• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 #include "walt.h"
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13 /* More than 4 hours if BW_SHIFT equals 20. */
14 static const u64 max_rt_runtime = MAX_BW;
15 
16 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 
18 struct rt_bandwidth def_rt_bandwidth;
19 
20 #ifdef CONFIG_SCHED_RT_CAS
21 unsigned int sysctl_sched_enable_rt_cas = 1;
22 #endif
23 
24 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
25 unsigned int sysctl_sched_enable_rt_active_lb = 1;
26 #endif
27 
sched_rt_period_timer(struct hrtimer * timer)28 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
29 {
30 	struct rt_bandwidth *rt_b =
31 		container_of(timer, struct rt_bandwidth, rt_period_timer);
32 	int idle = 0;
33 	int overrun;
34 
35 	raw_spin_lock(&rt_b->rt_runtime_lock);
36 	for (;;) {
37 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
38 		if (!overrun)
39 			break;
40 
41 		raw_spin_unlock(&rt_b->rt_runtime_lock);
42 		idle = do_sched_rt_period_timer(rt_b, overrun);
43 		raw_spin_lock(&rt_b->rt_runtime_lock);
44 	}
45 	if (idle)
46 		rt_b->rt_period_active = 0;
47 	raw_spin_unlock(&rt_b->rt_runtime_lock);
48 
49 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
50 }
51 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)52 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
53 {
54 	rt_b->rt_period = ns_to_ktime(period);
55 	rt_b->rt_runtime = runtime;
56 
57 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
58 
59 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
60 		     HRTIMER_MODE_REL_HARD);
61 	rt_b->rt_period_timer.function = sched_rt_period_timer;
62 }
63 
start_rt_bandwidth(struct rt_bandwidth * rt_b)64 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
65 {
66 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
67 		return;
68 
69 	raw_spin_lock(&rt_b->rt_runtime_lock);
70 	if (!rt_b->rt_period_active) {
71 		rt_b->rt_period_active = 1;
72 		/*
73 		 * SCHED_DEADLINE updates the bandwidth, as a run away
74 		 * RT task with a DL task could hog a CPU. But DL does
75 		 * not reset the period. If a deadline task was running
76 		 * without an RT task running, it can cause RT tasks to
77 		 * throttle when they start up. Kick the timer right away
78 		 * to update the period.
79 		 */
80 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
81 		hrtimer_start_expires(&rt_b->rt_period_timer,
82 				      HRTIMER_MODE_ABS_PINNED_HARD);
83 	}
84 	raw_spin_unlock(&rt_b->rt_runtime_lock);
85 }
86 
init_rt_rq(struct rt_rq * rt_rq)87 void init_rt_rq(struct rt_rq *rt_rq)
88 {
89 	struct rt_prio_array *array;
90 	int i;
91 
92 	array = &rt_rq->active;
93 	for (i = 0; i < MAX_RT_PRIO; i++) {
94 		INIT_LIST_HEAD(array->queue + i);
95 		__clear_bit(i, array->bitmap);
96 	}
97 	/* delimiter for bitsearch: */
98 	__set_bit(MAX_RT_PRIO, array->bitmap);
99 
100 #if defined CONFIG_SMP
101 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
102 	rt_rq->highest_prio.next = MAX_RT_PRIO;
103 	rt_rq->rt_nr_migratory = 0;
104 	rt_rq->overloaded = 0;
105 	plist_head_init(&rt_rq->pushable_tasks);
106 #endif /* CONFIG_SMP */
107 	/* We start is dequeued state, because no RT tasks are queued */
108 	rt_rq->rt_queued = 0;
109 
110 	rt_rq->rt_time = 0;
111 	rt_rq->rt_throttled = 0;
112 	rt_rq->rt_runtime = 0;
113 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
114 }
115 
116 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 {
119 	hrtimer_cancel(&rt_b->rt_period_timer);
120 }
121 
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123 
rt_task_of(struct sched_rt_entity * rt_se)124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 {
126 #ifdef CONFIG_SCHED_DEBUG
127 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
128 #endif
129 	return container_of(rt_se, struct task_struct, rt);
130 }
131 
rq_of_rt_rq(struct rt_rq * rt_rq)132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 {
134 	return rt_rq->rq;
135 }
136 
rt_rq_of_se(struct sched_rt_entity * rt_se)137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 {
139 	return rt_se->rt_rq;
140 }
141 
rq_of_rt_se(struct sched_rt_entity * rt_se)142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 {
144 	struct rt_rq *rt_rq = rt_se->rt_rq;
145 
146 	return rt_rq->rq;
147 }
148 
free_rt_sched_group(struct task_group * tg)149 void free_rt_sched_group(struct task_group *tg)
150 {
151 	int i;
152 
153 	if (tg->rt_se)
154 		destroy_rt_bandwidth(&tg->rt_bandwidth);
155 
156 	for_each_possible_cpu(i) {
157 		if (tg->rt_rq)
158 			kfree(tg->rt_rq[i]);
159 		if (tg->rt_se)
160 			kfree(tg->rt_se[i]);
161 	}
162 
163 	kfree(tg->rt_rq);
164 	kfree(tg->rt_se);
165 }
166 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 		struct sched_rt_entity *rt_se, int cpu,
169 		struct sched_rt_entity *parent)
170 {
171 	struct rq *rq = cpu_rq(cpu);
172 
173 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
174 	rt_rq->rt_nr_boosted = 0;
175 	rt_rq->rq = rq;
176 	rt_rq->tg = tg;
177 
178 	tg->rt_rq[cpu] = rt_rq;
179 	tg->rt_se[cpu] = rt_se;
180 
181 	if (!rt_se)
182 		return;
183 
184 	if (!parent)
185 		rt_se->rt_rq = &rq->rt;
186 	else
187 		rt_se->rt_rq = parent->my_q;
188 
189 	rt_se->my_q = rt_rq;
190 	rt_se->parent = parent;
191 	INIT_LIST_HEAD(&rt_se->run_list);
192 }
193 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196 	struct rt_rq *rt_rq;
197 	struct sched_rt_entity *rt_se;
198 	int i;
199 
200 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201 	if (!tg->rt_rq)
202 		goto err;
203 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204 	if (!tg->rt_se)
205 		goto err;
206 
207 	init_rt_bandwidth(&tg->rt_bandwidth,
208 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209 
210 	for_each_possible_cpu(i) {
211 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 				     GFP_KERNEL, cpu_to_node(i));
213 		if (!rt_rq)
214 			goto err;
215 
216 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 				     GFP_KERNEL, cpu_to_node(i));
218 		if (!rt_se)
219 			goto err_free_rq;
220 
221 		init_rt_rq(rt_rq);
222 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224 	}
225 
226 	return 1;
227 
228 err_free_rq:
229 	kfree(rt_rq);
230 err:
231 	return 0;
232 }
233 
234 #else /* CONFIG_RT_GROUP_SCHED */
235 
236 #define rt_entity_is_task(rt_se) (1)
237 
rt_task_of(struct sched_rt_entity * rt_se)238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240 	return container_of(rt_se, struct task_struct, rt);
241 }
242 
rq_of_rt_rq(struct rt_rq * rt_rq)243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245 	return container_of(rt_rq, struct rq, rt);
246 }
247 
rq_of_rt_se(struct sched_rt_entity * rt_se)248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250 	struct task_struct *p = rt_task_of(rt_se);
251 
252 	return task_rq(p);
253 }
254 
rt_rq_of_se(struct sched_rt_entity * rt_se)255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257 	struct rq *rq = rq_of_rt_se(rt_se);
258 
259 	return &rq->rt;
260 }
261 
free_rt_sched_group(struct task_group * tg)262 void free_rt_sched_group(struct task_group *tg) { }
263 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)264 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
265 {
266 	return 1;
267 }
268 #endif /* CONFIG_RT_GROUP_SCHED */
269 
270 #ifdef CONFIG_SMP
271 
272 static void pull_rt_task(struct rq *this_rq);
273 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)274 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
275 {
276 	/*
277 	 * Try to pull RT tasks here if we lower this rq's prio and cpu is not
278 	 * isolated
279 	 */
280 	return rq->rt.highest_prio.curr > prev->prio &&
281 	       !cpu_isolated(cpu_of(rq));
282 }
283 
rt_overloaded(struct rq * rq)284 static inline int rt_overloaded(struct rq *rq)
285 {
286 	return atomic_read(&rq->rd->rto_count);
287 }
288 
rt_set_overload(struct rq * rq)289 static inline void rt_set_overload(struct rq *rq)
290 {
291 	if (!rq->online)
292 		return;
293 
294 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
295 	/*
296 	 * Make sure the mask is visible before we set
297 	 * the overload count. That is checked to determine
298 	 * if we should look at the mask. It would be a shame
299 	 * if we looked at the mask, but the mask was not
300 	 * updated yet.
301 	 *
302 	 * Matched by the barrier in pull_rt_task().
303 	 */
304 	smp_wmb();
305 	atomic_inc(&rq->rd->rto_count);
306 }
307 
rt_clear_overload(struct rq * rq)308 static inline void rt_clear_overload(struct rq *rq)
309 {
310 	if (!rq->online)
311 		return;
312 
313 	/* the order here really doesn't matter */
314 	atomic_dec(&rq->rd->rto_count);
315 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
316 }
317 
update_rt_migration(struct rt_rq * rt_rq)318 static void update_rt_migration(struct rt_rq *rt_rq)
319 {
320 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
321 		if (!rt_rq->overloaded) {
322 			rt_set_overload(rq_of_rt_rq(rt_rq));
323 			rt_rq->overloaded = 1;
324 		}
325 	} else if (rt_rq->overloaded) {
326 		rt_clear_overload(rq_of_rt_rq(rt_rq));
327 		rt_rq->overloaded = 0;
328 	}
329 }
330 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)331 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
332 {
333 	struct task_struct *p;
334 
335 	if (!rt_entity_is_task(rt_se))
336 		return;
337 
338 	p = rt_task_of(rt_se);
339 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
340 
341 	rt_rq->rt_nr_total++;
342 	if (p->nr_cpus_allowed > 1)
343 		rt_rq->rt_nr_migratory++;
344 
345 	update_rt_migration(rt_rq);
346 }
347 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)348 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 	struct task_struct *p;
351 
352 	if (!rt_entity_is_task(rt_se))
353 		return;
354 
355 	p = rt_task_of(rt_se);
356 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
357 
358 	rt_rq->rt_nr_total--;
359 	if (p->nr_cpus_allowed > 1)
360 		rt_rq->rt_nr_migratory--;
361 
362 	update_rt_migration(rt_rq);
363 }
364 
has_pushable_tasks(struct rq * rq)365 static inline int has_pushable_tasks(struct rq *rq)
366 {
367 	return !plist_head_empty(&rq->rt.pushable_tasks);
368 }
369 
370 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
371 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
372 
373 static void push_rt_tasks(struct rq *);
374 static void pull_rt_task(struct rq *);
375 
rt_queue_push_tasks(struct rq * rq)376 static inline void rt_queue_push_tasks(struct rq *rq)
377 {
378 	if (!has_pushable_tasks(rq))
379 		return;
380 
381 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
382 }
383 
rt_queue_pull_task(struct rq * rq)384 static inline void rt_queue_pull_task(struct rq *rq)
385 {
386 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
387 }
388 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)389 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392 	plist_node_init(&p->pushable_tasks, p->prio);
393 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
394 
395 	/* Update the highest prio pushable task */
396 	if (p->prio < rq->rt.highest_prio.next)
397 		rq->rt.highest_prio.next = p->prio;
398 }
399 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)400 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
403 
404 	/* Update the new highest prio pushable task */
405 	if (has_pushable_tasks(rq)) {
406 		p = plist_first_entry(&rq->rt.pushable_tasks,
407 				      struct task_struct, pushable_tasks);
408 		rq->rt.highest_prio.next = p->prio;
409 	} else
410 		rq->rt.highest_prio.next = MAX_RT_PRIO;
411 }
412 
413 #else
414 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)415 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
416 {
417 }
418 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)419 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
420 {
421 }
422 
423 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)424 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427 
428 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)429 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
430 {
431 }
432 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)433 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
434 {
435 	return false;
436 }
437 
pull_rt_task(struct rq * this_rq)438 static inline void pull_rt_task(struct rq *this_rq)
439 {
440 }
441 
rt_queue_push_tasks(struct rq * rq)442 static inline void rt_queue_push_tasks(struct rq *rq)
443 {
444 }
445 #endif /* CONFIG_SMP */
446 
447 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
448 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
449 
on_rt_rq(struct sched_rt_entity * rt_se)450 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
451 {
452 	return rt_se->on_rq;
453 }
454 
455 #ifdef CONFIG_UCLAMP_TASK
456 /*
457  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
458  * settings.
