• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "ShaderCore.hpp"
16 
17 #include "Device/Renderer.hpp"
18 #include "System/Debug.hpp"
19 
20 #include <limits.h>
21 
22 namespace sw {
23 
Vector4s()24 Vector4s::Vector4s()
25 {
26 }
27 
Vector4s(unsigned short x,unsigned short y,unsigned short z,unsigned short w)28 Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w)
29 {
30 	this->x = Short4(x);
31 	this->y = Short4(y);
32 	this->z = Short4(z);
33 	this->w = Short4(w);
34 }
35 
Vector4s(const Vector4s & rhs)36 Vector4s::Vector4s(const Vector4s &rhs)
37 {
38 	x = rhs.x;
39 	y = rhs.y;
40 	z = rhs.z;
41 	w = rhs.w;
42 }
43 
operator =(const Vector4s & rhs)44 Vector4s &Vector4s::operator=(const Vector4s &rhs)
45 {
46 	x = rhs.x;
47 	y = rhs.y;
48 	z = rhs.z;
49 	w = rhs.w;
50 
51 	return *this;
52 }
53 
operator [](int i)54 Short4 &Vector4s::operator[](int i)
55 {
56 	switch(i)
57 	{
58 	case 0: return x;
59 	case 1: return y;
60 	case 2: return z;
61 	case 3: return w;
62 	}
63 
64 	return x;
65 }
66 
Vector4f()67 Vector4f::Vector4f()
68 {
69 }
70 
Vector4f(float x,float y,float z,float w)71 Vector4f::Vector4f(float x, float y, float z, float w)
72 {
73 	this->x = Float4(x);
74 	this->y = Float4(y);
75 	this->z = Float4(z);
76 	this->w = Float4(w);
77 }
78 
Vector4f(const Vector4f & rhs)79 Vector4f::Vector4f(const Vector4f &rhs)
80 {
81 	x = rhs.x;
82 	y = rhs.y;
83 	z = rhs.z;
84 	w = rhs.w;
85 }
86 
operator =(const Vector4f & rhs)87 Vector4f &Vector4f::operator=(const Vector4f &rhs)
88 {
89 	x = rhs.x;
90 	y = rhs.y;
91 	z = rhs.z;
92 	w = rhs.w;
93 
94 	return *this;
95 }
96 
operator [](int i)97 Float4 &Vector4f::operator[](int i)
98 {
99 	switch(i)
100 	{
101 	case 0: return x;
102 	case 1: return y;
103 	case 2: return z;
104 	case 3: return w;
105 	}
106 
107 	return x;
108 }
109 
Vector4i()110 Vector4i::Vector4i()
111 {
112 }
113 
Vector4i(int x,int y,int z,int w)114 Vector4i::Vector4i(int x, int y, int z, int w)
115 {
116 	this->x = Int4(x);
117 	this->y = Int4(y);
118 	this->z = Int4(z);
119 	this->w = Int4(w);
120 }
121 
Vector4i(const Vector4i & rhs)122 Vector4i::Vector4i(const Vector4i &rhs)
123 {
124 	x = rhs.x;
125 	y = rhs.y;
126 	z = rhs.z;
127 	w = rhs.w;
128 }
129 
operator =(const Vector4i & rhs)130 Vector4i &Vector4i::operator=(const Vector4i &rhs)
131 {
132 	x = rhs.x;
133 	y = rhs.y;
134 	z = rhs.z;
135 	w = rhs.w;
136 
137 	return *this;
138 }
139 
operator [](int i)140 Int4 &Vector4i::operator[](int i)
141 {
142 	switch(i)
143 	{
144 	case 0: return x;
145 	case 1: return y;
146 	case 2: return z;
147 	case 3: return w;
148 	}
149 
150 	return x;
151 }
152 
exponential2(RValue<Float4> x,bool pp)153 Float4 exponential2(RValue<Float4> x, bool pp)
154 {
155 	// This implementation is based on 2^(i + f) = 2^i * 2^f,
156 	// where i is the integer part of x and f is the fraction.
157 
158 	// For 2^i we can put the integer part directly in the exponent of
159 	// the IEEE-754 floating-point number. Clamp to prevent overflow
160 	// past the representation of infinity.
161 	Float4 x0 = x;
162 	x0 = Min(x0, As<Float4>(Int4(0x43010000)));  // 129.00000e+0f
163 	x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF)));  // -126.99999e+0f
164 
165 	Int4 i = RoundInt(x0 - Float4(0.5f));
166 	Float4 ii = As<Float4>((i + Int4(127)) << 23);  // Add single-precision bias, and shift into exponent.
167 
168 	// For the fractional part use a polynomial
169 	// which approximates 2^f in the 0 to 1 range.
