk * renderTarget)49 const gl::InternalFormat &GetReadAttachmentInfo(const gl::Context *context,
50                                                 RenderTargetVk *renderTarget)
51 {
52     GLenum implFormat =
53         renderTarget->getImageFormat().imageFormat().fboImplementationInternalFormat;
54     return gl::GetSizedInternalFormatInfo(implFormat);
55 }
56 
HasSrcBlitFeature(RendererVk * renderer,RenderTargetVk * srcRenderTarget)57 bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget)
58 {
59     const VkFormat srcFormat = srcRenderTarget->getImageFormat().vkImageFormat;
60     return renderer->hasImageFormatFeatureBits(srcFormat, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
61 }
62 
HasDstBlitFeature(RendererVk * renderer,RenderTargetVk * dstRenderTarget)63 bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget)
64 {
65     const VkFormat dstFormat = dstRenderTarget->getImageFormat().vkImageFormat;
66     return renderer->hasImageFormatFeatureBits(dstFormat, VK_FORMAT_FEATURE_BLIT_DST_BIT);
67 }
68 
69 // Returns false if destination has any channel the source doesn't.  This means that channel was
70 // emulated and using the Vulkan blit command would overwrite that emulated channel.
areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)71 bool areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
72                                              RenderTargetVk *dstRenderTarget)
73 {
74     const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat();
75     const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat();
76 
77     // Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to
78     // participate in a blit.
79     ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA());
80 
81     // All color formats have the red channel.
82     ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0);
83 
84     return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) &&
85            (dstFormat.blueBits > 0 || srcFormat.blueBits == 0) &&
86            (dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0);
87 }
88 
areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk * srcRenderTarget,RenderTargetVk * dstRenderTarget)89 bool areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
90                                                     RenderTargetVk *dstRenderTarget)
91 {
92     const angle::Format &srcFormat = srcRenderTarget->getImageFormat().angleFormat();
93     const angle::Format &dstFormat = dstRenderTarget->getImageFormat().angleFormat();
94 
95     return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) &&
96            (dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0);
97 }
98 
99 // Special rules apply to VkBufferImageCopy with depth/stencil. The components are tightly packed
100 // into a depth or stencil section of the destination buffer. See the spec:
101 // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkBufferImageCopy.html
GetDepthStencilImageToBufferFormat(const angle::Format & imageFormat,VkImageAspectFlagBits copyAspect)102 const angle::Format &GetDepthStencilImageToBufferFormat(const angle::Format &imageFormat,
103                                                         VkImageAspectFlagBits copyAspect)
104 {
105     if (copyAspect == VK_IMAGE_ASPECT_STENCIL_BIT)
106     {
107         ASSERT(imageFormat.id == angle::FormatID::D24_UNORM_S8_UINT ||
108                imageFormat.id == angle::FormatID::D32_FLOAT_S8X24_UINT ||
109                imageFormat.id == angle::FormatID::S8_UINT);
110         return angle::Format::Get(angle::FormatID::S8_UINT);
111     }
112 
113     ASSERT(copyAspect == VK_IMAGE_ASPECT_DEPTH_BIT);
114 
115     switch (imageFormat.id)
116     {
117         case angle::FormatID::D16_UNORM:
118             return imageFormat;
119         case angle::FormatID::D24_UNORM_X8_UINT:
120             return imageFormat;
121         case angle::FormatID::D24_UNORM_S8_UINT:
122             return angle::Format::Get(angle::FormatID::D24_UNORM_X8_UINT);
123         case angle::FormatID::D32_FLOAT:
124             return imageFormat;
125         case angle::FormatID::D32_FLOAT_S8X24_UINT:
126             return angle::Format::Get(angle::FormatID::D32_FLOAT);
127         default:
128             UNREACHABLE();
129             return imageFormat;
130     }
131 }
132 
SetEmulatedAlphaValue(const vk::Format & format,VkClearColorValue * value)133 void SetEmulatedAlphaValue(const vk::Format &format, VkClearColorValue *value)
134 {
135     if (format.vkFormatIsInt)
136     {
137         if (format.vkFormatIsUnsigned)
138         {
139             value->uint32[3] = kEmulatedAlphaValue;
140         }
141         else
142         {
143             value->int32[3] = kEmulatedAlphaValue;
144         }
145     }
146     else
147     {
148         value->float32[3] = kEmulatedAlphaValue;
149     }
150 }
151 }  // anonymous namespace
152 
153 // static
CreateUserFBO(RendererVk * renderer,const gl::FramebufferState & state)154 FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state)
155 {
156     return new FramebufferVk(renderer, state, nullptr);
157 }
158 
159 // static
CreateDefaultFBO(RendererVk * renderer,const gl::FramebufferState & state,WindowSurfaceVk * backbuffer)160 FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer,
161                                                const gl::FramebufferState &state,
162                                                WindowSurfaceVk *backbuffer)
163 {
164     return new FramebufferVk(renderer, state, backbuffer);
165 }
166 
FramebufferVk(RendererVk * renderer,const gl::FramebufferState & state,WindowSurfaceVk * backbuffer)167 FramebufferVk::FramebufferVk(RendererVk *renderer,
168                              const gl::FramebufferState &state,
169                              WindowSurfaceVk *backbuffer)
170     : FramebufferImpl(state), mBackbuffer(backbuffer), mActiveColorComponents(0)
171 {
172     mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment,
173                           kMinReadPixelsBufferSize, true);
174 }
175 
176 FramebufferVk::~FramebufferVk() = default;
177 
destroy(const gl::Context * context)178 void FramebufferVk::destroy(const gl::Context *context)
179 {
180     ContextVk *contextVk = vk::GetImpl(context);
181     mFramebuffer.release(contextVk);
182 
183     mReadPixelBuffer.release(contextVk);
184 }
185 
discard(const gl::Context * context,size_t count,const GLenum * attachments)186 angle::Result FramebufferVk::discard(const gl::Context *context,
187                                      size_t count,
188                                      const GLenum *attachments)
189 {
190     return invalidate(context, count, attachments);
191 }
192 
invalidate(const gl::Context * context,size_t count,const GLenum * attachments)193 angle::Result FramebufferVk::invalidate(const gl::Context *context,
194                                         size_t count,
195                                         const GLenum *attachments)
196 {
197     mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial());
198 
199     if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass())
200     {
201         invalidateImpl(vk::GetImpl(context), count, attachments);
202     }
203 
204     return angle::Result::Continue;
205 }
206 
invalidateSub(const gl::Context * context,size_t count,const GLenum * attachments,const gl::Rectangle & area)207 angle::Result FramebufferVk::invalidateSub(const gl::Context *context,
208                                            size_t count,
209                                            const GLenum *attachments,
210                                            const gl::Rectangle &area)
211 {
212     mFramebuffer.updateQueueSerial(vk::GetImpl(context)->getCurrentQueueSerial());
213 
214     // RenderPass' storeOp cannot be made conditional to a specific region, so we only apply this
215     // hint if the requested area encompasses the render area.
216     if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass() &&
217         area.encloses(mFramebuffer.getRenderPassRenderArea()))
218     {
219         invalidateImpl(vk::GetImpl(context), count, attachments);
220     }
221 
222     return angle::Result::Continue;
223 }
224 
clear(const gl::Context * context,GLbitfield mask)225 angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask)
226 {
227     ContextVk *contextVk = vk::GetImpl(context);
228 
229     bool clearColor   = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT));
230     bool clearDepth   = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT));
231     bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT));
232     gl::DrawBufferMask clearColorBuffers;
233     if (clearColor)
234     {
235         clearColorBuffers = mState.getEnabledDrawBuffers();
236     }
237 
238     const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color;
239     const VkClearDepthStencilValue &clearDepthStencilValue =
240         contextVk->getClearDepthStencilValue().depthStencil;
241 
242     return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue,
243                      clearDepthStencilValue);
244 }
245 
clearImpl(const gl::Context * context,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const VkClearColorValue & clearColorValue,const VkClearDepthStencilValue & clearDepthStencilValue)246 angle::Result FramebufferVk::clearImpl(const gl::Context *context,
247                                        gl::DrawBufferMask clearColorBuffers,
248                                        bool clearDepth,
249                                        bool clearStencil,
250                                        const VkClearColorValue &clearColorValue,
251                                        const VkClearDepthStencilValue &clearDepthStencilValue)
252 {
253     ContextVk *contextVk = vk::GetImpl(context);
254 
255     const gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
256 
257     // Discard clear altogether if scissor has 0 width or height.