459  *
460  * This check is only important for heterogeneous systems where uclamp_min value
461  * is higher than the capacity of a @cpu. For non-heterogeneous system this
462  * function will always return true.
463  *
464  * The function will return true if the capacity of the @cpu is >= the
465  * uclamp_min and false otherwise.
466  *
467  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
468  * > uclamp_max.
469  */
rt_task_fits_capacity(struct task_struct * p,int cpu)470 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
471 {
472 	unsigned int min_cap;
473 	unsigned int max_cap;
474 	unsigned int cpu_cap;
475 
476 	/* Only heterogeneous systems can benefit from this check */
477 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
478 		return true;
479 
480 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
481 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
482 
483 	cpu_cap = capacity_orig_of(cpu);
484 
485 	return cpu_cap >= min(min_cap, max_cap);
486 }
487 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)488 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
489 {
490 	return true;
491 }
492 #endif
493 
494 #ifdef CONFIG_RT_GROUP_SCHED
495 
sched_rt_runtime(struct rt_rq * rt_rq)496 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
497 {
498 	if (!rt_rq->tg)
499 		return RUNTIME_INF;
500 
501 	return rt_rq->rt_runtime;
502 }
503 
sched_rt_period(struct rt_rq * rt_rq)504 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
505 {
506 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
507 }
508 
509 typedef struct task_group *rt_rq_iter_t;
510 
next_task_group(struct task_group * tg)511 static inline struct task_group *next_task_group(struct task_group *tg)
512 {
513 	do {
514 		tg = list_entry_rcu(tg->list.next,
515 			typeof(struct task_group), list);
516 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
517 
518 	if (&tg->list == &task_groups)
519 		tg = NULL;
520 
521 	return tg;
522 }
523 
524 #define for_each_rt_rq(rt_rq, iter, rq)					\
525 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
526 		(iter = next_task_group(iter)) &&			\
527 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
528 
529 #define for_each_sched_rt_entity(rt_se) \
530 	for (; rt_se; rt_se = rt_se->parent)
531 
group_rt_rq(struct sched_rt_entity * rt_se)532 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
533 {
534 	return rt_se->my_q;
535 }
536 
537 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
539 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)540 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
541 {
542 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
543 	struct rq *rq = rq_of_rt_rq(rt_rq);
544 	struct sched_rt_entity *rt_se;
545 
546 	int cpu = cpu_of(rq);
547 
548 	rt_se = rt_rq->tg->rt_se[cpu];
549 
550 	if (rt_rq->rt_nr_running) {
551 		if (!rt_se)
552 			enqueue_top_rt_rq(rt_rq);
553 		else if (!on_rt_rq(rt_se))
554 			enqueue_rt_entity(rt_se, 0);
555 
556 		if (rt_rq->highest_prio.curr < curr->prio)
557 			resched_curr(rq);
558 	}
559 }
560 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)561 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
562 {
563 	struct sched_rt_entity *rt_se;
564 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
565 
566 	rt_se = rt_rq->tg->rt_se[cpu];
567 
568 	if (!rt_se) {
569 		dequeue_top_rt_rq(rt_rq);
570 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
571 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
572 	}
573 	else if (on_rt_rq(rt_se))
574 		dequeue_rt_entity(rt_se, 0);
575 }
576 
rt_rq_throttled(struct rt_rq * rt_rq)577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
580 }
581 
rt_se_boosted(struct sched_rt_entity * rt_se)582 static int rt_se_boosted(struct sched_rt_entity *rt_se)
583 {
584 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
585 	struct task_struct *p;
586 
587 	if (rt_rq)
588 		return !!rt_rq->rt_nr_boosted;
589 
590 	p = rt_task_of(rt_se);
591 	return p->prio != p->normal_prio;
592 }
593 
594 #ifdef CONFIG_SMP
sched_rt_period_mask(void)595 static inline const struct cpumask *sched_rt_period_mask(void)
596 {
597 	return this_rq()->rd->span;
598 }
599 #else
sched_rt_period_mask(void)600 static inline const struct cpumask *sched_rt_period_mask(void)
601 {
602 	return cpu_online_mask;
603 }
604 #endif
605 
606 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)607 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
608 {
609 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
610 }
611 
sched_rt_bandwidth(struct rt_rq * rt_rq)612 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
613 {
614 	return &rt_rq->tg->rt_bandwidth;
615 }
616 
617 #else /* !CONFIG_RT_GROUP_SCHED */
618 
sched_rt_runtime(struct rt_rq * rt_rq)619 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
620 {
621 	return rt_rq->rt_runtime;
622 }
623 
sched_rt_period(struct rt_rq * rt_rq)624 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
625 {
626 	return ktime_to_ns(def_rt_bandwidth.rt_period);
627 }
628 
629 typedef struct rt_rq *rt_rq_iter_t;
630 
631 #define for_each_rt_rq(rt_rq, iter, rq) \
632 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
633 
634 #define for_each_sched_rt_entity(rt_se) \
635 	for (; rt_se; rt_se = NULL)
636 
group_rt_rq(struct sched_rt_entity * rt_se)637 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
638 {
639 	return NULL;
640 }
641 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)642 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
643 {
644 	struct rq *rq = rq_of_rt_rq(rt_rq);
645 
646 	if (!rt_rq->rt_nr_running)
647 		return;
648 
649 	enqueue_top_rt_rq(rt_rq);
650 	resched_curr(rq);
651 }
652 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)653 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
654 {
655 	dequeue_top_rt_rq(rt_rq);
656 }
657 
rt_rq_throttled(struct rt_rq * rt_rq)658 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
659 {
660 	return rt_rq->rt_throttled;
661 }
662 
sched_rt_period_mask(void)663 static inline const struct cpumask *sched_rt_period_mask(void)
664 {
665 	return cpu_online_mask;
666 }
667 
668 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)669 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
670 {
671 	return &cpu_rq(cpu)->rt;
672 }
673 
sched_rt_bandwidth(struct rt_rq * rt_rq)674 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
675 {
676 	return &def_rt_bandwidth;
677 }
678 
679 #endif /* CONFIG_RT_GROUP_SCHED */
680 
sched_rt_bandwidth_account(struct rt_rq * rt_rq)681 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
682 {
683 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
684 
685 	return (hrtimer_active(&rt_b->rt_period_timer) ||
686 		rt_rq->rt_time < rt_b->rt_runtime);
687 }
688 
689 #ifdef CONFIG_SMP
690 /*
691  * We ran out of runtime, see if we can borrow some from our neighbours.
692  */
do_balance_runtime(struct rt_rq * rt_rq)693 static void do_balance_runtime(struct rt_rq *rt_rq)
694 {
695 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
696 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
697 	int i, weight;
698 	u64 rt_period;
699 
700 	weight = cpumask_weight(rd->span);
701 
702 	raw_spin_lock(&rt_b->rt_runtime_lock);
703 	rt_period = ktime_to_ns(rt_b->rt_period);
704 	for_each_cpu(i, rd->span) {
705 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 		s64 diff;
707 
708 		if (iter == rt_rq)
709 			continue;
710 
711 		raw_spin_lock(&iter->rt_runtime_lock);
712 		/*
713 		 * Either all rqs have inf runtime and there's nothing to steal
714 		 * or __disable_runtime() below sets a specific rq to inf to
715 		 * indicate its been disabled and disalow stealing.
716 		 */
717 		if (iter->rt_runtime == RUNTIME_INF)
718 			goto next;
719 
720 		/*
721 		 * From runqueues with spare time, take 1/n part of their
722 		 * spare time, but no more than our period.
723 		 */
724 		diff = iter->rt_runtime - iter->rt_time;
725 		if (diff > 0) {
726 			diff = div_u64((u64)diff, weight);
727 			if (rt_rq->rt_runtime + diff > rt_period)
728 				diff = rt_period - rt_rq->rt_runtime;
729 			iter->rt_runtime -= diff;
730 			rt_rq->rt_runtime += diff;
731 			if (rt_rq->rt_runtime == rt_period) {
732 				raw_spin_unlock(&iter->rt_runtime_lock);
733 				break;
734 			}
735 		}
736 next:
737 		raw_spin_unlock(&iter->rt_runtime_lock);
738 	}
739 	raw_spin_unlock(&rt_b->rt_runtime_lock);
740 }
741 
742 /*
743  * Ensure this RQ takes back all the runtime it lend to its neighbours.
744  */
__disable_runtime(struct rq * rq)745 static void __disable_runtime(struct rq *rq)
746 {
747 	struct root_domain *rd = rq->rd;
748 	rt_rq_iter_t iter;
749 	struct rt_rq *rt_rq;
750 
751 	if (unlikely(!scheduler_running))
752 		return;
753 
754 	for_each_rt_rq(rt_rq, iter, rq) {
755 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
756 		s64 want;
757 		int i;
758 
759 		raw_spin_lock(&rt_b->rt_runtime_lock);
760 		raw_spin_lock(&rt_rq->rt_runtime_lock);
761 		/*
762 		 * Either we're all inf and nobody needs to borrow, or we're
763 		 * already disabled and thus have nothing to do, or we have
764 		 * exactly the right amount of runtime to take out.
765 		 */
766 		if (rt_rq->rt_runtime == RUNTIME_INF ||
767 				rt_rq->rt_runtime == rt_b->rt_runtime)
768 			goto balanced;
769 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 
771 		/*
772 		 * Calculate the difference between what we started out with
773 		 * and what we current have, that's the amount of runtime
774 		 * we lend and now have to reclaim.
775 		 */
776 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
777 
778 		/*
779 		 * Greedy reclaim, take back as much as we can.
780 		 */
781 		for_each_cpu(i, rd->span) {
782 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
783 			s64 diff;
784 
785 			/*
786 			 * Can't reclaim from ourselves or disabled runqueues.
787 			 */
788 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
789 				continue;
790 
791 			raw_spin_lock(&iter->rt_runtime_lock);
792 			if (want > 0) {
793 				diff = min_t(s64, iter->rt_runtime, want);
794 				iter->rt_runtime -= diff;
795 				want -= diff;
796 			} else {
797 				iter->rt_runtime -= want;
798 				want -= want;
799 			}
800 			raw_spin_unlock(&iter->rt_runtime_lock);
801 
802 			if (!want)
803 				break;
804 		}
805 
806 		raw_spin_lock(&rt_rq->rt_runtime_lock);
807 		/*
808 		 * We cannot be left wanting - that would mean some runtime
809 		 * leaked out of the system.
810 		 */
811 		BUG_ON(want);
812 balanced:
813 		/*
814 		 * Disable all the borrow logic by pretending we have inf
815 		 * runtime - in which case borrowing doesn't make sense.