170 	Float4 f = x0 - Float4(i);
171 	Float4 ff = As<Float4>(Int4(0x3AF61905));    // 1.8775767e-3f
172 	ff = ff * f + As<Float4>(Int4(0x3C134806));  // 8.9893397e-3f
173 	ff = ff * f + As<Float4>(Int4(0x3D64AA23));  // 5.5826318e-2f
174 	ff = ff * f + As<Float4>(Int4(0x3E75EAD4));  // 2.4015361e-1f
175 	ff = ff * f + As<Float4>(Int4(0x3F31727B));  // 6.9315308e-1f
176 	ff = ff * f + Float4(1.0f);
177 
178 	return ii * ff;
179 }
180 
logarithm2(RValue<Float4> x,bool pp)181 Float4 logarithm2(RValue<Float4> x, bool pp)
182 {
183 	Float4 x0;
184 	Float4 x1;
185 	Float4 x2;
186 	Float4 x3;
187 
188 	x0 = x;
189 
190 	x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000));
191 	x1 = As<Float4>(As<UInt4>(x1) >> 8);
192 	x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f)));
193 	x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f);  // FIXME: (x1 - 1.4960938f) * 256.0f;
194 	x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f)));
195 
196 	x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f);
197 	x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f);
198 	x2 /= x3;
199 
200 	x1 += (x0 - Float4(1.0f)) * x2;
201 
202 	Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000));
203 	return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1)));
204 }
205 
exponential(RValue<Float4> x,bool pp)206 Float4 exponential(RValue<Float4> x, bool pp)
207 {
208 	// TODO: Propagate the constant
209 	return exponential2(Float4(1.44269504f) * x, pp);  // 1/ln(2)
210 }
211 
logarithm(RValue<Float4> x,bool pp)212 Float4 logarithm(RValue<Float4> x, bool pp)
213 {
214 	// TODO: Propagate the constant
215 	return Float4(6.93147181e-1f) * logarithm2(x, pp);  // ln(2)
216 }
217 
power(RValue<Float4> x,RValue<Float4> y,bool pp)218 Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp)
219 {
220 	Float4 log = logarithm2(x, pp);
221 	log *= y;
222 	return exponential2(log, pp);
223 }
224 
reciprocal(RValue<Float4> x,bool pp,bool finite,bool exactAtPow2)225 Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2)
226 {
227 	return Rcp(x, pp ? Precision::Relaxed : Precision::Full, finite, exactAtPow2);
228 }
229 
reciprocalSquareRoot(RValue<Float4> x,bool absolute,bool pp)230 Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp)
231 {
232 	Float4 abs = x;
233 
234 	if(absolute)
235 	{
236 		abs = Abs(abs);
237 	}
238 
239 	return Rcp(abs, pp ? Precision::Relaxed : Precision::Full);
240 }
241 
modulo(RValue<Float4> x,RValue<Float4> y)242 Float4 modulo(RValue<Float4> x, RValue<Float4> y)
243 {
244 	return x - y * Floor(x / y);
245 }
246 
sine_pi(RValue<Float4> x,bool pp)247 Float4 sine_pi(RValue<Float4> x, bool pp)
248 {
249 	const Float4 A = Float4(-4.05284734e-1f);  // -4/pi^2
250 	const Float4 B = Float4(1.27323954e+0f);   // 4/pi
251 	const Float4 C = Float4(7.75160950e-1f);
252 	const Float4 D = Float4(2.24839049e-1f);
253 
254 	// Parabola approximating sine
255 	Float4 sin = x * (Abs(x) * A + B);
256 
257 	// Improve precision from 0.06 to 0.001
258 	if(true)
259 	{
260 		sin = sin * (Abs(sin) * D + C);
261 	}
262 
263 	return sin;
264 }
265 
cosine_pi(RValue<Float4> x,bool pp)266 Float4 cosine_pi(RValue<Float4> x, bool pp)
267 {
268 	// cos(x) = sin(x + pi/2)
269 	Float4 y = x + Float4(1.57079632e+0f);
270 
271 	// Wrap around
272 	y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f)));
273 
274 	return sine_pi(y, pp);
275 }
276 
sine(RValue<Float4> x,bool pp)277 Float4 sine(RValue<Float4> x, bool pp)
278 {
279 	// Reduce to [-0.5, 0.5] range
280 	Float4 y = x * Float4(1.59154943e-1f);  // 1/2pi
281 	y = y - Round(y);
282 
283 	if(!pp)
284 	{
285 		// From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs"
286 		// This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations:
287 		// !pp : 17 mul, 7 add, 1 sub, 1 reciprocal
288 		//  pp : 4 mul, 2 add, 2 abs
289 
290 		Float4 y2 = y * y;
291 		Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f);