258     if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0)
259     {
260         return angle::Result::Continue;
261     }
262 
263     mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial());
264 
265     // This function assumes that only enabled attachments are asked to be cleared.
266     ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers);
267 
268     // Adjust clear behavior based on whether the respective attachments are present; if asked to
269     // clear a non-existent attachment, don't attempt to clear it.
270 
271     VkColorComponentFlags colorMaskFlags = contextVk->getClearColorMask();
272     bool clearColor                      = clearColorBuffers.any();
273 
274     const gl::FramebufferAttachment *depthAttachment = mState.getDepthAttachment();
275     clearDepth                                       = clearDepth && depthAttachment;
276     ASSERT(!clearDepth || depthAttachment->isAttached());
277 
278     const gl::FramebufferAttachment *stencilAttachment = mState.getStencilAttachment();
279     clearStencil                                       = clearStencil && stencilAttachment;
280     ASSERT(!clearStencil || stencilAttachment->isAttached());
281 
282     uint8_t stencilMask =
283         static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask);
284 
285     // The front-end should ensure we don't attempt to clear color if all channels are masked.
286     ASSERT(!clearColor || colorMaskFlags != 0);
287     // The front-end should ensure we don't attempt to clear depth if depth write is disabled.
288     ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask);
289     // The front-end should ensure we don't attempt to clear stencil if all bits are masked.
290     ASSERT(!clearStencil || stencilMask != 0);
291 
292     // If there is nothing to clear, return right away (for example, if asked to clear depth, but
293     // there is no depth attachment).
294     if (!clearColor && !clearDepth && !clearStencil)
295     {
296         return angle::Result::Continue;
297     }
298 
299     VkClearDepthStencilValue modifiedDepthStencilValue = clearDepthStencilValue;
300 
301     // We can use render pass load ops if clearing depth, unmasked color or unmasked stencil.  If
302     // there's a depth mask, depth clearing is already disabled.
303     bool maskedClearColor =
304         clearColor && (mActiveColorComponents & colorMaskFlags) != mActiveColorComponents;
305     bool maskedClearStencil = stencilMask != 0xFF;
306 
307     bool clearColorWithRenderPassLoadOp   = clearColor && !maskedClearColor;
308     bool clearStencilWithRenderPassLoadOp = clearStencil && !maskedClearStencil;
309 
310     // At least one of color, depth or stencil should be clearable with render pass loadOp for us
311     // to use this clear path.
312     bool clearAnyWithRenderPassLoadOp =
313         clearColorWithRenderPassLoadOp || clearDepth || clearStencilWithRenderPassLoadOp;
314 
315     if (clearAnyWithRenderPassLoadOp)
316     {
317         // Clearing color is indicated by the set bits in this mask.  If not clearing colors with
318         // render pass loadOp, the default value of all-zeros means the clear is not done in
319         // clearWithRenderPassOp below.  In that case, only clear depth/stencil with render pass
320         // loadOp.
321         gl::DrawBufferMask clearBuffersWithRenderPassLoadOp;
322         if (clearColorWithRenderPassLoadOp)
323         {
324             clearBuffersWithRenderPassLoadOp = clearColorBuffers;
325         }
326         ANGLE_TRY(clearWithRenderPassOp(
327             contextVk, scissoredRenderArea, clearBuffersWithRenderPassLoadOp, clearDepth,
328             clearStencilWithRenderPassLoadOp, clearColorValue, modifiedDepthStencilValue));
329 
330         // On some hardware, having inline commands at this point results in corrupted output.  In
331         // that case, end the render pass immediately.  http://anglebug.com/2361
332         if (contextVk->getRenderer()->getFeatures().restartRenderPassAfterLoadOpClear.enabled)
333         {
334             mFramebuffer.finishCurrentCommands(contextVk);
335         }
336 
337         // Fallback to other methods for whatever isn't cleared here.
338         clearDepth = false;
339         if (clearColorWithRenderPassLoadOp)
340         {
341             clearColorBuffers.reset();
342             clearColor = false;
343         }
344         if (clearStencilWithRenderPassLoadOp)
345         {
346             clearStencil = false;
347         }
348 
349         // If nothing left to clear, early out.
350         if (!clearColor && !clearStencil)
351         {
352             return angle::Result::Continue;
353         }
354     }
355 
356     // Note: depth clear is always done through render pass loadOp.
357     ASSERT(clearDepth == false);
358 
359     // The most costly clear mode is when we need to mask out specific color channels or stencil
360     // bits. This can only be done with a draw call.
361     return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearStencil,
362                          colorMaskFlags, stencilMask, clearColorValue,
363                          static_cast<uint8_t>(modifiedDepthStencilValue.stencil));
364 }
365 
clearBufferfv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLfloat * values)366 angle::Result FramebufferVk::clearBufferfv(const gl::Context *context,
367                                            GLenum buffer,
368                                            GLint drawbuffer,
369                                            const GLfloat *values)
370 {
371     VkClearValue clearValue = {};
372 
373     bool clearDepth = false;
374     gl::DrawBufferMask clearColorBuffers;
375 
376     if (buffer == GL_DEPTH)
377     {
378         clearDepth                    = true;
379         clearValue.depthStencil.depth = values[0];
380     }
381     else
382     {
383         clearColorBuffers.set(drawbuffer);
384         clearValue.color.float32[0] = values[0];
385         clearValue.color.float32[1] = values[1];
386         clearValue.color.float32[2] = values[2];
387         clearValue.color.float32[3] = values[3];
388     }
389 
390     return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color,
391                      clearValue.depthStencil);
392 }
393 
clearBufferuiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLuint * values)394 angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context,
395                                             GLenum buffer,
396                                             GLint drawbuffer,
397                                             const GLuint *values)
398 {
399     VkClearValue clearValue = {};
400 
401     gl::DrawBufferMask clearColorBuffers;
402     clearColorBuffers.set(drawbuffer);
403 
404     clearValue.color.uint32[0] = values[0];
405     clearValue.color.uint32[1] = values[1];
406     clearValue.color.uint32[2] = values[2];
407     clearValue.color.uint32[3] = values[3];
408 
409     return clearImpl(context, clearColorBuffers, false, false, clearValue.color,
410                      clearValue.depthStencil);
411 }
412 
clearBufferiv(const gl::Context * context,GLenum buffer,GLint drawbuffer,const GLint * values)413 angle::Result FramebufferVk::clearBufferiv(const gl::Context *context,
414                                            GLenum buffer,
415                                            GLint drawbuffer,
416                                            const GLint *values)
417 {
418     VkClearValue clearValue = {};
419 
420     bool clearStencil = false;
421     gl::DrawBufferMask clearColorBuffers;
422 
423     if (buffer == GL_STENCIL)
424     {
425         clearStencil = true;
426         clearValue.depthStencil.stencil =
427             gl::clamp(values[0], 0, std::numeric_limits<uint8_t>::max());
428     }
429     else
430     {
431         clearColorBuffers.set(drawbuffer);
432         clearValue.color.int32[0] = values[0];
433         clearValue.color.int32[1] = values[1];
434         clearValue.color.int32[2] = values[2];
435         clearValue.color.int32[3] = values[3];
436     }
437 
438     return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color,
439                      clearValue.depthStencil);
440 }
441 
clearBufferfi(const gl::Context * context,GLenum buffer,GLint drawbuffer,GLfloat depth,GLint stencil)442 angle::Result FramebufferVk::clearBufferfi(const gl::Context *context,
443                                            GLenum buffer,
444                                            GLint drawbuffer,
445                                            GLfloat depth,
446                                            GLint stencil)
447 {
448     VkClearValue clearValue = {};
449 
450     clearValue.depthStencil.depth   = depth;
451     clearValue.depthStencil.stencil = gl::clamp(stencil, 0, std::numeric_limits<uint8_t>::max());
452 
453     return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color,
454                      clearValue.depthStencil);
455 }
456 
getImplementationColorReadFormat(const gl::Context * context) const457 GLenum FramebufferVk::getImplementationColorReadFormat(const gl::Context *context) const
458 {
459     return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).format;
460 }
461 
getImplementationColorReadType(const gl::Context * context) const462 GLenum FramebufferVk::getImplementationColorReadType(const gl::Context *context) const
463 {
464     return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).type;
465 }
466 
readPixels(const gl::Context * context,const gl::Rectangle & area,GLenum format,GLenum type,void * pixels)467 angle::Result FramebufferVk::readPixels(const gl::Context *context,
468                                         const gl::Rectangle &area,
469                                         GLenum format,
470                                         GLenum type,
471                                         void *pixels)
472 {
473     // Clip read area to framebuffer.