816 		 */
817 		rt_rq->rt_runtime = RUNTIME_INF;
818 		rt_rq->rt_throttled = 0;
819 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
820 		raw_spin_unlock(&rt_b->rt_runtime_lock);
821 
822 		/* Make rt_rq available for pick_next_task() */
823 		sched_rt_rq_enqueue(rt_rq);
824 	}
825 }
826 
__enable_runtime(struct rq * rq)827 static void __enable_runtime(struct rq *rq)
828 {
829 	rt_rq_iter_t iter;
830 	struct rt_rq *rt_rq;
831 
832 	if (unlikely(!scheduler_running))
833 		return;
834 
835 	/*
836 	 * Reset each runqueue's bandwidth settings
837 	 */
838 	for_each_rt_rq(rt_rq, iter, rq) {
839 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
840 
841 		raw_spin_lock(&rt_b->rt_runtime_lock);
842 		raw_spin_lock(&rt_rq->rt_runtime_lock);
843 		rt_rq->rt_runtime = rt_b->rt_runtime;
844 		rt_rq->rt_time = 0;
845 		rt_rq->rt_throttled = 0;
846 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
847 		raw_spin_unlock(&rt_b->rt_runtime_lock);
848 	}
849 }
850 
balance_runtime(struct rt_rq * rt_rq)851 static void balance_runtime(struct rt_rq *rt_rq)
852 {
853 	if (!sched_feat(RT_RUNTIME_SHARE))
854 		return;
855 
856 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
857 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
858 		do_balance_runtime(rt_rq);
859 		raw_spin_lock(&rt_rq->rt_runtime_lock);
860 	}
861 }
862 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)863 static inline void balance_runtime(struct rt_rq *rt_rq) {}
864 #endif /* CONFIG_SMP */
865 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)866 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
867 {
868 	int i, idle = 1, throttled = 0;
869 	const struct cpumask *span;
870 
871 	span = sched_rt_period_mask();
872 #ifdef CONFIG_RT_GROUP_SCHED
873 	/*
874 	 * When the tasks in the task_group run on either isolated
875 	 * CPUs or non-isolated CPUs, whether they are isolcpus or
876 	 * were isolated via cpusets, check all the online rt_rq
877 	 * to lest the timer run on a CPU which does not service
878 	 * all runqueues, potentially leaving other CPUs indefinitely
879 	 * throttled.
880 	 */
881 	span = cpu_online_mask;
882 #endif
883 	for_each_cpu(i, span) {
884 		int enqueue = 0;
885 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
886 		struct rq *rq = rq_of_rt_rq(rt_rq);
887 		int skip;
888 
889 		/*
890 		 * When span == cpu_online_mask, taking each rq->lock
891 		 * can be time-consuming. Try to avoid it when possible.
892 		 */
893 		raw_spin_lock(&rt_rq->rt_runtime_lock);
894 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
895 			rt_rq->rt_runtime = rt_b->rt_runtime;
896 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
897 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
898 		if (skip)
899 			continue;
900 
901 		raw_spin_lock(&rq->lock);
902 		update_rq_clock(rq);
903 
904 		if (rt_rq->rt_time) {
905 			u64 runtime;
906 
907 			raw_spin_lock(&rt_rq->rt_runtime_lock);
908 			if (rt_rq->rt_throttled)
909 				balance_runtime(rt_rq);
910 			runtime = rt_rq->rt_runtime;
911 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
912 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
913 				rt_rq->rt_throttled = 0;
914 				enqueue = 1;
915 
916 				/*
917 				 * When we're idle and a woken (rt) task is
918 				 * throttled check_preempt_curr() will set
919 				 * skip_update and the time between the wakeup
920 				 * and this unthrottle will get accounted as
921 				 * 'runtime'.
922 				 */
923 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
924 					rq_clock_cancel_skipupdate(rq);
925 			}
926 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
927 				idle = 0;
928 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
929 		} else if (rt_rq->rt_nr_running) {
930 			idle = 0;
931 			if (!rt_rq_throttled(rt_rq))
932 				enqueue = 1;
933 		}
934 		if (rt_rq->rt_throttled)
935 			throttled = 1;
936 
937 		if (enqueue)
938 			sched_rt_rq_enqueue(rt_rq);
939 		raw_spin_unlock(&rq->lock);
940 	}
941 
942 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
943 		return 1;
944 
945 	return idle;
946 }
947 
rt_se_prio(struct sched_rt_entity * rt_se)948 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
949 {
950 #ifdef CONFIG_RT_GROUP_SCHED
951 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
952 
953 	if (rt_rq)
954 		return rt_rq->highest_prio.curr;
955 #endif
956 
957 	return rt_task_of(rt_se)->prio;
958 }
959 
try_start_rt_bandwidth(struct rt_bandwidth * rt_b)960 static inline void try_start_rt_bandwidth(struct rt_bandwidth *rt_b)
961 {
962 	raw_spin_lock(&rt_b->rt_runtime_lock);
963 	if (!rt_b->rt_period_active) {
964 		rt_b->rt_period_active = 1;
965 		hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
966 		hrtimer_start_expires(&rt_b->rt_period_timer,
967 				      HRTIMER_MODE_ABS_PINNED_HARD);
968 	}
969 	raw_spin_unlock(&rt_b->rt_runtime_lock);
970 }
971 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)972 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
973 {
974 	u64 runtime = sched_rt_runtime(rt_rq);
975 
976 	if (rt_rq->rt_throttled)
977 		return rt_rq_throttled(rt_rq);
978 
979 	if (runtime >= sched_rt_period(rt_rq))
980 		return 0;
981 
982 	balance_runtime(rt_rq);
983 	runtime = sched_rt_runtime(rt_rq);
984 	if (runtime == RUNTIME_INF)
985 		return 0;
986 
987 	if (rt_rq->rt_time > runtime) {
988 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
989 
990 		/*
991 		 * Don't actually throttle groups that have no runtime assigned
992 		 * but accrue some time due to boosting.
993 		 */
994 		if (likely(rt_b->rt_runtime)) {
995 			rt_rq->rt_throttled = 1;
996 			printk_deferred_once("sched: RT throttling activated\n");
997 		} else {
998 			/*
999 			 * In case we did anyway, make it go away,
1000 			 * replenishment is a joke, since it will replenish us
1001 			 * with exactly 0 ns.
1002 			 */
1003 			rt_rq->rt_time = 0;
1004 		}
1005 
1006 		if (rt_rq_throttled(rt_rq)) {
1007 			sched_rt_rq_dequeue(rt_rq);
1008 			return 1;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Update the current task's runtime statistics. Skip current tasks that
1017  * are not in our scheduling class.
1018  */
update_curr_rt(struct rq * rq)1019 static void update_curr_rt(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	struct sched_rt_entity *rt_se = &curr->rt;
1023 	u64 delta_exec;
1024 	u64 now;
1025 
1026 	if (curr->sched_class != &rt_sched_class)
1027 		return;
1028 
1029 	now = rq_clock_task(rq);
1030 	delta_exec = now - curr->se.exec_start;
1031 	if (unlikely((s64)delta_exec <= 0))
1032 		return;
1033 
1034 	schedstat_set(curr->se.statistics.exec_max,
1035 		      max(curr->se.statistics.exec_max, delta_exec));
1036 
1037 	curr->se.sum_exec_runtime += delta_exec;
1038 	account_group_exec_runtime(curr, delta_exec);
1039 
1040 	curr->se.exec_start = now;
1041 	cgroup_account_cputime(curr, delta_exec);
1042 
1043 	if (!rt_bandwidth_enabled())
1044 		return;
1045 
1046 	for_each_sched_rt_entity(rt_se) {
1047 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1048 		int exceeded;
1049 
1050 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1051 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1052 			rt_rq->rt_time += delta_exec;
1053 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1054 			if (exceeded)
1055 				resched_curr(rq);
1056 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1057 			if (exceeded)
1058 				try_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1059 		}
1060 	}
1061 }
1062 
1063 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)1064 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1065 {
1066 	struct rq *rq = rq_of_rt_rq(rt_rq);
1067 
1068 	BUG_ON(&rq->rt != rt_rq);
1069 
1070 	if (!rt_rq->rt_queued)
1071 		return;
1072 
1073 	BUG_ON(!rq->nr_running);
1074 
1075 	sub_nr_running(rq, rt_rq->rt_nr_running);
1076 	rt_rq->rt_queued = 0;
1077 
1078 }
1079 
1080 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1081 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1082 {
1083 	struct rq *rq = rq_of_rt_rq(rt_rq);
1084 
1085 	BUG_ON(&rq->rt != rt_rq);
1086 
1087 	if (rt_rq->rt_queued)
1088 		return;
1089 
1090 	if (rt_rq_throttled(rt_rq))
1091 		return;
1092 
1093 	if (rt_rq->rt_nr_running) {
1094 		add_nr_running(rq, rt_rq->rt_nr_running);
1095 		rt_rq->rt_queued = 1;
1096 	}
1097 
1098 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1099 	cpufreq_update_util(rq, 0);
1100 }
1101 
1102 #if defined CONFIG_SMP
1103 
1104 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1105 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1106 {
1107 	struct rq *rq = rq_of_rt_rq(rt_rq);
1108 
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110 	/*
1111 	 * Change rq's cpupri only if rt_rq is the top queue.
1112 	 */
1113 	if (&rq->rt != rt_rq)
1114 		return;
1115 #endif
1116 	if (rq->online && prio < prev_prio)
1117 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1118 }
1119 
1120 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1121 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1122 {
1123 	struct rq *rq = rq_of_rt_rq(rt_rq);
1124 
1125 #ifdef CONFIG_RT_GROUP_SCHED
1126 	/*
1127 	 * Change rq's cpupri only if rt_rq is the top queue.
1128 	 */
1129 	if (&rq->rt != rt_rq)
1130 		return;
1131 #endif
1132 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1133 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1134 }
1135 
1136 #else /* CONFIG_SMP */
1137 
1138 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1139 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1140 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1141 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1142 
1143 #endif /* CONFIG_SMP */
1144 
1145 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1146 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1147 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1148 {
1149 	int prev_prio = rt_rq->highest_prio.curr;
1150 
1151 	if (prio < prev_prio)
1152 		rt_rq->highest_prio.curr = prio;
1153 
1154 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1155 }
1156 
1157 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1158 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1159 {
1160 	int prev_prio = rt_rq->highest_prio.curr;
1161 
1162 	if (rt_rq->rt_nr_running) {
1163 
1164 		WARN_ON(prio < prev_prio);
1165 
1166 		/*
1167 		 * This may have been our highest task, and therefore
1168 		 * we may have some recomputation to do
1169 		 */
1170 		if (prio == prev_prio) {
1171 			struct rt_prio_array *array = &rt_rq->active;
1172 
1173 			rt_rq->highest_prio.curr =
1174 				sched_find_first_bit(array->bitmap);
1175 		}
1176 
1177 	} else
1178 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1179 
1180 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1181 }
1182 
1183 #else
1184 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1185 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1186 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1187 
1188 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1189 
1190 #ifdef CONFIG_RT_GROUP_SCHED
1191 
1192 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1193 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 {
1195 	if (rt_se_boosted(rt_se))
1196 		rt_rq->rt_nr_boosted++;
1197 
1198 	if (rt_rq->tg)
1199 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1200 }
1201 
1202 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1203 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1204 {
1205 	if (rt_se_boosted(rt_se))
1206 		rt_rq->rt_nr_boosted--;
1207 
1208 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1209 }
1210 
1211 #else /* CONFIG_RT_GROUP_SCHED */
1212 
1213 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1214 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1215 {
1216 	start_rt_bandwidth(&def_rt_bandwidth);
1217 }
1218 
1219 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1220 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1221 
1222 #endif /* CONFIG_RT_GROUP_SCHED */
1223 
1224 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1225 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1226 {
1227 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1228 
1229 	if (group_rq)
1230 		return group_rq->rt_nr_running;
1231 	else
1232 		return 1;
1233 }
1234 
1235 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1236 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1237 {
1238 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1239 	struct task_struct *tsk;
1240 
1241 	if (group_rq)
1242 		return group_rq->rr_nr_running;
1243 
1244 	tsk = rt_task_of(rt_se);
1245 
1246 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1247 }
1248 
1249 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1250 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1251 {
1252 	int prio = rt_se_prio(rt_se);
1253 
1254 	WARN_ON(!rt_prio(prio));
1255 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1256 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1257 
1258 	inc_rt_prio(rt_rq, prio);
1259 	inc_rt_migration(rt_se, rt_rq);
1260 	inc_rt_group(rt_se, rt_rq);
1261 }
1262 
1263 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1264 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1265 {
1266 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1267 	WARN_ON(!rt_rq->rt_nr_running);
1268 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1269 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1270 
1271 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1272 	dec_rt_migration(rt_se, rt_rq);
1273 	dec_rt_group(rt_se, rt_rq);
1274 }
1275 
1276 /*
1277  * Change rt_se->run_list location unless SAVE && !MOVE
1278  *
1279  * assumes ENQUEUE/DEQUEUE flags match
1280  */
move_entity(unsigned int flags)1281 static inline bool move_entity(unsigned int flags)
1282 {
1283 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1284 		return false;
1285 
1286 	return true;
1287 }
1288 
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1289 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1290 {
1291 	list_del_init(&rt_se->run_list);
1292 
1293 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1294 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1295 
1296 	rt_se->on_list = 0;
1297 }
1298 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1299 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1302 	struct rt_prio_array *array = &rt_rq->active;
1303 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1304 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1305 
1306 	/*
1307 	 * Don't enqueue the group if its throttled, or when empty.