292 		Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f));
293 		Float4 c2 = (c1 * c1) - (s1 * s1);
294 		Float4 s2 = Float4(2.0f) * s1 * c1;
295 		return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true);
296 	}
297 
298 	const Float4 A = Float4(-16.0f);
299 	const Float4 B = Float4(8.0f);
300 	const Float4 C = Float4(7.75160950e-1f);
301 	const Float4 D = Float4(2.24839049e-1f);
302 
303 	// Parabola approximating sine
304 	Float4 sin = y * (Abs(y) * A + B);
305 
306 	// Improve precision from 0.06 to 0.001
307 	if(true)
308 	{
309 		sin = sin * (Abs(sin) * D + C);
310 	}
311 
312 	return sin;
313 }
314 
cosine(RValue<Float4> x,bool pp)315 Float4 cosine(RValue<Float4> x, bool pp)
316 {
317 	// cos(x) = sin(x + pi/2)
318 	Float4 y = x + Float4(1.57079632e+0f);
319 	return sine(y, pp);
320 }
321 
tangent(RValue<Float4> x,bool pp)322 Float4 tangent(RValue<Float4> x, bool pp)
323 {
324 	return sine(x, pp) / cosine(x, pp);
325 }
326 
arccos(RValue<Float4> x,bool pp)327 Float4 arccos(RValue<Float4> x, bool pp)
328 {
329 	// pi/2 - arcsin(x)
330 	return Float4(1.57079632e+0f) - arcsin(x);
331 }
332 
arcsin(RValue<Float4> x,bool pp)333 Float4 arcsin(RValue<Float4> x, bool pp)
334 {
335 	if(false)  // Simpler implementation fails even lowp precision tests
336 	{
337 		// x*(pi/2-sqrt(1-x*x)*pi/5)
338 		return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x * x) * Float4(6.28318531e-1f));
339 	}
340 	else
341 	{
342 		// From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
343 		const Float4 half_pi(1.57079632f);
344 		const Float4 a0(1.5707288f);
345 		const Float4 a1(-0.2121144f);
346 		const Float4 a2(0.0742610f);
347 		const Float4 a3(-0.0187293f);
348 		Float4 absx = Abs(x);
349 		return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^
350 		                  (As<Int4>(x) & Int4(0x80000000)));
351 	}
352 }
353 
354 // Approximation of atan in [0..1]
arctan_01(Float4 x,bool pp)355 Float4 arctan_01(Float4 x, bool pp)
356 {
357 	if(pp)
358 	{
359 		return x * (Float4(-0.27f) * x + Float4(1.05539816f));
360 	}
361 	else
362 	{
363 		// From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
364 		const Float4 a2(-0.3333314528f);
365 		const Float4 a4(0.1999355085f);
366 		const Float4 a6(-0.1420889944f);
367 		const Float4 a8(0.1065626393f);
368 		const Float4 a10(-0.0752896400f);
369 		const Float4 a12(0.0429096138f);
370 		const Float4 a14(-0.0161657367f);
371 		const Float4 a16(0.0028662257f);
372 		Float4 x2 = x * x;
373 		return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16)))))))));
374 	}
375 }
376 
arctan(RValue<Float4> x,bool pp)377 Float4 arctan(RValue<Float4> x, bool pp)
378 {
379 	Float4 absx = Abs(x);
380 	Int4 O = CmpNLT(absx, Float4(1.0f));
381 	Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx)));  // FIXME: Vector select
382 
383 	const Float4 half_pi(1.57079632f);
384 	Float4 theta = arctan_01(y, pp);
385 	return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^  // FIXME: Vector select
386 	                  (As<Int4>(x) & Int4(0x80000000)));
387 }
388 
arctan(RValue<Float4> y,RValue<Float4> x,bool pp)389 Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp)
390 {
391 	const Float4 pi(3.14159265f);             // pi
392 	const Float4 minus_pi(-3.14159265f);      // -pi
393 	const Float4 half_pi(1.57079632f);        // pi/2
394 	const Float4 quarter_pi(7.85398163e-1f);  // pi/4
395 
396 	// Rotate to upper semicircle when in lower semicircle
397 	Int4 S = CmpLT(y, Float4(0.0f));
398 	Float4 theta = As<Float4>(S & As<Int4>(minus_pi));
399 	Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x));
400 	Float4 y0 = Abs(y);
401 
402 	// Rotate to right quadrant when in left quadrant
403 	Int4 Q = CmpLT(x0, Float4(0.0f));
404 	theta += As<Float4>(Q & As<Int4>(half_pi));
405 	Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0)));   // FIXME: Vector select
406 	Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0)));  // FIXME: Vector select