474     const gl::Extents &fbSize = getState().getReadAttachment()->getSize();
475     const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height);
476     ContextVk *contextVk = vk::GetImpl(context);
477 
478     gl::Rectangle clippedArea;
479     if (!ClipRectangle(area, fbRect, &clippedArea))
480     {
481         // nothing to read
482         return angle::Result::Continue;
483     }
484     gl::Rectangle flippedArea = clippedArea;
485     if (contextVk->isViewportFlipEnabledForReadFBO())
486     {
487         flippedArea.y = fbRect.height - flippedArea.y - flippedArea.height;
488     }
489 
490     const gl::State &glState            = context->getState();
491     const gl::PixelPackState &packState = glState.getPackState();
492 
493     const gl::InternalFormat &sizedFormatInfo = gl::GetInternalFormatInfo(format, type);
494 
495     GLuint outputPitch = 0;
496     ANGLE_VK_CHECK_MATH(contextVk,
497                         sizedFormatInfo.computeRowPitch(type, area.width, packState.alignment,
498                                                         packState.rowLength, &outputPitch));
499     GLuint outputSkipBytes = 0;
500     ANGLE_VK_CHECK_MATH(contextVk, sizedFormatInfo.computeSkipBytes(type, outputPitch, 0, packState,
501                                                                     false, &outputSkipBytes));
502 
503     outputSkipBytes += (clippedArea.x - area.x) * sizedFormatInfo.pixelBytes +
504                        (clippedArea.y - area.y) * outputPitch;
505 
506     const angle::Format &angleFormat = GetFormatFromFormatType(format, type);
507 
508     PackPixelsParams params(flippedArea, angleFormat, outputPitch, packState.reverseRowOrder,
509                             glState.getTargetBuffer(gl::BufferBinding::PixelPack), 0);
510     if (contextVk->isViewportFlipEnabledForReadFBO())
511     {
512         params.reverseRowOrder = !params.reverseRowOrder;
513     }
514 
515     ANGLE_TRY(readPixelsImpl(contextVk, flippedArea, params, VK_IMAGE_ASPECT_COLOR_BIT,
516                              getColorReadRenderTarget(),
517                              static_cast<uint8_t *>(pixels) + outputSkipBytes));
518     mReadPixelBuffer.releaseInFlightBuffers(contextVk);
519     return angle::Result::Continue;
520 }
521 
getDepthStencilRenderTarget() const522 RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const
523 {
524     return mRenderTargetCache.getDepthStencil();
525 }
526 
getColorReadRenderTarget() const527 RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const
528 {
529     RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState);
530     ASSERT(renderTarget && renderTarget->getImage().valid());
531     return renderTarget;
532 }
533 
blitWithCommand(ContextVk * contextVk,const gl::Rectangle & sourceArea,const gl::Rectangle & destArea,RenderTargetVk * readRenderTarget,RenderTargetVk * drawRenderTarget,GLenum filter,bool colorBlit,bool depthBlit,bool stencilBlit,bool flipX,bool flipY)534 angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk,
535                                              const gl::Rectangle &sourceArea,
536                                              const gl::Rectangle &destArea,
537                                              RenderTargetVk *readRenderTarget,
538                                              RenderTargetVk *drawRenderTarget,
539                                              GLenum filter,
540                                              bool colorBlit,
541                                              bool depthBlit,
542                                              bool stencilBlit,
543                                              bool flipX,
544                                              bool flipY)
545 {
546     // Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
547     // it should never be the case that both color and depth/stencil need to be blitted at
548     // at the same time.
549     ASSERT(colorBlit != (depthBlit || stencilBlit));
550 
551     vk::ImageHelper *srcImage = &readRenderTarget->getImage();
552     vk::ImageHelper *dstImage = drawRenderTarget->getImageForWrite(&mFramebuffer);
553 
554     VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags();
555     VkImageAspectFlags blitAspectMask  = imageAspectMask;
556 
557     // Remove depth or stencil aspects if they are not requested to be blitted.
558     if (!depthBlit)
559     {
560         blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
561     }
562     if (!stencilBlit)
563     {
564         blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
565     }
566 
567     if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
568     {
569         vk::CommandBuffer *srcLayoutChange;
570         ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
571         srcImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferSrc, srcLayoutChange);
572     }
573 
574     vk::CommandBuffer *commandBuffer = nullptr;
575     ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
576 
577     srcImage->addReadDependency(&mFramebuffer);
578 
579     VkImageBlit blit                   = {};
580     blit.srcSubresource.aspectMask     = blitAspectMask;
581     blit.srcSubresource.mipLevel       = readRenderTarget->getLevelIndex();
582     blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex();
583     blit.srcSubresource.layerCount     = 1;
584     blit.srcOffsets[0]                 = {sourceArea.x0(), sourceArea.y0(), 0};
585     blit.srcOffsets[1]                 = {sourceArea.x1(), sourceArea.y1(), 1};
586     blit.dstSubresource.aspectMask     = blitAspectMask;
587     blit.dstSubresource.mipLevel       = drawRenderTarget->getLevelIndex();
588     blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
589     blit.dstSubresource.layerCount     = 1;
590     blit.dstOffsets[0]                 = {destArea.x0(), destArea.y0(), 0};
591     blit.dstOffsets[1]                 = {destArea.x1(), destArea.y1(), 1};
592 
593     // Requirement of the copyImageToBuffer, the dst image must be in
594     // VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout.
595     dstImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferDst, commandBuffer);
596 
597     commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
598                              dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
599                              gl_vk::GetFilter(filter));
600 
601     return angle::Result::Continue;
602 }
603 
blit(const gl::Context * context,const gl::Rectangle & sourceAreaIn,const gl::Rectangle & destAreaIn,GLbitfield mask,GLenum filter)604 angle::Result FramebufferVk::blit(const gl::Context *context,
605                                   const gl::Rectangle &sourceAreaIn,
606                                   const gl::Rectangle &destAreaIn,
607                                   GLbitfield mask,
608                                   GLenum filter)
609 {
610     ContextVk *contextVk = vk::GetImpl(context);
611     RendererVk *renderer = contextVk->getRenderer();
612     UtilsVk &utilsVk     = contextVk->getUtils();
613 
614     const gl::State &glState              = contextVk->getState();
615     const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer();
616 
617     const bool blitColorBuffer   = (mask & GL_COLOR_BUFFER_BIT) != 0;
618     const bool blitDepthBuffer   = (mask & GL_DEPTH_BUFFER_BIT) != 0;
619     const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0;
620 
621     const bool isResolve = srcFramebuffer->getCachedSamples(context) > 1;
622 
623     FramebufferVk *srcFramebufferVk    = vk::GetImpl(srcFramebuffer);
624     const bool srcFramebufferFlippedY  = contextVk->isViewportFlipEnabledForReadFBO();
625     const bool destFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO();
626 
627     gl::Rectangle sourceArea = sourceAreaIn;
628     gl::Rectangle destArea   = destAreaIn;
629 
630     // Note: GLES (all 3.x versions) require source and dest area to be identical when
631     // resolving.