1308 	 * The latter is a consequence of the former when a child group
1309 	 * get throttled and the current group doesn't have any other
1310 	 * active members.
1311 	 */
1312 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1313 		if (rt_se->on_list)
1314 			__delist_rt_entity(rt_se, array);
1315 		return;
1316 	}
1317 
1318 	if (move_entity(flags)) {
1319 		WARN_ON_ONCE(rt_se->on_list);
1320 		if (flags & ENQUEUE_HEAD)
1321 			list_add(&rt_se->run_list, queue);
1322 		else
1323 			list_add_tail(&rt_se->run_list, queue);
1324 
1325 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1326 		rt_se->on_list = 1;
1327 	}
1328 	rt_se->on_rq = 1;
1329 
1330 	inc_rt_tasks(rt_se, rt_rq);
1331 }
1332 
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1333 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1334 {
1335 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1336 	struct rt_prio_array *array = &rt_rq->active;
1337 
1338 	if (move_entity(flags)) {
1339 		WARN_ON_ONCE(!rt_se->on_list);
1340 		__delist_rt_entity(rt_se, array);
1341 	}
1342 	rt_se->on_rq = 0;
1343 
1344 	dec_rt_tasks(rt_se, rt_rq);
1345 }
1346 
1347 /*
1348  * Because the prio of an upper entry depends on the lower
1349  * entries, we must remove entries top - down.
1350  */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1351 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1352 {
1353 	struct sched_rt_entity *back = NULL;
1354 
1355 	for_each_sched_rt_entity(rt_se) {
1356 		rt_se->back = back;
1357 		back = rt_se;
1358 	}
1359 
1360 	dequeue_top_rt_rq(rt_rq_of_se(back));
1361 
1362 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1363 		if (on_rt_rq(rt_se))
1364 			__dequeue_rt_entity(rt_se, flags);
1365 	}
1366 }
1367 
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1368 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1369 {
1370 	struct rq *rq = rq_of_rt_se(rt_se);
1371 
1372 	dequeue_rt_stack(rt_se, flags);
1373 	for_each_sched_rt_entity(rt_se)
1374 		__enqueue_rt_entity(rt_se, flags);
1375 	enqueue_top_rt_rq(&rq->rt);
1376 }
1377 
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1378 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1379 {
1380 	struct rq *rq = rq_of_rt_se(rt_se);
1381 
1382 	dequeue_rt_stack(rt_se, flags);
1383 
1384 	for_each_sched_rt_entity(rt_se) {
1385 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1386 
1387 		if (rt_rq && rt_rq->rt_nr_running)
1388 			__enqueue_rt_entity(rt_se, flags);
1389 	}
1390 	enqueue_top_rt_rq(&rq->rt);
1391 }
1392 
1393 /*
1394  * Adding/removing a task to/from a priority array:
1395  */
1396 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1397 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1398 {
1399 	struct sched_rt_entity *rt_se = &p->rt;
1400 
1401 	if (flags & ENQUEUE_WAKEUP)
1402 		rt_se->timeout = 0;
1403 
1404 	enqueue_rt_entity(rt_se, flags);
1405 	walt_inc_cumulative_runnable_avg(rq, p);
1406 
1407 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1408 		enqueue_pushable_task(rq, p);
1409 }
1410 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1411 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1412 {
1413 	struct sched_rt_entity *rt_se = &p->rt;
1414 
1415 	update_curr_rt(rq);
1416 	dequeue_rt_entity(rt_se, flags);
1417 	walt_dec_cumulative_runnable_avg(rq, p);
1418 
1419 	dequeue_pushable_task(rq, p);
1420 }
1421 
1422 /*
1423  * Put task to the head or the end of the run list without the overhead of
1424  * dequeue followed by enqueue.
1425  */
1426 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1427 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1428 {
1429 	if (on_rt_rq(rt_se)) {
1430 		struct rt_prio_array *array = &rt_rq->active;
1431 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1432 
1433 		if (head)
1434 			list_move(&rt_se->run_list, queue);
1435 		else
1436 			list_move_tail(&rt_se->run_list, queue);
1437 	}
1438 }
1439 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1440 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1441 {
1442 	struct sched_rt_entity *rt_se = &p->rt;
1443 	struct rt_rq *rt_rq;
1444 
1445 	for_each_sched_rt_entity(rt_se) {
1446 		rt_rq = rt_rq_of_se(rt_se);
1447 		requeue_rt_entity(rt_rq, rt_se, head);
1448 	}
1449 }
1450 
yield_task_rt(struct rq * rq)1451 static void yield_task_rt(struct rq *rq)
1452 {
1453 	requeue_task_rt(rq, rq->curr, 0);
1454 }
1455 
1456 #ifdef CONFIG_SMP
1457 static int find_lowest_rq(struct task_struct *task);
1458 
1459 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1460 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1461 {
1462 	struct task_struct *curr;
1463 	struct rq *rq;
1464 	bool test;
1465 
1466 	/* For anything but wake ups, just return the task_cpu */
1467 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1468 		goto out;
1469 
1470 	rq = cpu_rq(cpu);
1471 
1472 	rcu_read_lock();
1473 	curr = READ_ONCE(rq->curr); /* unlocked access */
1474 
1475 	/*
1476 	 * If the current task on @p's runqueue is an RT task, then
1477 	 * try to see if we can wake this RT task up on another
1478 	 * runqueue. Otherwise simply start this RT task
1479 	 * on its current runqueue.
1480 	 *
1481 	 * We want to avoid overloading runqueues. If the woken
1482 	 * task is a higher priority, then it will stay on this CPU
1483 	 * and the lower prio task should be moved to another CPU.
1484 	 * Even though this will probably make the lower prio task
1485 	 * lose its cache, we do not want to bounce a higher task
1486 	 * around just because it gave up its CPU, perhaps for a
1487 	 * lock?
1488 	 *
1489 	 * For equal prio tasks, we just let the scheduler sort it out.
1490 	 *
1491 	 * Otherwise, just let it ride on the affined RQ and the
1492 	 * post-schedule router will push the preempted task away
1493 	 *
1494 	 * This test is optimistic, if we get it wrong the load-balancer
1495 	 * will have to sort it out.
1496 	 *
1497 	 * We take into account the capacity of the CPU to ensure it fits the
1498 	 * requirement of the task - which is only important on heterogeneous
1499 	 * systems like big.LITTLE.
1500 	 */
1501 	test = curr &&
1502 	       unlikely(rt_task(curr)) &&
1503 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1504 
1505 	if (test || !rt_task_fits_capacity(p, cpu)) {
1506 		int target = find_lowest_rq(p);
1507 
1508 		/*
1509 		 * Bail out if we were forcing a migration to find a better
1510 		 * fitting CPU but our search failed.
1511 		 */
1512 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1513 			goto out_unlock;
1514 
1515 		/*
1516 		 * Don't bother moving it if the destination CPU is
1517 		 * not running a lower priority task.
1518 		 */
1519 		if (target != -1 &&
1520 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1521 			cpu = target;
1522 	}
1523 
1524 out_unlock:
1525 	rcu_read_unlock();
1526 
1527 out:
1528 	return cpu;
1529 }
1530 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1531 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1532 {
1533 	/*
1534 	 * Current can't be migrated, useless to reschedule,
1535 	 * let's hope p can move out.
1536 	 */
1537 	if (rq->curr->nr_cpus_allowed == 1 ||
1538 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1539 		return;
1540 
1541 	/*
1542 	 * p is migratable, so let's not schedule it and
1543 	 * see if it is pushed or pulled somewhere else.
1544 	 */
1545 	if (p->nr_cpus_allowed != 1 &&
1546 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1547 		return;
1548 
1549 	/*
1550 	 * There appear to be other CPUs that can accept
1551 	 * the current task but none can run 'p', so lets reschedule
1552 	 * to try and push the current task away:
1553 	 */
1554 	requeue_task_rt(rq, p, 1);
1555 	resched_curr(rq);
1556 }
1557 
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1558 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1559 {
1560 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1561 		/*
1562 		 * This is OK, because current is on_cpu, which avoids it being
1563 		 * picked for load-balance and preemption/IRQs are still
1564 		 * disabled avoiding further scheduler activity on it and we've
1565 		 * not yet started the picking loop.
1566 		 */
1567 		rq_unpin_lock(rq, rf);
1568 		pull_rt_task(rq);
1569 		rq_repin_lock(rq, rf);
1570 	}
1571 
1572 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1573 }
1574 #endif /* CONFIG_SMP */
1575 
1576 /*
1577  * Preempt the current task with a newly woken task if needed:
1578  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1579 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1580 {
1581 	if (p->prio < rq->curr->prio) {
1582 		resched_curr(rq);
1583 		return;
1584 	}
1585 
1586 #ifdef CONFIG_SMP
1587 	/*
1588 	 * If:
1589 	 *
1590 	 * - the newly woken task is of equal priority to the current task
1591 	 * - the newly woken task is non-migratable while current is migratable
1592 	 * - current will be preempted on the next reschedule
1593 	 *
1594 	 * we should check to see if current can readily move to a different
1595 	 * cpu.  If so, we will reschedule to allow the push logic to try
1596 	 * to move current somewhere else, making room for our non-migratable
1597 	 * task.
