| /third_party/mindspore/tests/ut/python/parallel/ |
| D | test_auto_parallel_resnet.py | 141 num_classes=100): argument 289 def test_train_32k_8p(batch_size=32, num_classes=32768): argument 319 def train_32k_8p_fusion1(batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192 argument 491 def train_32k_8p_fusion2(batch_size=32, num_classes=32768): # 1048576 #131072 #32768 #8192 argument 664 def test_train_64k_8p(batch_size=32, num_classes=65536): # 1048576 #131072 #32768 #8192 argument 691 def test_train_8k_8p_gpu(batch_size=32, num_classes=8192): argument 718 def test_train_8k_8p_gpu_approxi(batch_size=32, num_classes=8192): argument 744 def test_train_4k_8p_gpu(batch_size=32, num_classes=4096): argument
|
| D | test_auto_parallel_resnet_predict.py | 30 def test_train_32k_8p(batch_size=32, num_classes=32768): argument
|
| D | test_batchnorm_batch_parallel.py | 95 def __init__(self, num_classes=100): argument 117 def batchnorm_net(num_classes): argument
|
| D | test_operator_model_parallel.py | 295 def __init__(self, block, num_classes=100): argument 320 def __init__(self, block, num_classes=100): argument 340 def resnet_operator_net(num_classes): argument 344 def resnet_model_parallel_net(num_classes): argument
|
| /third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
| D | random_categorical.cu | 21 const size_t batch_size, const size_t num_classes, S *output_addr) { in RandomCategorical() 37 …GetCdf(const T *logits_addr, double** dev_cdf, const size_t batch_size, const size_t num_classes) { in GetCdf() 61 const size_t batch_size, const size_t num_classes, S *output_addr, cudaStream_t cuda_stream) { in RandomCategoricalKernel() 69 …dfKernel(const T *logits_addr, double** dev_cdf, const size_t batch_size, const size_t num_classes, in GetCdfKernel()
|
| /third_party/mindspore/tests/st/networks/ |
| D | test_gpu_alexnet.py | 33 def __init__(self, num_classes=10): argument 74 def test_trainTensor(num_classes=10, epoch=15, batch_size=32): argument
|
| D | test_gpu_resnet.py | 288 def __init__(self, block, layer_num, num_classes=100): argument 327 def resnet50(num_classes): argument 334 def test_trainTensor(num_classes=10, epoch=8, batch_size=1): argument 358 def test_trainTensor_big_batchSize(num_classes=10, epoch=8, batch_size=338): argument 382 def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16): argument
|
| /third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/data/ |
| D | one_hot_op.h | 30 explicit OneHotOp(int num_classes) : num_classes_(num_classes) {} in OneHotOp()
|
| /third_party/mindspore/tests/st/tbe_networks/ |
| D | export_geir.py | 24 def test_resnet50_export(batch_size=1, num_classes=5): argument
|
| /third_party/mindspore/tests/st/networks/models/ |
| D | alexnet.py | 20 def __init__(self, num_classes=10): argument
|
| /third_party/mindspore/tests/st/ops/gpu/ |
| D | test_sampled_softmax_loss_op.py | 23 def generate_test_data(num_classes, batch_size, sampled): argument
|
| /third_party/mindspore/mindspore/lite/examples/export_models/models/ |
| D | NetworkInNetwork.py | 26 def __init__(self, num_classes=10, num_channel=3): argument
|
| D | mini_alexnet.py | 34 def __init__(self, num_classes=10, channel=1, phase='train', include_top=True): argument
|
| /third_party/mindspore/tests/st/model_zoo_tests/yolov3/src/ |
| D | config.py | 28 num_classes = 2 variable in ConfigYOLOV3ResNet18
|
| /third_party/mindspore/tests/st/networks/models/resnet50/src/ |
| D | CrossEntropySmooth.py | 26 def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): argument
|
| /third_party/mindspore/tests/st/networks/models/deeplabv3/src/ |
| D | deeplabv3.py | 253 num_classes, argument 349 …def __init__(self, num_classes, feature_shape, backbone, channel, depth, infer_scale_sizes, atrous… argument 425 def deeplabv3_resnet50(num_classes, feature_shape, image_pyramid, argument
|
| /third_party/mindspore/mindspore/ccsrc/minddata/mindrecord/meta/ |
| D | shard_category.cc | 39 int64_t ShardCategory::GetNumSamples(int64_t dataset_size, int64_t num_classes) { in GetNumSamples()
|
| D | shard_sequential_sample.cc | 31 int64_t ShardSequentialSample::GetNumSamples(int64_t dataset_size, int64_t num_classes) { in GetNumSamples()
|
| D | shard_distributed_sample.cc | 38 int64_t ShardDistributedSample::GetNumSamples(int64_t dataset_size, int64_t num_classes) { in GetNumSamples()
|
| /third_party/mindspore/tests/ut/python/model/ |
| D | res18_example.py | 103 def __init__(self, block, num_classes=100): argument 172 def __init__(self, block, num_classes=100): argument
|
| /third_party/mindspore/mindspore/nn/probability/toolbox/ |
| D | uncertainty_evaluation.py | 85 def __init__(self, model, train_dataset, task_type, num_classes=None, epochs=1, argument 290 def __init__(self, ale_model, num_classes, task): argument
|
| /third_party/mindspore/tests/st/model_zoo_tests/yolov3_darknet53/src/ |
| D | config.py | 44 num_classes = 80 variable in ConfigYOLOV3DarkNet53
|
| /third_party/mindspore/mindspore/ccsrc/minddata/mindrecord/include/ |
| D | shard_operator.h | 54 virtual int64_t GetNumSamples(int64_t dataset_size, int64_t num_classes) { return 0; } in GetNumSamples()
|
| /third_party/mindspore/mindspore/lite/src/train/ |
| D | train_utils.cc | 81 int num_classes = output->shape().at(1); in CalculateSparseClassification() local 125 int num_classes = input->shape().at(1); in CalculateOneHotClassification() local
|
| /third_party/mindspore/mindspore/ccsrc/minddata/dataset/engine/datasetops/source/ |
| D | image_folder_op.cc | 245 … int64_t *num_classes, std::map<std::string, int32_t> class_index) { in CountRowsAndClasses() 311 Status ImageFolderOp::GetNumClasses(int64_t *num_classes) { in GetNumClasses()
|