632     ASSERT(!isResolve ||
633            (sourceArea.x == destArea.x && sourceArea.y == destArea.y &&
634             sourceArea.width == destArea.width && sourceArea.height == destArea.height));
635 
636     const gl::Rectangle srcFramebufferDimensions =
637         srcFramebufferVk->mState.getDimensions().toRect();
638 
639     // If the destination is flipped in either direction, we will flip the source instead so that
640     // the destination area is always unflipped.
641     sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY());
642     destArea   = destArea.removeReversal();
643 
644     // Calculate the stretch factor prior to any clipping, as it needs to remain constant.
645     const float stretch[2] = {
646         std::abs(sourceArea.width / static_cast<float>(destArea.width)),
647         std::abs(sourceArea.height / static_cast<float>(destArea.height)),
648     };
649 
650     // First, clip the source area to framebuffer.  That requires transforming the dest area to
651     // match the clipped source.
652     gl::Rectangle absSourceArea = sourceArea.removeReversal();
653     gl::Rectangle clippedSourceArea;
654     if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea))
655     {
656         return angle::Result::Continue;
657     }
658 
659     // Resize the destination area based on the new size of source.  Note again that stretch is
660     // calculated as SrcDimension/DestDimension.
661     gl::Rectangle srcClippedDestArea;
662     if (isResolve)
663     {
664         // Source and dest areas are identical in resolve.
665         srcClippedDestArea = clippedSourceArea;
666     }
667     else if (clippedSourceArea == absSourceArea)
668     {
669         // If there was no clipping, keep dest area as is.
670         srcClippedDestArea = destArea;
671     }
672     else
673     {
674         // Shift dest area's x0,y0,x1,y1 by as much as the source area's got shifted (taking
675         // stretching into account)
676         float x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]);
677         float y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]);
678         float x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]);
679         float y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]);
680 
681         // If the source area was reversed in any direction, the shift should be applied in the
682         // opposite direction as well.
683         if (sourceArea.isReversedX())
684         {
685             std::swap(x0Shift, x1Shift);
686         }
687 
688         if (sourceArea.isReversedY())
689         {
690             std::swap(y0Shift, y1Shift);
691         }
692 
693         srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift);
694         srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift);
695         int x1               = destArea.x1() - static_cast<int>(x1Shift);
696         int y1               = destArea.y1() - static_cast<int>(y1Shift);
697 
698         srcClippedDestArea.width  = x1 - srcClippedDestArea.x;
699         srcClippedDestArea.height = y1 - srcClippedDestArea.y;
700     }
701 
702     // If framebuffers are flipped in Y, flip the source and dest area (which define the
703     // transformation regardless of clipping), as well as the blit area (which is the clipped
704     // dest area).
705     if (srcFramebufferFlippedY)
706     {
707         sourceArea.y      = srcFramebufferDimensions.height - sourceArea.y;
708         sourceArea.height = -sourceArea.height;
709     }
710     if (destFramebufferFlippedY)
711     {
712         destArea.y      = mState.getDimensions().height - destArea.y;
713         destArea.height = -destArea.height;
714 
715         srcClippedDestArea.y =
716             mState.getDimensions().height - srcClippedDestArea.y - srcClippedDestArea.height;
717     }
718 
719     const bool flipX = sourceArea.isReversedX() != destArea.isReversedX();
720     const bool flipY = sourceArea.isReversedY() != destArea.isReversedY();
721 
722     // GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve.
723     ASSERT(!isResolve ||
724            (flipX == false && flipY == (srcFramebufferFlippedY != destFramebufferFlippedY)));
725 
726     // Again, transfer the destination flip to source, so dest is unflipped.  Note that destArea
727     // was not reversed until the final possible Y-flip.
728     ASSERT(!destArea.isReversedX());
729     sourceArea = sourceArea.flip(false, destArea.isReversedY());
730     destArea   = destArea.removeReversal();
731 
732     // Clip the destination area to the framebuffer size and scissor.  Note that we don't care
733     // about the source area anymore.  The offset translation is done based on the original source
734     // and destination rectangles.  The stretch factor is already calculated as well.
735     gl::Rectangle blitArea;
736     if (!gl::ClipRectangle(getScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea))
737     {
738         return angle::Result::Continue;
739     }
740 
741     bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f;
742     bool noFlip = !flipX && !flipY;
743     bool disableFlippingBlitWithCommand =
744         contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled;
745 
746     UtilsVk::BlitResolveParameters params;
747     params.srcOffset[0]  = sourceArea.x;
748     params.srcOffset[1]  = sourceArea.y;
749     params.destOffset[0] = destArea.x;
750     params.destOffset[1] = destArea.y;
751     params.stretch[0]    = stretch[0];
752     params.stretch[1]    = stretch[1];
753     params.srcExtents[0] = srcFramebufferDimensions.width;
754     params.srcExtents[1] = srcFramebufferDimensions.height;
755     params.blitArea      = blitArea;
756     params.linear        = filter == GL_LINEAR;
757     params.flipX         = flipX;
758     params.flipY         = flipY;
759 
760     if (blitColorBuffer)
761     {
762         RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget();
763         params.srcLayer                  = readRenderTarget->getLayerIndex();
764 
765         // Multisampled images are not allowed to have mips.
766         ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
767 
768         // If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit.
769         // The reason clipping is prohibited in this path is that due to rounding errors, it would
770         // be hard to guarantee the image stretching remains perfect.  That also allows us not to
771         // have to transform back the dest clipping to source.
772         //
773         // For simplicity, we either blit all render targets with a Vulkan command, or none.
774         bool canBlitWithCommand = !isResolve && noClip &&
775                                   (noFlip || !disableFlippingBlitWithCommand) &&
776                                   HasSrcBlitFeature(renderer, readRenderTarget);
777         bool areChannelsBlitCompatible = true;
778         for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
779         {
780             RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
781             canBlitWithCommand =
782                 canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget);
783             areChannelsBlitCompatible =
784                 areChannelsBlitCompatible &&
785                 areSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
786         }
787 
788         if (canBlitWithCommand && areChannelsBlitCompatible)
789         {
790             for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
791             {
792                 RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
793                 ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
794                                           drawRenderTarget, filter, true, false, false, flipX,
795                                           flipY));
796             }
797         }
798         // If we're not flipping, use Vulkan's builtin resolve.
799         else if (isResolve && !flipX && !flipY && areChannelsBlitCompatible)
800         {
801             ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImage()));
802         }
803         // Otherwise use a shader to do blit or resolve.
804         else
805         {
806             ANGLE_TRY(utilsVk.colorBlitResolve(contextVk, this, &readRenderTarget->getImage(),
807                                                readRenderTarget->getFetchImageView(), params));
808         }
809     }
810 
811     if (blitDepthBuffer || blitStencilBuffer)
812     {
813         RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget();
814         RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil();
815         params.srcLayer                  = readRenderTarget->getLayerIndex();
816 
817         // Multisampled images are not allowed to have mips.
818         ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
819 
820         // Similarly, only blit if there's been no clipping.
821         bool canBlitWithCommand = !isResolve && noClip &&
822                                   (noFlip || !disableFlippingBlitWithCommand) &&
823                                   HasSrcBlitFeature(renderer, readRenderTarget) &&
824                                   HasDstBlitFeature(renderer, drawRenderTarget);
825         bool areChannelsBlitCompatible =
826             areSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
827 
828         if (canBlitWithCommand && areChannelsBlitCompatible)
829         {
830             ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
831                                       drawRenderTarget, filter, false, blitDepthBuffer,
832                                       blitStencilBuffer, flipX, flipY));
833         }
834         else
835         {
836             // Create depth- and stencil-only views for reading.