1598 	 */
1599 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1600 		check_preempt_equal_prio(rq, p);
1601 #endif
1602 }
1603 
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1604 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1605 {
1606 	p->se.exec_start = rq_clock_task(rq);
1607 
1608 	/* The running task is never eligible for pushing */
1609 	dequeue_pushable_task(rq, p);
1610 
1611 	if (!first)
1612 		return;
1613 
1614 	/*
1615 	 * If prev task was rt, put_prev_task() has already updated the
1616 	 * utilization. We only care of the case where we start to schedule a
1617 	 * rt task
1618 	 */
1619 	if (rq->curr->sched_class != &rt_sched_class)
1620 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1621 
1622 	rt_queue_push_tasks(rq);
1623 }
1624 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1625 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1626 						   struct rt_rq *rt_rq)
1627 {
1628 	struct rt_prio_array *array = &rt_rq->active;
1629 	struct sched_rt_entity *next = NULL;
1630 	struct list_head *queue;
1631 	int idx;
1632 
1633 	idx = sched_find_first_bit(array->bitmap);
1634 	BUG_ON(idx >= MAX_RT_PRIO);
1635 
1636 	queue = array->queue + idx;
1637 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1638 
1639 	return next;
1640 }
1641 
_pick_next_task_rt(struct rq * rq)1642 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1643 {
1644 	struct sched_rt_entity *rt_se;
1645 	struct rt_rq *rt_rq  = &rq->rt;
1646 
1647 	do {
1648 		rt_se = pick_next_rt_entity(rq, rt_rq);
1649 		BUG_ON(!rt_se);
1650 		rt_rq = group_rt_rq(rt_se);
1651 	} while (rt_rq);
1652 
1653 	return rt_task_of(rt_se);
1654 }
1655 
pick_next_task_rt(struct rq * rq)1656 static struct task_struct *pick_next_task_rt(struct rq *rq)
1657 {
1658 	struct task_struct *p;
1659 
1660 	if (!sched_rt_runnable(rq))
1661 		return NULL;
1662 
1663 	p = _pick_next_task_rt(rq);
1664 	set_next_task_rt(rq, p, true);
1665 	return p;
1666 }
1667 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1668 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1669 {
1670 	update_curr_rt(rq);
1671 
1672 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1673 
1674 	/*
1675 	 * The previous task needs to be made eligible for pushing
1676 	 * if it is still active
1677 	 */
1678 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1679 		enqueue_pushable_task(rq, p);
1680 }
1681 
1682 #ifdef CONFIG_SMP
1683 
1684 /* Only try algorithms three times */
1685 #define RT_MAX_TRIES 3
1686 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1687 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1688 {
1689 	if (!task_running(rq, p) &&
1690 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1691 		return 1;
1692 
1693 	return 0;
1694 }
1695 
1696 /*
1697  * Return the highest pushable rq's task, which is suitable to be executed
1698  * on the CPU, NULL otherwise
1699  */
pick_highest_pushable_task(struct rq * rq,int cpu)1700 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1701 {
1702 	struct plist_head *head = &rq->rt.pushable_tasks;
1703 	struct task_struct *p;
1704 
1705 	if (!has_pushable_tasks(rq))
1706 		return NULL;
1707 
1708 	plist_for_each_entry(p, head, pushable_tasks) {
1709 		if (pick_rt_task(rq, p, cpu))
1710 			return p;
1711 	}
1712 
1713 	return NULL;
1714 }
1715 
1716 #ifdef CONFIG_SCHED_RT_CAS
find_cas_cpu(struct sched_domain * sd,struct task_struct * task,struct cpumask * lowest_mask)1717 static int find_cas_cpu(struct sched_domain *sd,
1718 		 struct task_struct *task, struct cpumask *lowest_mask)
1719 {
1720 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
1721 	struct sched_group *sg = NULL;
1722 	struct sched_group *sg_target = NULL;
1723 	struct sched_group *sg_backup = NULL;
1724 	struct cpumask search_cpu, backup_search_cpu;
1725 	int cpu = -1;
1726 	int target_cpu = -1;
1727 	unsigned long cpu_capacity;
1728 	unsigned long boosted_tutil = uclamp_task_util(task);
1729 	unsigned long target_capacity = ULONG_MAX;
1730 	unsigned long util;
1731 	unsigned long target_cpu_util = ULONG_MAX;
1732 	int prev_cpu = task_cpu(task);
1733 #ifdef CONFIG_SCHED_RTG
1734 	struct cpumask *rtg_target = NULL;
1735 #endif
1736 	bool boosted = uclamp_boosted(task);
1737 
1738 	if (!sysctl_sched_enable_rt_cas)
1739 		return -1;
1740 
1741 	rcu_read_lock();
1742 
1743 #ifdef CONFIG_SCHED_RTG
1744 	rtg_target = find_rtg_target(task);
1745 #endif
1746 
1747 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, 0));
1748 	if (!sd) {
1749 		rcu_read_unlock();
1750 		return -1;
1751 	}
1752 
1753 	sg = sd->groups;
1754 	do {
1755 		if (!cpumask_intersects(lowest_mask, sched_group_span(sg)))
1756 			continue;
1757 
1758 		if (boosted) {
1759 			if (cpumask_test_cpu(rd->max_cap_orig_cpu,
1760 					     sched_group_span(sg))) {
1761 				sg_target = sg;
1762 				break;
1763 			}
1764 		}
1765 
1766 		cpu = group_first_cpu(sg);
1767 #ifdef CONFIG_SCHED_RTG
1768 		/* honor the rtg tasks */
1769 		if (rtg_target) {
1770 			if (cpumask_test_cpu(cpu, rtg_target)) {
1771 				sg_target = sg;
1772 				break;
1773 			}
1774 
1775 			/* active LB or big_task favor cpus with more capacity */
1776 			if (task->state == TASK_RUNNING || boosted) {
1777 				if (capacity_orig_of(cpu) >
1778 				    capacity_orig_of(cpumask_any(rtg_target))) {
1779 					sg_target = sg;
1780 					break;
1781 				}
1782 
1783 				sg_backup = sg;
1784 				continue;
1785 			}
1786 		}
1787 #endif
1788 		/*
1789 		 * 1. add margin to support task migration
1790 		 * 2. if task_util is high then all cpus, make sure the
1791 		 * sg_backup with the most powerful cpus is selected
1792 		 */
1793 		if (!rt_task_fits_capacity(task, cpu)) {
1794 			sg_backup = sg;
1795 			continue;
1796 		}
1797 
1798 		/* support task boost */
1799 		cpu_capacity = capacity_orig_of(cpu);
1800 		if (boosted_tutil > cpu_capacity) {
1801 			sg_backup = sg;
1802 			continue;
1803 		}
1804 
1805 		/* sg_target: select the sg with smaller capacity */
1806 		if (cpu_capacity < target_capacity) {
1807 			target_capacity = cpu_capacity;
1808 			sg_target = sg;
1809 		}
1810 	} while (sg = sg->next, sg != sd->groups);
1811 
1812 	if (!sg_target)
1813 		sg_target = sg_backup;
1814 
1815 	if (sg_target) {
1816 		cpumask_and(&search_cpu, lowest_mask, sched_group_span(sg_target));
1817 		cpumask_copy(&backup_search_cpu, lowest_mask);
1818 		cpumask_andnot(&backup_search_cpu, &backup_search_cpu, &search_cpu);
1819 	} else {
1820 		cpumask_copy(&search_cpu, lowest_mask);
1821 		cpumask_clear(&backup_search_cpu);
1822 	}
1823 
1824 retry:
1825 	cpu = cpumask_first(&search_cpu);
1826 	do {
1827 		trace_sched_find_cas_cpu_each(task, cpu, target_cpu,
1828 			cpu_isolated(cpu),
1829 			idle_cpu(cpu), boosted_tutil, cpu_util(cpu),
1830 			capacity_orig_of(cpu));
1831 
1832 		if (cpu_isolated(cpu))
1833 			continue;
1834 
1835 		if (!cpumask_test_cpu(cpu, task->cpus_ptr))
1836 			continue;
1837 
1838 		/* find best cpu with smallest max_capacity */
1839 		if (target_cpu != -1 &&
1840 		    capacity_orig_of(cpu) > capacity_orig_of(target_cpu))
1841 			continue;
1842 
1843 		util = cpu_util(cpu);
1844 
1845 		/* Find the least loaded CPU */
1846 		if (util > target_cpu_util)
1847 			continue;
1848 
1849 		/*
1850 		 * If the preivous CPU has same load, keep it as
1851 		 * target_cpu
1852 		 */
1853 		if (target_cpu_util == util && target_cpu == prev_cpu)
1854 			continue;
1855 
1856 		/*
1857 		 * If candidate CPU is the previous CPU, select it.
1858 		 * If all above conditions are same, select the least
1859 		 * cumulative window demand CPU.
1860 		 */
1861 		target_cpu_util = util;
1862 		target_cpu = cpu;
1863 	} while ((cpu = cpumask_next(cpu, &search_cpu)) < nr_cpu_ids);
1864 
1865 	if (target_cpu != -1 && cpumask_test_cpu(target_cpu, lowest_mask)) {
1866 		goto done;
1867 	} else if (!cpumask_empty(&backup_search_cpu)) {
1868 		cpumask_copy(&search_cpu, &backup_search_cpu);
1869 		cpumask_clear(&backup_search_cpu);
1870 		goto retry;
1871 	}
1872 
1873 done:
1874 	trace_sched_find_cas_cpu(task, lowest_mask, boosted_tutil, prev_cpu, target_cpu);
1875 	rcu_read_unlock();
1876 	return target_cpu;
1877 }
1878 #endif
1879 
1880 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1881 
find_lowest_rq(struct task_struct * task)1882 static int find_lowest_rq(struct task_struct *task)
1883 {
1884 	struct sched_domain *sd;
1885 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1886 	int this_cpu = smp_processor_id();
1887 	int cpu      = task_cpu(task);
1888 	int ret;
1889 #ifdef CONFIG_SCHED_RT_CAS
1890 	int cas_cpu;
1891 #endif
1892 
1893 	/* Make sure the mask is initialized first */
1894 	if (unlikely(!lowest_mask))
1895 		return -1;
1896 
1897 	if (task->nr_cpus_allowed == 1)
1898 		return -1; /* No other targets possible */
1899 
1900 	/*
1901 	 * If we're on asym system ensure we consider the different capacities
1902 	 * of the CPUs when searching for the lowest_mask.
1903 	 */
1904 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1905 
1906 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1907 					  task, lowest_mask,
1908 					  rt_task_fits_capacity);
1909 	} else {
1910 
1911 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1912 				  task, lowest_mask);
1913 	}
1914 
1915 	if (!ret)
1916 		return -1; /* No targets found */
1917 
1918 #ifdef CONFIG_SCHED_RT_CAS
1919 	cas_cpu = find_cas_cpu(sd, task, lowest_mask);
1920 	if (cas_cpu != -1)
1921 		return cas_cpu;
1922 #endif
1923 
1924 	/*
1925 	 * At this point we have built a mask of CPUs representing the
1926 	 * lowest priority tasks in the system.  Now we want to elect
1927 	 * the best one based on our affinity and topology.
1928 	 *
1929 	 * We prioritize the last CPU that the task executed on since
1930 	 * it is most likely cache-hot in that location.
1931 	 */
1932 	if (cpumask_test_cpu(cpu, lowest_mask))
1933 		return cpu;
1934 
1935 	/*
1936 	 * Otherwise, we consult the sched_domains span maps to figure
1937 	 * out which CPU is logically closest to our hot cache data.
1938 	 */
1939 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1940 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1941 
1942 	rcu_read_lock();
1943 	for_each_domain(cpu, sd) {
1944 		if (sd->flags & SD_WAKE_AFFINE) {
1945 			int best_cpu;
1946 
1947 			/*
1948 			 * "this_cpu" is cheaper to preempt than a
1949 			 * remote processor.
1950 			 */
1951 			if (this_cpu != -1 &&
1952 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1953 				rcu_read_unlock();
1954 				return this_cpu;
1955 			}
1956 
1957 			best_cpu = cpumask_first_and(lowest_mask,
1958 						     sched_domain_span(sd));
1959 			if (best_cpu < nr_cpu_ids) {
1960 				rcu_read_unlock();
1961 				return best_cpu;
1962 			}
1963 		}
1964 	}
1965 	rcu_read_unlock();
1966 
1967 	/*
1968 	 * And finally, if there were no matches within the domains
1969 	 * just give the caller *something* to work with from the compatible
1970 	 * locations.