837             vk::Scoped<vk::ImageView> depthView(contextVk->getDevice());
838             vk::Scoped<vk::ImageView> stencilView(contextVk->getDevice());
839 
840             vk::ImageHelper *depthStencilImage = &readRenderTarget->getImage();
841             uint32_t levelIndex                = readRenderTarget->getLevelIndex();
842             uint32_t layerIndex                = readRenderTarget->getLayerIndex();
843             gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(),
844                                                                depthStencilImage->getSamples());
845 
846             if (blitDepthBuffer)
847             {
848                 ANGLE_TRY(depthStencilImage->initLayerImageView(
849                     contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(),
850                     &depthView.get(), levelIndex, 1, layerIndex, 1));
851             }
852 
853             if (blitStencilBuffer)
854             {
855                 ANGLE_TRY(depthStencilImage->initLayerImageView(
856                     contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(),
857                     &stencilView.get(), levelIndex, 1, layerIndex, 1));
858             }
859 
860             // If shader stencil export is not possible, defer stencil blit/stencil to another pass.
861             bool hasShaderStencilExport =
862                 contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled;
863 
864             // Blit depth. If shader stencil export is present, blit stencil as well.
865             if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport))
866             {
867                 vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr;
868                 vk::ImageView *stencil =
869                     blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr;
870 
871                 ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth,
872                                                           stencil, params));
873             }
874 
875             // If shader stencil export is not present, blit stencil through a different path.
876             if (blitStencilBuffer && !hasShaderStencilExport)
877             {
878                 ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport(
879                     contextVk, this, depthStencilImage, &stencilView.get(), params));
880             }
881 
882             vk::ImageView depthViewObject   = depthView.release();
883             vk::ImageView stencilViewObject = stencilView.release();
884 
885             contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &depthViewObject);
886             contextVk->releaseObject(contextVk->getCurrentQueueSerial(), &stencilViewObject);
887         }
888     }
889 
890     return angle::Result::Continue;
891 }  // namespace rx
892 
resolveColorWithCommand(ContextVk * contextVk,const UtilsVk::BlitResolveParameters & params,vk::ImageHelper * srcImage)893 angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk,
894                                                      const UtilsVk::BlitResolveParameters &params,
895                                                      vk::ImageHelper *srcImage)
896 {
897     if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
898     {
899         vk::CommandBuffer *srcLayoutChange;
900         ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
901         srcImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc,
902                                srcLayoutChange);
903     }
904 
905     vk::CommandBuffer *commandBuffer = nullptr;
906     ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
907 
908     // Source's layout change should happen before rendering
909     srcImage->addReadDependency(&mFramebuffer);
910 
911     VkImageResolve resolveRegion                = {};
912     resolveRegion.srcSubresource.aspectMask     = VK_IMAGE_ASPECT_COLOR_BIT;
913     resolveRegion.srcSubresource.mipLevel       = 0;
914     resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer;
915     resolveRegion.srcSubresource.layerCount     = 1;
916     resolveRegion.srcOffset.x                   = params.srcOffset[0];
917     resolveRegion.srcOffset.y                   = params.srcOffset[1];
918     resolveRegion.srcOffset.z                   = 0;
919     resolveRegion.dstSubresource.aspectMask     = VK_IMAGE_ASPECT_COLOR_BIT;
920     resolveRegion.dstSubresource.layerCount     = 1;
921     resolveRegion.dstOffset.x                   = params.destOffset[0];
922     resolveRegion.dstOffset.y                   = params.destOffset[1];
923     resolveRegion.dstOffset.z                   = 0;
924     resolveRegion.extent.width                  = params.srcExtents[0];
925     resolveRegion.extent.height                 = params.srcExtents[1];
926     resolveRegion.extent.depth                  = 1;
927 
928     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
929     {
930         RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
931         vk::ImageHelper *drawImage       = drawRenderTarget->getImageForWrite(&mFramebuffer);
932         drawImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferDst,
933                                 commandBuffer);
934 
935         resolveRegion.dstSubresource.mipLevel       = drawRenderTarget->getLevelIndex();
936         resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
937 
938         srcImage->resolve(&drawRenderTarget->getImage(), resolveRegion, commandBuffer);
939     }
940 
941     return angle::Result::Continue;
942 }
943 
checkStatus(const gl::Context * context) const944 bool FramebufferVk::checkStatus(const gl::Context *context) const
945 {
946     // if we have both a depth and stencil buffer, they must refer to the same object
947     // since we only support packed_depth_stencil and not separate depth and stencil
948     if (mState.hasSeparateDepthAndStencilAttachments())
949     {
950         return false;
951     }
952 
953     return true;
954 }
955 
updateColorAttachment(const gl::Context * context,size_t colorIndexGL)956 angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, size_t colorIndexGL)
957 {
958     ContextVk *contextVk = vk::GetImpl(context);
959 
960     ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL));
961 
962     // Update cached masks for masked clears.
963     RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL];
964     if (renderTarget)
965     {
966         const angle::Format &emulatedFormat = renderTarget->getImageFormat().imageFormat();
967         updateActiveColorMasks(colorIndexGL, emulatedFormat.redBits > 0,
968                                emulatedFormat.greenBits > 0, emulatedFormat.blueBits > 0,
969                                emulatedFormat.alphaBits > 0);
970 
971         const angle::Format &sourceFormat = renderTarget->getImageFormat().angleFormat();
972         mEmulatedAlphaAttachmentMask.set(
973             colorIndexGL, sourceFormat.alphaBits == 0 && emulatedFormat.alphaBits > 0);
974 
975         contextVk->updateColorMask(context->getState().getBlendState());
976     }
977     else
978     {
979         updateActiveColorMasks(colorIndexGL, false, false, false, false);
980     }
981 
982     return angle::Result::Continue;
983 }
984 
invalidateImpl(ContextVk * contextVk,size_t count,const GLenum * attachments)985 void FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments)
986 {
987     ASSERT(mFramebuffer.hasStartedRenderPass());
988 
989     gl::DrawBufferMask invalidateColorBuffers;
990     bool invalidateDepthBuffer   = false;
991     bool invalidateStencilBuffer = false;
992 
993     for (size_t i = 0; i < count; ++i)
994     {
995         const GLenum attachment = attachments[i];
996 
997         switch (attachment)
998         {
999             case GL_DEPTH:
1000             case GL_DEPTH_ATTACHMENT:
1001                 invalidateDepthBuffer = true;
1002                 break;
1003             case GL_STENCIL:
1004             case GL_STENCIL_ATTACHMENT:
1005                 invalidateStencilBuffer = true;
1006                 break;
1007             case GL_DEPTH_STENCIL_ATTACHMENT:
1008                 invalidateDepthBuffer   = true;
1009                 invalidateStencilBuffer = true;
1010                 break;
1011             default:
1012                 ASSERT(
1013                     (attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) ||
1014                     (attachment == GL_COLOR));
1015 
1016                 invalidateColorBuffers.set(
1017                     attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0));
1018         }
1019     }
1020 
1021     // Set the appropriate storeOp for attachments.
1022     size_t attachmentIndexVk = 0;
1023     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1024     {
1025         if (invalidateColorBuffers.test(colorIndexGL))
1026         {
1027             mFramebuffer.invalidateRenderPassColorAttachment(attachmentIndexVk);
1028         }
1029         ++attachmentIndexVk;
1030     }
1031 
1032     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1033     if (depthStencilRenderTarget)
1034     {
1035         if (invalidateDepthBuffer)
1036         {
1037             mFramebuffer.invalidateRenderPassDepthAttachment(attachmentIndexVk);
1038         }
1039 
1040         if (invalidateStencilBuffer)
1041         {
1042             mFramebuffer.invalidateRenderPassStencilAttachment(attachmentIndexVk);
1043         }
1044     }
1045 
1046     // NOTE: Possible future optimization is to delay setting the storeOp and only do so if the
1047     // render pass is closed by itself before another draw call.  Otherwise, in a situation like
1048     // this:
1049     //
1050     //     draw()
1051     //     invalidate()
1052     //     draw()
1053     //
1054     // We would be discarding the attachments only to load them for the next draw (which is less
1055     // efficient than keeping the render pass open and not do the discard at all).  While dEQP tests
1056     // this pattern, this optimization may not be necessary if no application does this.  It is
1057     // expected that an application would invalidate() when it's done with the framebuffer, so the
1058     // render pass would have closed either way.
1059     mFramebuffer.finishCurrentCommands(contextVk);
1060 }
1061 
syncState(const gl::Context * context,const gl::Framebuffer::DirtyBits & dirtyBits)1062 angle::Result FramebufferVk::syncState(const gl::Context *context,
1063                                        const gl::Framebuffer::DirtyBits &dirtyBits)
1064 {
1065     ContextVk *contextVk = vk::GetImpl(context);
1066 
1067     ASSERT(dirtyBits.any());
1068     for (size_t dirtyBit : dirtyBits)
1069     {
1070         switch (dirtyBit)
1071         {
1072             case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT:
1073             case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT:
1074                 ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState));
1075                 break;
1076             case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS:
1077             case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS:
1078                 ANGLE_TRY(mRenderTargetCache.getDepthStencil()->flushStagedUpdates(contextVk));
1079                 break;
1080             case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS:
1081             case gl::Framebuffer::DIRTY_BIT_READ_BUFFER:
1082             case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH:
1083             case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT:
1084             case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES:
1085             case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS:
1086                 break;
1087             default:
1088             {
1089                 static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits");
1090                 if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX)
1091                 {
1092                     size_t colorIndexGL = static_cast<size_t>(
1093                         dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0);
1094                     ANGLE_TRY(updateColorAttachment(context, colorIndexGL));
1095                 }
1096                 else
1097                 {
1098                     ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 &&
1099                            dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX);
1100                     size_t colorIndexGL = static_cast<size_t>(
1101                         dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0);
1102                     ANGLE_TRY(mRenderTargetCache.getColors()[colorIndexGL]->flushStagedUpdates(
1103                         contextVk));
1104                 }
1105             }
1106         }
1107     }
1108 
1109     // The FBOs new attachment may have changed the renderable area
1110     const gl::State &glState = context->getState();
1111     contextVk->updateScissor(glState);
1112 
1113     mActiveColorComponents = gl_vk::GetColorComponentFlags(
1114         mActiveColorComponentMasksForClear[0].any(), mActiveColorComponentMasksForClear[1].any(),
1115         mActiveColorComponentMasksForClear[2].any(), mActiveColorComponentMasksForClear[3].any());
1116 
1117     mFramebuffer.release(contextVk);
1118 
1119     // Will freeze the current set of dependencies on this FBO. The next time we render we will
1120     // create a new entry in the command graph.
1121     mFramebuffer.finishCurrentCommands(contextVk);
1122 
1123     // Notify the ContextVk to update the pipeline desc.
1124     updateRenderPassDesc();
1125 
1126     FramebufferVk *currentDrawFramebuffer = vk::GetImpl(context->getState().getDrawFramebuffer());
1127     if (currentDrawFramebuffer == this)
1128     {
1129         contextVk->onDrawFramebufferChange(this);
1130     }
1131 
1132     return angle::Result::Continue;
1133 }
1134 
updateRenderPassDesc()1135 void FramebufferVk::updateRenderPassDesc()
1136 {
1137     mRenderPassDesc = {};
1138     mRenderPassDesc.setSamples(getSamples());
1139 
1140     const auto &colorRenderTargets              = mRenderTargetCache.getColors();
1141     const gl::DrawBufferMask enabledDrawBuffers = mState.getEnabledDrawBuffers();
1142     for (size_t colorIndexGL = 0; colorIndexGL < enabledDrawBuffers.size(); ++colorIndexGL)
1143     {
1144         if (enabledDrawBuffers[colorIndexGL])
1145         {
1146             RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1147             ASSERT(colorRenderTarget);
1148             mRenderPassDesc.packColorAttachment(
1149                 colorIndexGL, colorRenderTarget->getImage().getFormat().angleFormatID);
1150         }
1151         else
1152         {
1153             mRenderPassDesc.packColorAttachmentGap(colorIndexGL);
1154         }
1155     }
1156 
1157     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1158     if (depthStencilRenderTarget)
1159     {
1160         mRenderPassDesc.packDepthStencilAttachment(
1161             depthStencilRenderTarget->getImage().getFormat().angleFormatID);
1162     }
1163 }
1164 
getFramebuffer(ContextVk * contextVk,vk::Framebuffer ** framebufferOut)1165 angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut)
1166 {
1167     // If we've already created our cached Framebuffer, return it.
1168     if (mFramebuffer.valid())
1169     {
1170         *framebufferOut = &mFramebuffer.getFramebuffer();
1171         return angle::Result::Continue;
1172     }
1173 
1174     vk::RenderPass *compatibleRenderPass = nullptr;
1175     ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
1176 
1177     // If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it.
1178     if (mBackbuffer)
1179     {
1180         return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut);
1181     }
1182 
1183     // Gather VkImageViews over all FBO attachments, also size of attached region.
1184     std::vector<VkImageView> attachments;
1185     gl::Extents attachmentsSize;
1186 
1187     const auto &colorRenderTargets = mRenderTargetCache.getColors();
1188     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1189     {
1190         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1191         ASSERT(colorRenderTarget);
1192         attachments.push_back(colorRenderTarget->getDrawImageView()->getHandle());
1193 
1194         ASSERT(attachmentsSize.empty() || attachmentsSize == colorRenderTarget->getExtents());
1195         attachmentsSize = colorRenderTarget->getExtents();
1196     }
1197 
1198     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1199     if (depthStencilRenderTarget)
1200     {
1201         attachments.push_back(depthStencilRenderTarget->getDrawImageView()->getHandle());
1202 
1203         ASSERT(attachmentsSize.empty() ||
1204                attachmentsSize == depthStencilRenderTarget->getExtents());
1205         attachmentsSize = depthStencilRenderTarget->getExtents();
1206     }
1207 
1208     if (attachmentsSize.empty())
1209     {
1210         // No attachments, so use the default values.
1211         attachmentsSize.height = mState.getDefaultHeight();
1212         attachmentsSize.width  = mState.getDefaultWidth();
1213         attachmentsSize.depth  = 0;
1214     }
1215 
1216     VkFramebufferCreateInfo framebufferInfo = {};
1217 
1218     framebufferInfo.sType           = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
1219     framebufferInfo.flags           = 0;
1220     framebufferInfo.renderPass      = compatibleRenderPass->getHandle();
1221     framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
1222     framebufferInfo.pAttachments    = attachments.data();
1223     framebufferInfo.width           = static_cast<uint32_t>(attachmentsSize.width);
1224     framebufferInfo.height          = static_cast<uint32_t>(attachmentsSize.height);
1225     framebufferInfo.layers          = 1;
1226 
1227     ANGLE_TRY(mFramebuffer.init(contextVk, framebufferInfo));
1228 
1229     *framebufferOut = &mFramebuffer.getFramebuffer();
1230     return angle::Result::Continue;
1231 }
1232 
clearWithRenderPassOp(ContextVk * contextVk,const gl::Rectangle & clearArea,gl::DrawBufferMask clearColorBuffers,bool clearDepth,bool clearStencil,const VkClearColorValue & clearColorValue,const VkClearDepthStencilValue & clearDepthStencilValue)1233 angle::Result FramebufferVk::clearWithRenderPassOp(
1234     ContextVk *contextVk,
1235     const gl::Rectangle &clearArea,
1236     gl::DrawBufferMask clearColorBuffers,
1237     bool clearDepth,
1238     bool clearStencil,
1239     const VkClearColorValue &clearColorValue,
1240     const VkClearDepthStencilValue &clearDepthStencilValue)
1241 {
1242     // Start a new render pass if:
1243     //
1244     // - no render pass has started,
1245     // - there is a render pass started but it contains commands; we cannot modify its ops, so new
1246     // render pass is needed,
1247     // - the current render area doesn't match the clear area.  We need the render area to be
1248     // exactly as specified by the scissor for the loadOp to clear only that area.  See
1249     // onScissorChange for more information.
1250 
1251     if (!mFramebuffer.valid() || !mFramebuffer.renderPassStartedButEmpty() ||
1252         mFramebuffer.getRenderPassRenderArea() != clearArea)
1253     {
1254         vk::CommandBuffer *commandBuffer;
1255         ANGLE_TRY(startNewRenderPass(contextVk, clearArea, &commandBuffer));
1256     }
1257 
1258     size_t attachmentIndexVk = 0;
1259 
1260     // Go through clearColorBuffers and set the appropriate loadOp and clear values.