1971 	 */
1972 	if (this_cpu != -1)
1973 		return this_cpu;
1974 
1975 	cpu = cpumask_any(lowest_mask);
1976 	if (cpu < nr_cpu_ids)
1977 		return cpu;
1978 
1979 	return -1;
1980 }
1981 
pick_next_pushable_task(struct rq * rq)1982 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1983 {
1984 	struct task_struct *p;
1985 
1986 	if (!has_pushable_tasks(rq))
1987 		return NULL;
1988 
1989 	p = plist_first_entry(&rq->rt.pushable_tasks,
1990 			      struct task_struct, pushable_tasks);
1991 
1992 	BUG_ON(rq->cpu != task_cpu(p));
1993 	BUG_ON(task_current(rq, p));
1994 	BUG_ON(p->nr_cpus_allowed <= 1);
1995 
1996 	BUG_ON(!task_on_rq_queued(p));
1997 	BUG_ON(!rt_task(p));
1998 
1999 	return p;
2000 }
2001 
2002 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)2003 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
2004 {
2005 	struct rq *lowest_rq = NULL;
2006 	int tries;
2007 	int cpu;
2008 
2009 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
2010 		cpu = find_lowest_rq(task);
2011 
2012 		if ((cpu == -1) || (cpu == rq->cpu))
2013 			break;
2014 
2015 		lowest_rq = cpu_rq(cpu);
2016 
2017 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
2018 			/*
2019 			 * Target rq has tasks of equal or higher priority,
2020 			 * retrying does not release any lock and is unlikely
2021 			 * to yield a different result.
2022 			 */
2023 			lowest_rq = NULL;
2024 			break;
2025 		}
2026 
2027 		/* if the prio of this runqueue changed, try again */
2028 		if (double_lock_balance(rq, lowest_rq)) {
2029 			/*
2030 			 * We had to unlock the run queue. In
2031 			 * the mean time, task could have
2032 			 * migrated already or had its affinity changed.
2033 			 */
2034 			struct task_struct *next_task = pick_next_pushable_task(rq);
2035 			if (unlikely(next_task != task ||
2036 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr))) {
2037 				double_unlock_balance(rq, lowest_rq);
2038 				lowest_rq = NULL;
2039 				break;
2040 			}
2041 		}
2042 
2043 		/* If this rq is still suitable use it. */
2044 		if (lowest_rq->rt.highest_prio.curr > task->prio)
2045 			break;
2046 
2047 		/* try again */
2048 		double_unlock_balance(rq, lowest_rq);
2049 		lowest_rq = NULL;
2050 	}
2051 
2052 	return lowest_rq;
2053 }
2054 
2055 /*
2056  * If the current CPU has more than one RT task, see if the non
2057  * running task can migrate over to a CPU that is running a task
2058  * of lesser priority.
2059  */
push_rt_task(struct rq * rq)2060 static int push_rt_task(struct rq *rq)
2061 {
2062 	struct task_struct *next_task;
2063 	struct rq *lowest_rq;
2064 	int ret = 0;
2065 
2066 	if (!rq->rt.overloaded)
2067 		return 0;
2068 
2069 	next_task = pick_next_pushable_task(rq);
2070 	if (!next_task)
2071 		return 0;
2072 
2073 retry:
2074 	if (WARN_ON(next_task == rq->curr))
2075 		return 0;
2076 
2077 	/*
2078 	 * It's possible that the next_task slipped in of
2079 	 * higher priority than current. If that's the case
2080 	 * just reschedule current.
2081 	 */
2082 	if (unlikely(next_task->prio < rq->curr->prio)) {
2083 		resched_curr(rq);
2084 		return 0;
2085 	}
2086 
2087 	/* We might release rq lock */
2088 	get_task_struct(next_task);
2089 
2090 	/* find_lock_lowest_rq locks the rq if found */
2091 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2092 	if (!lowest_rq) {
2093 		struct task_struct *task;
2094 		/*
2095 		 * find_lock_lowest_rq releases rq->lock
2096 		 * so it is possible that next_task has migrated.
2097 		 *
2098 		 * We need to make sure that the task is still on the same
2099 		 * run-queue and is also still the next task eligible for
2100 		 * pushing.
2101 		 */
2102 		task = pick_next_pushable_task(rq);
2103 		if (task == next_task) {
2104 			/*
2105 			 * The task hasn't migrated, and is still the next
2106 			 * eligible task, but we failed to find a run-queue
2107 			 * to push it to.  Do not retry in this case, since
2108 			 * other CPUs will pull from us when ready.
2109 			 */
2110 			goto out;
2111 		}
2112 
2113 		if (!task)
2114 			/* No more tasks, just exit */
2115 			goto out;
2116 
2117 		/*
2118 		 * Something has shifted, try again.
2119 		 */
2120 		put_task_struct(next_task);
2121 		next_task = task;
2122 		goto retry;
2123 	}
2124 
2125 	deactivate_task(rq, next_task, 0);
2126 	set_task_cpu(next_task, lowest_rq->cpu);
2127 	activate_task(lowest_rq, next_task, 0);
2128 	ret = 1;
2129 
2130 	resched_curr(lowest_rq);
2131 
2132 	double_unlock_balance(rq, lowest_rq);
2133 
2134 out:
2135 	put_task_struct(next_task);
2136 
2137 	return ret;
2138 }
2139 
push_rt_tasks(struct rq * rq)2140 static void push_rt_tasks(struct rq *rq)
2141 {
2142 	/* push_rt_task will return true if it moved an RT */
2143 	while (push_rt_task(rq))
2144 		;
2145 }
2146 
2147 #ifdef HAVE_RT_PUSH_IPI
2148 
2149 /*
2150  * When a high priority task schedules out from a CPU and a lower priority
2151  * task is scheduled in, a check is made to see if there's any RT tasks
2152  * on other CPUs that are waiting to run because a higher priority RT task
2153  * is currently running on its CPU. In this case, the CPU with multiple RT
2154  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2155  * up that may be able to run one of its non-running queued RT tasks.
2156  *
2157  * All CPUs with overloaded RT tasks need to be notified as there is currently
2158  * no way to know which of these CPUs have the highest priority task waiting
2159  * to run. Instead of trying to take a spinlock on each of these CPUs,
2160  * which has shown to cause large latency when done on machines with many
2161  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2162  * RT tasks waiting to run.
2163  *
2164  * Just sending an IPI to each of the CPUs is also an issue, as on large
2165  * count CPU machines, this can cause an IPI storm on a CPU, especially
2166  * if its the only CPU with multiple RT tasks queued, and a large number
2167  * of CPUs scheduling a lower priority task at the same time.
2168  *
2169  * Each root domain has its own irq work function that can iterate over
2170  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2171  * tassk must be checked if there's one or many CPUs that are lowering
2172  * their priority, there's a single irq work iterator that will try to
2173  * push off RT tasks that are waiting to run.
2174  *
2175  * When a CPU schedules a lower priority task, it will kick off the
2176  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2177  * As it only takes the first CPU that schedules a lower priority task
2178  * to start the process, the rto_start variable is incremented and if
2179  * the atomic result is one, then that CPU will try to take the rto_lock.
2180  * This prevents high contention on the lock as the process handles all
2181  * CPUs scheduling lower priority tasks.
2182  *
2183  * All CPUs that are scheduling a lower priority task will increment the
2184  * rt_loop_next variable. This will make sure that the irq work iterator
2185  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2186  * priority task, even if the iterator is in the middle of a scan. Incrementing
2187  * the rt_loop_next will cause the iterator to perform another scan.
2188  *
2189  */
rto_next_cpu(struct root_domain * rd)2190 static int rto_next_cpu(struct root_domain *rd)
2191 {
2192 	int next;
2193 	int cpu;
2194 
2195 	/*
2196 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2197 	 * rt_next_cpu() will simply return the first CPU found in
2198 	 * the rto_mask.
2199 	 *
2200 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2201 	 * will return the next CPU found in the rto_mask.
2202 	 *
2203 	 * If there are no more CPUs left in the rto_mask, then a check is made
2204 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2205 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2206 	 * without any locking.
2207 	 */
2208 	for (;;) {
2209 
2210 		/* When rto_cpu is -1 this acts like cpumask_first() */
2211 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2212 
2213 		rd->rto_cpu = cpu;
2214 
2215 		if (cpu < nr_cpu_ids)
2216 			return cpu;
2217 
2218 		rd->rto_cpu = -1;
2219 
2220 		/*
2221 		 * ACQUIRE ensures we see the @rto_mask changes
2222 		 * made prior to the @next value observed.
2223 		 *
2224 		 * Matches WMB in rt_set_overload().
2225 		 */
2226 		next = atomic_read_acquire(&rd->rto_loop_next);
2227 
2228 		if (rd->rto_loop == next)
2229 			break;
2230 
2231 		rd->rto_loop = next;
2232 	}
2233 
2234 	return -1;
2235 }
2236 
rto_start_trylock(atomic_t * v)2237 static inline bool rto_start_trylock(atomic_t *v)
2238 {
2239 	return !atomic_cmpxchg_acquire(v, 0, 1);
2240 }
2241 
rto_start_unlock(atomic_t * v)2242 static inline void rto_start_unlock(atomic_t *v)
2243 {
2244 	atomic_set_release(v, 0);
2245 }
2246 
tell_cpu_to_push(struct rq * rq)2247 static void tell_cpu_to_push(struct rq *rq)
2248 {
2249 	int cpu = -1;
2250 
2251 	/* Keep the loop going if the IPI is currently active */
2252 	atomic_inc(&rq->rd->rto_loop_next);
2253 
2254 	/* Only one CPU can initiate a loop at a time */
2255 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2256 		return;
2257 
2258 	raw_spin_lock(&rq->rd->rto_lock);
2259 
2260 	/*
2261 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2262 	 * then the IPI is still running and will continue due to the
2263 	 * update to loop_next, and nothing needs to be done here.
2264 	 * Otherwise it is finishing up and an ipi needs to be sent.
2265 	 */
2266 	if (rq->rd->rto_cpu < 0)
2267 		cpu = rto_next_cpu(rq->rd);
2268 
2269 	raw_spin_unlock(&rq->rd->rto_lock);
2270 
2271 	rto_start_unlock(&rq->rd->rto_loop_start);
2272 
2273 	if (cpu >= 0) {
2274 		/* Make sure the rd does not get freed while pushing */
2275 		sched_get_rd(rq->rd);
2276 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2277 	}
2278 }
2279 
2280 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2281 void rto_push_irq_work_func(struct irq_work *work)
2282 {
2283 	struct root_domain *rd =
2284 		container_of(work, struct root_domain, rto_push_work);
2285 	struct rq *rq;
2286 	int cpu;
2287 
2288 	rq = this_rq();
2289 
2290 	/*
2291 	 * We do not need to grab the lock to check for has_pushable_tasks.
2292 	 * When it gets updated, a check is made if a push is possible.
2293 	 */
2294 	if (has_pushable_tasks(rq)) {
2295 		raw_spin_lock(&rq->lock);
2296 		push_rt_tasks(rq);
2297 		raw_spin_unlock(&rq->lock);
2298 	}
2299 
2300 	raw_spin_lock(&rd->rto_lock);
2301 
2302 	/* Pass the IPI to the next rt overloaded queue */
2303 	cpu = rto_next_cpu(rd);
2304 
2305 	raw_spin_unlock(&rd->rto_lock);
2306 
2307 	if (cpu < 0) {
2308 		sched_put_rd(rd);
2309 		return;
2310 	}
2311 
2312 	/* Try the next RT overloaded CPU */
2313 	irq_work_queue_on(&rd->rto_push_work, cpu);
2314 }
2315 #endif /* HAVE_RT_PUSH_IPI */
2316 
pull_rt_task(struct rq * this_rq)2317 static void pull_rt_task(struct rq *this_rq)
2318 {
2319 	int this_cpu = this_rq->cpu, cpu;
2320 	bool resched = false;
2321 	struct task_struct *p;
2322 	struct rq *src_rq;
2323 	int rt_overload_count = rt_overloaded(this_rq);
2324 
2325 	if (likely(!rt_overload_count))
2326 		return;
2327 
2328 	/*
2329 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2330 	 * see overloaded we must also see the rto_mask bit.