1261     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1262     {
1263         if (clearColorBuffers.test(colorIndexGL))
1264         {
1265             RenderTargetVk *renderTarget = getColorReadRenderTarget();
1266 
1267             // If the render target doesn't have alpha, but its emulated format has it, clear the
1268             // alpha to 1.
1269             VkClearColorValue value = clearColorValue;
1270             if (mEmulatedAlphaAttachmentMask[colorIndexGL])
1271             {
1272                 SetEmulatedAlphaValue(renderTarget->getImageFormat(), &value);
1273             }
1274 
1275             mFramebuffer.clearRenderPassColorAttachment(attachmentIndexVk, value);
1276         }
1277         ++attachmentIndexVk;
1278     }
1279 
1280     // Set the appropriate loadOp and clear values for depth and stencil.
1281     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1282     if (depthStencilRenderTarget)
1283     {
1284         if (clearDepth)
1285         {
1286             mFramebuffer.clearRenderPassDepthAttachment(attachmentIndexVk,
1287                                                         clearDepthStencilValue.depth);
1288         }
1289 
1290         if (clearStencil)
1291         {
1292             mFramebuffer.clearRenderPassStencilAttachment(attachmentIndexVk,
1293                                                           clearDepthStencilValue.stencil);
1294         }
1295     }
1296 
1297     return angle::Result::Continue;
1298 }
1299 
clearWithDraw(ContextVk * contextVk,const gl::Rectangle & clearArea,gl::DrawBufferMask clearColorBuffers,bool clearStencil,VkColorComponentFlags colorMaskFlags,uint8_t stencilMask,const VkClearColorValue & clearColorValue,uint8_t clearStencilValue)1300 angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk,
1301                                            const gl::Rectangle &clearArea,
1302                                            gl::DrawBufferMask clearColorBuffers,
1303                                            bool clearStencil,
1304                                            VkColorComponentFlags colorMaskFlags,
1305                                            uint8_t stencilMask,
1306                                            const VkClearColorValue &clearColorValue,
1307                                            uint8_t clearStencilValue)
1308 {
1309     UtilsVk::ClearFramebufferParameters params = {};
1310     params.clearArea                           = clearArea;
1311     params.colorClearValue                     = clearColorValue;
1312     params.stencilClearValue                   = clearStencilValue;
1313     params.stencilMask                         = stencilMask;
1314 
1315     params.clearColor   = true;
1316     params.clearStencil = clearStencil;
1317 
1318     const auto &colorRenderTargets = mRenderTargetCache.getColors();
1319     for (size_t colorIndexGL : clearColorBuffers)
1320     {
1321         const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1322         ASSERT(colorRenderTarget);
1323 
1324         params.colorFormat            = &colorRenderTarget->getImage().getFormat().imageFormat();
1325         params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL);
1326         params.colorMaskFlags         = colorMaskFlags;
1327         if (mEmulatedAlphaAttachmentMask[colorIndexGL])
1328         {
1329             params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT;
1330         }
1331 
1332         ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
1333 
1334         // Clear stencil only once!
1335         params.clearStencil = false;
1336     }
1337 
1338     // If there was no color clear, clear stencil alone.
1339     if (params.clearStencil)
1340     {
1341         params.clearColor = false;
1342         ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
1343     }
1344 
1345     return angle::Result::Continue;
1346 }
1347 
getSamplePosition(const gl::Context * context,size_t index,GLfloat * xy) const1348 angle::Result FramebufferVk::getSamplePosition(const gl::Context *context,
1349                                                size_t index,
1350                                                GLfloat *xy) const
1351 {
1352     ANGLE_VK_UNREACHABLE(vk::GetImpl(context));
1353     return angle::Result::Stop;
1354 }
1355 
startNewRenderPass(ContextVk * contextVk,const gl::Rectangle & renderArea,vk::CommandBuffer ** commandBufferOut)1356 angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk,
1357                                                 const gl::Rectangle &renderArea,
1358                                                 vk::CommandBuffer **commandBufferOut)
1359 {
1360     vk::Framebuffer *framebuffer = nullptr;
1361     ANGLE_TRY(getFramebuffer(contextVk, &framebuffer));
1362 
1363     vk::AttachmentOpsArray renderPassAttachmentOps;
1364     std::vector<VkClearValue> attachmentClearValues;
1365 
1366     vk::CommandBuffer *writeCommands = nullptr;
1367     ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &writeCommands));
1368 
1369     // Initialize RenderPass info.
1370     const auto &colorRenderTargets = mRenderTargetCache.getColors();
1371     for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
1372     {
1373         RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
1374         ASSERT(colorRenderTarget);
1375 
1376         ANGLE_TRY(colorRenderTarget->onColorDraw(contextVk, &mFramebuffer, writeCommands));
1377 
1378         renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
1379                                                   VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
1380                                                   VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
1381         attachmentClearValues.emplace_back(kUninitializedClearValue);
1382     }
1383 
1384     RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
1385     if (depthStencilRenderTarget)
1386     {
1387         ANGLE_TRY(
1388             depthStencilRenderTarget->onDepthStencilDraw(contextVk, &mFramebuffer, writeCommands));
1389 
1390         renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
1391                                                   VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
1392                                                   VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
1393         attachmentClearValues.emplace_back(kUninitializedClearValue);
1394     }
1395 
1396     return mFramebuffer.beginRenderPass(contextVk, *framebuffer, renderArea, mRenderPassDesc,
1397                                         renderPassAttachmentOps, attachmentClearValues,
1398                                         commandBufferOut);
1399 }
1400 
updateActiveColorMasks(size_t colorIndexGL,bool r,bool g,bool b,bool a)1401 void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a)
1402 {
1403     mActiveColorComponentMasksForClear[0].set(colorIndexGL, r);
1404     mActiveColorComponentMasksForClear[1].set(colorIndexGL, g);
1405     mActiveColorComponentMasksForClear[2].set(colorIndexGL, b);
1406     mActiveColorComponentMasksForClear[3].set(colorIndexGL, a);
1407 }
1408 
getEmulatedAlphaAttachmentMask() const1409 const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const
1410 {
1411     return mEmulatedAlphaAttachmentMask;
1412 }
1413 
readPixelsImpl(ContextVk * contextVk,const gl::Rectangle & area,const PackPixelsParams & packPixelsParams,VkImageAspectFlagBits copyAspectFlags,RenderTargetVk * renderTarget,void * pixels)1414 angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk,
1415                                             const gl::Rectangle &area,
1416                                             const PackPixelsParams &packPixelsParams,
1417                                             VkImageAspectFlagBits copyAspectFlags,
1418                                             RenderTargetVk *renderTarget,
1419                                             void *pixels)
1420 {
1421     ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl");
1422 
1423     RendererVk *renderer = contextVk->getRenderer();
1424 
1425     vk::CommandBuffer *commandBuffer = nullptr;
1426     ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
1427 
1428     // Note that although we're reading from the image, we need to update the layout below.
1429     vk::ImageHelper *srcImage =
1430         renderTarget->getImageForRead(&mFramebuffer, vk::ImageLayout::TransferSrc, commandBuffer);
1431 
1432     const angle::Format *readFormat = &srcImage->getFormat().imageFormat();
1433 
1434     if (copyAspectFlags != VK_IMAGE_ASPECT_COLOR_BIT)
1435     {
1436         readFormat = &GetDepthStencilImageToBufferFormat(*readFormat, copyAspectFlags);
1437     }
1438 
1439     uint32_t level       = renderTarget->getLevelIndex();
1440     uint32_t layer       = renderTarget->getLayerIndex();
1441     VkOffset3D srcOffset = {area.x, area.y, 0};
1442 
1443     VkImageSubresourceLayers srcSubresource = {};
1444     srcSubresource.aspectMask               = copyAspectFlags;
1445     srcSubresource.mipLevel                 = level;
1446     srcSubresource.baseArrayLayer           = layer;
1447     srcSubresource.layerCount               = 1;
1448 
1449     VkExtent3D srcExtent = {static_cast<uint32_t>(area.width), static_cast<uint32_t>(area.height),
1450                             1};
1451 
1452     if (srcImage->getExtents().depth > 1)
1453     {
1454         // Depth > 1 means this is a 3D texture and we need special handling
1455         srcOffset.z                   = layer;
1456         srcSubresource.baseArrayLayer = 0;
1457     }
1458 
1459     // If the source image is multisampled, we need to resolve it into a temporary image before
1460     // performing a readback.