2331 	 */
2332 	smp_rmb();
2333 
2334 	/* If we are the only overloaded CPU do nothing */
2335 	if (rt_overload_count == 1 &&
2336 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2337 		return;
2338 
2339 #ifdef HAVE_RT_PUSH_IPI
2340 	if (sched_feat(RT_PUSH_IPI)) {
2341 		tell_cpu_to_push(this_rq);
2342 		return;
2343 	}
2344 #endif
2345 
2346 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2347 		if (this_cpu == cpu)
2348 			continue;
2349 
2350 		src_rq = cpu_rq(cpu);
2351 
2352 		/*
2353 		 * Don't bother taking the src_rq->lock if the next highest
2354 		 * task is known to be lower-priority than our current task.
2355 		 * This may look racy, but if this value is about to go
2356 		 * logically higher, the src_rq will push this task away.
2357 		 * And if its going logically lower, we do not care
2358 		 */
2359 		if (src_rq->rt.highest_prio.next >=
2360 		    this_rq->rt.highest_prio.curr)
2361 			continue;
2362 
2363 		/*
2364 		 * We can potentially drop this_rq's lock in
2365 		 * double_lock_balance, and another CPU could
2366 		 * alter this_rq
2367 		 */
2368 		double_lock_balance(this_rq, src_rq);
2369 
2370 		/*
2371 		 * We can pull only a task, which is pushable
2372 		 * on its rq, and no others.
2373 		 */
2374 		p = pick_highest_pushable_task(src_rq, this_cpu);
2375 
2376 		/*
2377 		 * Do we have an RT task that preempts
2378 		 * the to-be-scheduled task?
2379 		 */
2380 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2381 			WARN_ON(p == src_rq->curr);
2382 			WARN_ON(!task_on_rq_queued(p));
2383 
2384 			/*
2385 			 * There's a chance that p is higher in priority
2386 			 * than what's currently running on its CPU.
2387 			 * This is just that p is wakeing up and hasn't
2388 			 * had a chance to schedule. We only pull
2389 			 * p if it is lower in priority than the
2390 			 * current task on the run queue
2391 			 */
2392 			if (p->prio < src_rq->curr->prio)
2393 				goto skip;
2394 
2395 			resched = true;
2396 
2397 			deactivate_task(src_rq, p, 0);
2398 			set_task_cpu(p, this_cpu);
2399 			activate_task(this_rq, p, 0);
2400 			/*
2401 			 * We continue with the search, just in
2402 			 * case there's an even higher prio task
2403 			 * in another runqueue. (low likelihood
2404 			 * but possible)
2405 			 */
2406 		}
2407 skip:
2408 		double_unlock_balance(this_rq, src_rq);
2409 	}
2410 
2411 	if (resched)
2412 		resched_curr(this_rq);
2413 }
2414 
2415 /*
2416  * If we are not running and we are not going to reschedule soon, we should
2417  * try to push tasks away now
2418  */
task_woken_rt(struct rq * rq,struct task_struct * p)2419 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2420 {
2421 	bool need_to_push = !task_running(rq, p) &&
2422 			    !test_tsk_need_resched(rq->curr) &&
2423 			    p->nr_cpus_allowed > 1 &&
2424 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2425 			    (rq->curr->nr_cpus_allowed < 2 ||
2426 			     rq->curr->prio <= p->prio);
2427 
2428 	if (need_to_push)
2429 		push_rt_tasks(rq);
2430 }
2431 
2432 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2433 static void rq_online_rt(struct rq *rq)
2434 {
2435 	if (rq->rt.overloaded)
2436 		rt_set_overload(rq);
2437 
2438 	__enable_runtime(rq);
2439 
2440 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2441 }
2442 
2443 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2444 static void rq_offline_rt(struct rq *rq)
2445 {
2446 	if (rq->rt.overloaded)
2447 		rt_clear_overload(rq);
2448 
2449 	__disable_runtime(rq);
2450 
2451 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2452 }
2453 
2454 /*
2455  * When switch from the rt queue, we bring ourselves to a position
2456  * that we might want to pull RT tasks from other runqueues.
2457  */
switched_from_rt(struct rq * rq,struct task_struct * p)2458 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2459 {
2460 	/*
2461 	 * If there are other RT tasks then we will reschedule
2462 	 * and the scheduling of the other RT tasks will handle
2463 	 * the balancing. But if we are the last RT task
2464 	 * we may need to handle the pulling of RT tasks
2465 	 * now.
2466 	 */
2467 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running ||
2468 		cpu_isolated(cpu_of(rq)))
2469 		return;
2470 
2471 	rt_queue_pull_task(rq);
2472 }
2473 
init_sched_rt_class(void)2474 void __init init_sched_rt_class(void)
2475 {
2476 	unsigned int i;
2477 
2478 	for_each_possible_cpu(i) {
2479 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2480 					GFP_KERNEL, cpu_to_node(i));
2481 	}
2482 }
2483 #endif /* CONFIG_SMP */
2484 
2485 /*
2486  * When switching a task to RT, we may overload the runqueue
2487  * with RT tasks. In this case we try to push them off to
2488  * other runqueues.
2489  */
switched_to_rt(struct rq * rq,struct task_struct * p)2490 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2491 {
2492 	/*
2493 	 * If we are running, update the avg_rt tracking, as the running time
2494 	 * will now on be accounted into the latter.
2495 	 */
2496 	if (task_current(rq, p)) {
2497 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2498 		return;
2499 	}
2500 
2501 	/*
2502 	 * If we are not running we may need to preempt the current
2503 	 * running task. If that current running task is also an RT task
2504 	 * then see if we can move to another run queue.
2505 	 */
2506 	if (task_on_rq_queued(p)) {
2507 #ifdef CONFIG_SMP
2508 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2509 			rt_queue_push_tasks(rq);
2510 #endif /* CONFIG_SMP */
2511 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2512 			resched_curr(rq);
2513 	}
2514 }
2515 
2516 /*
2517  * Priority of the task has changed. This may cause
2518  * us to initiate a push or pull.
2519  */
2520 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2521 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2522 {
2523 	if (!task_on_rq_queued(p))
2524 		return;
2525 
2526 	if (rq->curr == p) {
2527 #ifdef CONFIG_SMP
2528 		/*
2529 		 * If our priority decreases while running, we
2530 		 * may need to pull tasks to this runqueue.
2531 		 */
2532 		if (oldprio < p->prio)
2533 			rt_queue_pull_task(rq);
2534 
2535 		/*
2536 		 * If there's a higher priority task waiting to run
2537 		 * then reschedule.
2538 		 */
2539 		if (p->prio > rq->rt.highest_prio.curr)
2540 			resched_curr(rq);
2541 #else
2542 		/* For UP simply resched on drop of prio */
2543 		if (oldprio < p->prio)
2544 			resched_curr(rq);
2545 #endif /* CONFIG_SMP */
2546 	} else {
2547 		/*
2548 		 * This task is not running, but if it is
2549 		 * greater than the current running task
2550 		 * then reschedule.
2551 		 */
2552 		if (p->prio < rq->curr->prio)
2553 			resched_curr(rq);
2554 	}
2555 }
2556 
2557 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2558 static void watchdog(struct rq *rq, struct task_struct *p)
2559 {
2560 	unsigned long soft, hard;
2561 
2562 	/* max may change after cur was read, this will be fixed next tick */
2563 	soft = task_rlimit(p, RLIMIT_RTTIME);
2564 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2565 
2566 	if (soft != RLIM_INFINITY) {
2567 		unsigned long next;
2568 
2569 		if (p->rt.watchdog_stamp != jiffies) {
2570 			p->rt.timeout++;
2571 			p->rt.watchdog_stamp = jiffies;
2572 		}
2573 
2574 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2575 		if (p->rt.timeout > next) {
2576 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2577 						    p->se.sum_exec_runtime);
2578 		}
2579 	}
2580 }
2581 #else
watchdog(struct rq * rq,struct task_struct * p)2582 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2583 #endif
2584 
2585 /*
2586  * scheduler tick hitting a task of our scheduling class.
2587  *
2588  * NOTE: This function can be called remotely by the tick offload that
2589  * goes along full dynticks. Therefore no local assumption can be made
2590  * and everything must be accessed through the @rq and @curr passed in
2591  * parameters.
2592  */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2593 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2594 {
2595 	struct sched_rt_entity *rt_se = &p->rt;
2596 
2597 	update_curr_rt(rq);
2598 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2599 
2600 	watchdog(rq, p);
2601 
2602 	/*
2603 	 * RR tasks need a special form of timeslice management.
2604 	 * FIFO tasks have no timeslices.
2605 	 */
2606 	if (p->policy != SCHED_RR)
2607 		return;
2608 
2609 	if (--p->rt.time_slice)
2610 		return;
2611 
2612 	p->rt.time_slice = sched_rr_timeslice;
2613 
2614 	/*
2615 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2616 	 * the only element on the queue
2617 	 */
2618 	for_each_sched_rt_entity(rt_se) {
2619 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2620 			requeue_task_rt(rq, p, 0);
2621 			resched_curr(rq);
2622 			return;
2623 		}
2624 	}
2625 }
2626 
2627 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
rt_active_load_balance_cpu_stop(void * data)2628 static int rt_active_load_balance_cpu_stop(void *data)
2629 {
2630 	struct rq *busiest_rq = data;
2631 	struct task_struct *next_task = busiest_rq->rt_push_task;
2632 	struct rq *lowest_rq = NULL;
2633 	unsigned long flags;
2634 
2635 	raw_spin_lock_irqsave(&busiest_rq->lock, flags);
2636 	busiest_rq->rt_active_balance = 0;
2637 
2638 	/* find_lock_lowest_rq locks the rq if found */
2639 	lowest_rq = find_lock_lowest_rq(next_task, busiest_rq);
2640 	if (!lowest_rq)
2641 		goto out;
2642 
2643 	if (capacity_orig_of(cpu_of(lowest_rq)) <= capacity_orig_of(task_cpu(next_task)))
2644 		goto unlock;
2645 
2646 	deactivate_task(busiest_rq, next_task, 0);
2647 	set_task_cpu(next_task, lowest_rq->cpu);
2648 	activate_task(lowest_rq, next_task, 0);
2649 
2650 	resched_curr(lowest_rq);
2651 unlock:
2652 	double_unlock_balance(busiest_rq, lowest_rq);
2653 out:
2654 	put_task_struct(next_task);
2655 	raw_spin_unlock_irqrestore(&busiest_rq->lock, flags);
2656 
2657 	return 0;
2658 }
2659 
check_for_migration_rt(struct rq * rq,struct task_struct * p)2660 static void check_for_migration_rt(struct rq *rq, struct task_struct *p)
2661 {
2662 	bool need_actvie_lb = false;
2663 	bool misfit_task = false;
2664 	int cpu = task_cpu(p);
2665 	unsigned long cpu_orig_cap;
2666 #ifdef CONFIG_SCHED_RTG
2667 	struct cpumask *rtg_target = NULL;
2668 #endif
2669 
2670 	if (!sysctl_sched_enable_rt_active_lb)
2671 		return;
2672 
2673 	if (p->nr_cpus_allowed == 1)
2674 		return;
2675 
2676 	cpu_orig_cap = capacity_orig_of(cpu);
2677 	/* cpu has max capacity, no need to do balance */
2678 	if (cpu_orig_cap ==  rq->rd->max_cpu_capacity)
2679 		return;
2680 
2681 #ifdef CONFIG_SCHED_RTG
2682 	rtg_target = find_rtg_target(p);
2683 	if (rtg_target)
2684 		misfit_task = capacity_orig_of(cpumask_first(rtg_target)) >
2685 				cpu_orig_cap;
2686 	else
2687 		misfit_task = !rt_task_fits_capacity(p, cpu);
2688 #else
2689 	misfit_task = !rt_task_fits_capacity(p, cpu);
2690 #endif
2691 
2692 	if (misfit_task) {
2693 		raw_spin_lock(&rq->lock);
2694 		if (!rq->active_balance && !rq->rt_active_balance) {
2695 			rq->rt_active_balance = 1;
2696 			rq->rt_push_task = p;
2697 			get_task_struct(p);
2698 			need_actvie_lb = true;
2699 		}
2700 		raw_spin_unlock(&rq->lock);
2701 
2702 		if (need_actvie_lb)
2703 			stop_one_cpu_nowait(task_cpu(p),
2704 					    rt_active_load_balance_cpu_stop,
2705 					    rq, &rq->rt_active_balance_work);
2706 	}
2707 }
2708 #endif
2709 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2710 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2711 {
2712 	/*
2713 	 * Time slice is 0 for SCHED_FIFO tasks
2714 	 */
2715 	if (task->policy == SCHED_RR)
2716 		return sched_rr_timeslice;
2717 	else
2718 		return 0;
2719 }
2720 
2721 const struct sched_class rt_sched_class
2722 	__section("__rt_sched_class") = {
2723 	.enqueue_task		= enqueue_task_rt,
2724 	.dequeue_task		= dequeue_task_rt,
2725 	.yield_task		= yield_task_rt,
2726 
2727 	.check_preempt_curr	= check_preempt_curr_rt,
2728 
2729 	.pick_next_task		= pick_next_task_rt,
2730 	.put_prev_task		= put_prev_task_rt,
2731 	.set_next_task          = set_next_task_rt,
2732 
2733 #ifdef CONFIG_SMP
2734 	.balance		= balance_rt,
2735 	.select_task_rq		= select_task_rq_rt,
2736 	.set_cpus_allowed       = set_cpus_allowed_common,
2737 	.rq_online              = rq_online_rt,
2738 	.rq_offline             = rq_offline_rt,
2739 	.task_woken		= task_woken_rt,
2740 	.switched_from		= switched_from_rt,
2741 #endif
2742 
2743 	.task_tick		= task_tick_rt,
2744 
2745 	.get_rr_interval	= get_rr_interval_rt,
2746 
2747 	.prio_changed		= prio_changed_rt,
2748 	.switched_to		= switched_to_rt,
2749 
2750 	.update_curr		= update_curr_rt,
2751 
2752 #ifdef CONFIG_UCLAMP_TASK
2753 	.uclamp_enabled		= 1,
2754 #endif
2755 #ifdef CONFIG_SCHED_WALT
2756 	.fixup_walt_sched_stats	= fixup_walt_sched_stats_common,
2757 #endif
2758 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
2759 	.check_for_migration	= check_for_migration_rt,
2760 #endif
2761 };
2762 
2763 #ifdef CONFIG_RT_GROUP_SCHED
2764 /*
2765  * Ensure that the real time constraints are schedulable.