1461     bool isMultisampled = srcImage->getSamples() > 1;
1462     vk::Scoped<vk::ImageHelper> resolvedImage(contextVk->getDevice());
1463     if (isMultisampled)
1464     {
1465         ANGLE_TRY(resolvedImage.get().init2DStaging(
1466             contextVk, renderer->getMemoryProperties(), gl::Extents(area.width, area.height, 1),
1467             srcImage->getFormat(),
1468             VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, 1));
1469         resolvedImage.get().updateQueueSerial(contextVk->getCurrentQueueSerial());
1470 
1471         // Note: resolve only works on color images (not depth/stencil).
1472         //
1473         // TODO: Currently, depth/stencil blit can perform a depth/stencil readback, but that code
1474         // path will be optimized away.  http://anglebug.com/3200
1475         ASSERT(copyAspectFlags == VK_IMAGE_ASPECT_COLOR_BIT);
1476 
1477         VkImageResolve resolveRegion                = {};
1478         resolveRegion.srcSubresource                = srcSubresource;
1479         resolveRegion.srcOffset                     = srcOffset;
1480         resolveRegion.dstSubresource.aspectMask     = copyAspectFlags;
1481         resolveRegion.dstSubresource.mipLevel       = 0;
1482         resolveRegion.dstSubresource.baseArrayLayer = 0;
1483         resolveRegion.dstSubresource.layerCount     = 1;
1484         resolveRegion.dstOffset                     = {};
1485         resolveRegion.extent                        = srcExtent;
1486 
1487         srcImage->resolve(&resolvedImage.get(), resolveRegion, commandBuffer);
1488 
1489         resolvedImage.get().changeLayout(copyAspectFlags, vk::ImageLayout::TransferSrc,
1490                                          commandBuffer);
1491 
1492         // Make the resolved image the target of buffer copy.
1493         srcImage  = &resolvedImage.get();
1494         level     = 0;
1495         layer     = 0;
1496         srcOffset = {0, 0, 0};
1497         srcSubresource.baseArrayLayer = 0;
1498         srcSubresource.layerCount     = 1;
1499         srcSubresource.mipLevel       = 0;
1500     }
1501 
1502     VkBuffer bufferHandle      = VK_NULL_HANDLE;
1503     uint8_t *readPixelBuffer   = nullptr;
1504     VkDeviceSize stagingOffset = 0;
1505     size_t allocationSize      = readFormat->pixelBytes * area.width * area.height;
1506 
1507     ANGLE_TRY(mReadPixelBuffer.allocate(contextVk, allocationSize, &readPixelBuffer, &bufferHandle,
1508                                         &stagingOffset, nullptr));
1509 
1510     VkBufferImageCopy region = {};
1511     region.bufferImageHeight = srcExtent.height;
1512     region.bufferOffset      = stagingOffset;
1513     region.bufferRowLength   = srcExtent.width;
1514     region.imageExtent       = srcExtent;
1515     region.imageOffset       = srcOffset;
1516     region.imageSubresource  = srcSubresource;
1517 
1518     commandBuffer->copyImageToBuffer(srcImage->getImage(), srcImage->getCurrentLayout(),
1519                                      bufferHandle, 1, &region);
1520 
1521     // Triggers a full finish.
1522     // TODO(jmadill): Don't block on asynchronous readback.
1523     ANGLE_TRY(contextVk->finishImpl());
1524 
1525     // The buffer we copied to needs to be invalidated before we read from it because its not been
1526     // created with the host coherent bit.
1527     ANGLE_TRY(mReadPixelBuffer.invalidate(contextVk));
1528 
1529     const gl::State &glState = contextVk->getState();
1530     gl::Buffer *packBuffer   = glState.getTargetBuffer(gl::BufferBinding::PixelPack);
1531     if (packBuffer != nullptr)
1532     {
1533         // Must map the PBO in order to read its contents (and then unmap it later)
1534         BufferVk *packBufferVk = vk::GetImpl(packBuffer);
1535         void *mapPtr           = nullptr;
1536         ANGLE_TRY(packBufferVk->mapImpl(contextVk, &mapPtr));
1537         uint8_t *dest = static_cast<uint8_t *>(mapPtr) + reinterpret_cast<ptrdiff_t>(pixels);
1538         PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes,
1539                    readPixelBuffer, static_cast<uint8_t *>(dest));
1540         packBufferVk->unmapImpl(contextVk);
1541     }
1542     else
1543     {
1544         PackPixels(packPixelsParams, *readFormat, area.width * readFormat->pixelBytes,
1545                    readPixelBuffer, static_cast<uint8_t *>(pixels));
1546     }
1547 
1548     return angle::Result::Continue;
1549 }
1550 
getReadImageExtents() const1551 gl::Extents FramebufferVk::getReadImageExtents() const
1552 {
1553     ASSERT(getColorReadRenderTarget()->getExtents().width == mState.getDimensions().width);
1554     ASSERT(getColorReadRenderTarget()->getExtents().height == mState.getDimensions().height);
1555 
1556     return getColorReadRenderTarget()->getExtents();
1557 }
1558 
getCompleteRenderArea() const1559 gl::Rectangle FramebufferVk::getCompleteRenderArea() const
1560 {
1561     const gl::Box &dimensions = mState.getDimensions();
1562     return gl::Rectangle(0, 0, dimensions.width, dimensions.height);
1563 }
1564 
getScissoredRenderArea(ContextVk * contextVk) const1565 gl::Rectangle FramebufferVk::getScissoredRenderArea(ContextVk *contextVk) const
1566 {
1567     const gl::Box &dimensions = mState.getDimensions();
1568     const gl::Rectangle renderArea(0, 0, dimensions.width, dimensions.height);
1569     bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO();
1570 
1571     return ClipRectToScissor(contextVk->getState(), renderArea, invertViewport);
1572 }
1573 
onScissorChange(ContextVk * contextVk)1574 void FramebufferVk::onScissorChange(ContextVk *contextVk)
1575 {
1576     gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
1577 
1578     // If the scissor has grown beyond the previous scissoredRenderArea, make sure the render pass
1579     // is restarted.  Otherwise, we can continue using the same renderpass area.
1580     //
1581     // Without a scissor, the render pass area covers the whole of the framebuffer.  With a
1582     // scissored clear, the render pass area could be smaller than the framebuffer size.  When the
1583     // scissor changes, if the scissor area is completely encompassed by the render pass area, it's
1584     // possible to continue using the same render pass.  However, if the current render pass area
1585     // is too small, we need to start a new one.  The latter can happen if a scissored clear starts
1586     // a render pass, the scissor is disabled and a draw call is issued to affect the whole
1587     // framebuffer.
1588     mFramebuffer.updateQueueSerial(contextVk->getCurrentQueueSerial());
1589     if (mFramebuffer.hasStartedRenderPass() &&
1590         !mFramebuffer.getRenderPassRenderArea().encloses(scissoredRenderArea))
1591     {
1592         mFramebuffer.finishCurrentCommands(contextVk);
1593     }
1594 }
1595 
getFirstRenderTarget() const1596 RenderTargetVk *FramebufferVk::getFirstRenderTarget() const
1597 {
1598     for (auto *renderTarget : mRenderTargetCache.getColors())
1599     {
1600         if (renderTarget)
1601         {
1602             return renderTarget;
1603         }
1604     }
1605 
1606     return mRenderTargetCache.getDepthStencil();
1607 }
1608 
getSamples() const1609 GLint FramebufferVk::getSamples() const
1610 {
1611     RenderTargetVk *firstRT = getFirstRenderTarget();
1612     return firstRT ? firstRT->getImage().getSamples() : 0;
1613 }
1614 
1615 }  // namespace rx
1616