2766  */
2767 static DEFINE_MUTEX(rt_constraints_mutex);
2768 
tg_has_rt_tasks(struct task_group * tg)2769 static inline int tg_has_rt_tasks(struct task_group *tg)
2770 {
2771 	struct task_struct *task;
2772 	struct css_task_iter it;
2773 	int ret = 0;
2774 
2775 	/*
2776 	 * Autogroups do not have RT tasks; see autogroup_create().
2777 	 */
2778 	if (task_group_is_autogroup(tg))
2779 		return 0;
2780 
2781 	css_task_iter_start(&tg->css, 0, &it);
2782 	while (!ret && (task = css_task_iter_next(&it)))
2783 		ret |= rt_task(task);
2784 	css_task_iter_end(&it);
2785 
2786 	return ret;
2787 }
2788 
2789 struct rt_schedulable_data {
2790 	struct task_group *tg;
2791 	u64 rt_period;
2792 	u64 rt_runtime;
2793 };
2794 
tg_rt_schedulable(struct task_group * tg,void * data)2795 static int tg_rt_schedulable(struct task_group *tg, void *data)
2796 {
2797 	struct rt_schedulable_data *d = data;
2798 	struct task_group *child;
2799 	unsigned long total, sum = 0;
2800 	u64 period, runtime;
2801 
2802 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2803 	runtime = tg->rt_bandwidth.rt_runtime;
2804 
2805 	if (tg == d->tg) {
2806 		period = d->rt_period;
2807 		runtime = d->rt_runtime;
2808 	}
2809 
2810 	/*
2811 	 * Cannot have more runtime than the period.
2812 	 */
2813 	if (runtime > period && runtime != RUNTIME_INF)
2814 		return -EINVAL;
2815 
2816 	/*
2817 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2818 	 */
2819 	if (rt_bandwidth_enabled() && !runtime &&
2820 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2821 		return -EBUSY;
2822 
2823 	total = to_ratio(period, runtime);
2824 
2825 	/*
2826 	 * Nobody can have more than the global setting allows.
2827 	 */
2828 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2829 		return -EINVAL;
2830 
2831 	/*
2832 	 * The sum of our children's runtime should not exceed our own.
2833 	 */
2834 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2835 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2836 		runtime = child->rt_bandwidth.rt_runtime;
2837 
2838 		if (child == d->tg) {
2839 			period = d->rt_period;
2840 			runtime = d->rt_runtime;
2841 		}
2842 
2843 		sum += to_ratio(period, runtime);
2844 	}
2845 
2846 	if (sum > total)
2847 		return -EINVAL;
2848 
2849 	return 0;
2850 }
2851 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2852 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2853 {
2854 	int ret;
2855 
2856 	struct rt_schedulable_data data = {
2857 		.tg = tg,
2858 		.rt_period = period,
2859 		.rt_runtime = runtime,
2860 	};
2861 
2862 	rcu_read_lock();
2863 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2864 	rcu_read_unlock();
2865 
2866 	return ret;
2867 }
2868 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2869 static int tg_set_rt_bandwidth(struct task_group *tg,
2870 		u64 rt_period, u64 rt_runtime)
2871 {
2872 	int i, err = 0;
2873 
2874 	/*
2875 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2876 	 * kernel creating (and or operating) RT threads.
2877 	 */
2878 	if (tg == &root_task_group && rt_runtime == 0)
2879 		return -EINVAL;
2880 
2881 	/* No period doesn't make any sense. */
2882 	if (rt_period == 0)
2883 		return -EINVAL;
2884 
2885 	/*
2886 	 * Bound quota to defend quota against overflow during bandwidth shift.
2887 	 */
2888 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2889 		return -EINVAL;
2890 
2891 	mutex_lock(&rt_constraints_mutex);
2892 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2893 	if (err)
2894 		goto unlock;
2895 
2896 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2897 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2898 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2899 
2900 	for_each_possible_cpu(i) {
2901 		struct rt_rq *rt_rq = tg->rt_rq[i];
2902 
2903 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2904 		rt_rq->rt_runtime = rt_runtime;
2905 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2906 	}
2907 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2908 unlock:
2909 	mutex_unlock(&rt_constraints_mutex);
2910 
2911 	return err;
2912 }
2913 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2914 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2915 {
2916 	u64 rt_runtime, rt_period;
2917 
2918 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2919 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2920 	if (rt_runtime_us < 0)
2921 		rt_runtime = RUNTIME_INF;
2922 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2923 		return -EINVAL;
2924 
2925 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2926 }
2927 
sched_group_rt_runtime(struct task_group * tg)2928 long sched_group_rt_runtime(struct task_group *tg)
2929 {
2930 	u64 rt_runtime_us;
2931 
2932 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2933 		return -1;
2934 
2935 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2936 	do_div(rt_runtime_us, NSEC_PER_USEC);
2937 	return rt_runtime_us;
2938 }
2939 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2940 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2941 {
2942 	u64 rt_runtime, rt_period;
2943 
2944 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2945 		return -EINVAL;
2946 
2947 	rt_period = rt_period_us * NSEC_PER_USEC;
2948 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2949 
2950 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2951 }
2952 
sched_group_rt_period(struct task_group * tg)2953 long sched_group_rt_period(struct task_group *tg)
2954 {
2955 	u64 rt_period_us;
2956 
2957 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2958 	do_div(rt_period_us, NSEC_PER_USEC);
2959 	return rt_period_us;
2960 }
2961 
sched_rt_global_constraints(void)2962 static int sched_rt_global_constraints(void)
2963 {
2964 	int ret = 0;
2965 
2966 	mutex_lock(&rt_constraints_mutex);
2967 	ret = __rt_schedulable(NULL, 0, 0);
2968 	mutex_unlock(&rt_constraints_mutex);
2969 
2970 	return ret;
2971 }
2972 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2973 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2974 {
2975 	/* Don't accept realtime tasks when there is no way for them to run */
2976 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2977 		return 0;
2978 
2979 	return 1;
2980 }
2981 
2982 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2983 static int sched_rt_global_constraints(void)
2984 {
2985 	unsigned long flags;
2986 	int i;
2987 
2988 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2989 	for_each_possible_cpu(i) {
2990 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2991 
2992 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2993 		rt_rq->rt_runtime = global_rt_runtime();
2994 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2995 	}
2996 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2997 
2998 	return 0;
2999 }
3000 #endif /* CONFIG_RT_GROUP_SCHED */
3001 
sched_rt_global_validate(void)3002 static int sched_rt_global_validate(void)
3003 {
3004 	if (sysctl_sched_rt_period <= 0)
3005 		return -EINVAL;
3006 
3007 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
3008 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
3009 		 ((u64)sysctl_sched_rt_runtime *
3010 			NSEC_PER_USEC > max_rt_runtime)))
3011 		return -EINVAL;
3012 
3013 	return 0;
3014 }
3015 
sched_rt_do_global(void)3016 static void sched_rt_do_global(void)
3017 {
3018 	raw_spin_lock(&def_rt_bandwidth.rt_runtime_lock);
3019 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
3020 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3021 	raw_spin_unlock(&def_rt_bandwidth.rt_runtime_lock);
3022 }
3023 
sched_rt_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3024 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3025 		size_t *lenp, loff_t *ppos)
3026 {
3027 	int old_period, old_runtime;
3028 	static DEFINE_MUTEX(mutex);
3029 	int ret;
3030 
3031 	mutex_lock(&mutex);
3032 	old_period = sysctl_sched_rt_period;
3033 	old_runtime = sysctl_sched_rt_runtime;
3034 
3035 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3036 
3037 	if (!ret && write) {
3038 		ret = sched_rt_global_validate();
3039 		if (ret)
3040 			goto undo;
3041 
3042 		ret = sched_dl_global_validate();
3043 		if (ret)
3044 			goto undo;
3045 
3046 		ret = sched_rt_global_constraints();
3047 		if (ret)
3048 			goto undo;
3049 
3050 		sched_rt_do_global();
3051 		sched_dl_do_global();
3052 	}
3053 	if (0) {
3054 undo:
3055 		sysctl_sched_rt_period = old_period;
3056 		sysctl_sched_rt_runtime = old_runtime;
3057 	}
3058 	mutex_unlock(&mutex);
3059 
3060 	return ret;
3061 }
3062 
sched_rr_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3063 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3064 		size_t *lenp, loff_t *ppos)
3065 {
3066 	int ret;
3067 	static DEFINE_MUTEX(mutex);
3068 
3069 	mutex_lock(&mutex);
3070 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3071 	/*
3072 	 * Make sure that internally we keep jiffies.
3073 	 * Also, writing zero resets the timeslice to default:
3074 	 */
3075 	if (!ret && write) {
3076 		sched_rr_timeslice =
3077 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3078 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3079 	}
3080 	mutex_unlock(&mutex);
3081 
3082 	return ret;
3083 }
3084 
3085 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)3086 void print_rt_stats(struct seq_file *m, int cpu)
3087 {
3088 	rt_rq_iter_t iter;
3089 	struct rt_rq *rt_rq;
3090 
3091 	rcu_read_lock();
3092 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3093 		print_rt_rq(m, cpu, rt_rq);
3094 	rcu_read_unlock();
3095 }
3096 #endif /* CONFIG_SCHED_DEBUG */
3097