407 
408 	// Mirror to first octant when in second octant
409 	Int4 O = CmpNLT(y1, x1);
410 	Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1)));  // FIXME: Vector select
411 	Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1)));  // FIXME: Vector select
412 
413 	// Approximation of atan in [0..1]
414 	Int4 zero_x = CmpEQ(x2, Float4(0.0f));
415 	Int4 inf_y = IsInf(y2);  // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4
416 	Float4 atan2_theta = arctan_01(y2 / x2, pp);
417 	theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) |  // FIXME: Vector select
418 	                    (inf_y & As<Int4>(quarter_pi)));
419 
420 	// Recover loss of precision for tiny theta angles
421 	Int4 precision_loss = S & Q & O & ~inf_y;                                                            // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta
422 	return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta)));  // FIXME: Vector select
423 }
424 
sineh(RValue<Float4> x,bool pp)425 Float4 sineh(RValue<Float4> x, bool pp)
426 {
427 	return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f);
428 }
429 
cosineh(RValue<Float4> x,bool pp)430 Float4 cosineh(RValue<Float4> x, bool pp)
431 {
432 	return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f);
433 }
434 
tangenth(RValue<Float4> x,bool pp)435 Float4 tangenth(RValue<Float4> x, bool pp)
436 {
437 	Float4 e_x = exponential(x, pp);
438 	Float4 e_minus_x = exponential(-x, pp);
439 	return (e_x - e_minus_x) / (e_x + e_minus_x);
440 }
441 
arccosh(RValue<Float4> x,bool pp)442 Float4 arccosh(RValue<Float4> x, bool pp)
443 {
444 	return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp);
445 }
446 
arcsinh(RValue<Float4> x,bool pp)447 Float4 arcsinh(RValue<Float4> x, bool pp)
448 {
449 	return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp);
450 }
451 
arctanh(RValue<Float4> x,bool pp)452 Float4 arctanh(RValue<Float4> x, bool pp)
453 {
454 	return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f);
455 }
456 
dot2(const Vector4f & v0,const Vector4f & v1)457 Float4 dot2(const Vector4f &v0, const Vector4f &v1)
458 {
459 	return v0.x * v1.x + v0.y * v1.y;
460 }
461 
dot3(const Vector4f & v0,const Vector4f & v1)462 Float4 dot3(const Vector4f &v0, const Vector4f &v1)
463 {
464 	return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z;
465 }
466 
dot4(const Vector4f & v0,const Vector4f & v1)467 Float4 dot4(const Vector4f &v0, const Vector4f &v1)
468 {
469 	return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w;
470 }
471 
transpose4x4(Short4 & row0,Short4 & row1,Short4 & row2,Short4 & row3)472 void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
473 {
474 	Int2 tmp0 = UnpackHigh(row0, row1);
475 	Int2 tmp1 = UnpackHigh(row2, row3);
476 	Int2 tmp2 = UnpackLow(row0, row1);
477 	Int2 tmp3 = UnpackLow(row2, row3);
478 
479 	row0 = UnpackLow(tmp2, tmp3);
480 	row1 = UnpackHigh(tmp2, tmp3);
481 	row2 = UnpackLow(tmp0, tmp1);
482 	row3 = UnpackHigh(tmp0, tmp1);
483 }
484 
transpose4x3(Short4 & row0,Short4 & row1,Short4 & row2,Short4 & row3)485 void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
486 {
487 	Int2 tmp0 = UnpackHigh(row0, row1);
488 	Int2 tmp1 = UnpackHigh(row2, row3);
489 	Int2 tmp2 = UnpackLow(row0, row1);
490 	Int2 tmp3 = UnpackLow(row2, row3);
491 
492 	row0 = UnpackLow(tmp2, tmp3);
493 	row1 = UnpackHigh(tmp2, tmp3);
494 	row2 = UnpackLow(tmp0, tmp1);
495 }
496 
transpose4x4(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)497 void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
498 {
499 	Float4 tmp0 = UnpackLow(row0, row1);
500 	Float4 tmp1 = UnpackLow(row2, row3);
501 	Float4 tmp2 = UnpackHigh(row0, row1);
502 	Float4 tmp3 = UnpackHigh(row2, row3);
503 
504 	row0 = Float4(tmp0.xy, tmp1.xy);
505 	row1 = Float4(tmp0.zw, tmp1.zw);
506 	row2 = Float4(tmp2.xy, tmp3.xy);
507 	row3 = Float4(tmp2.zw, tmp3.zw);
508 }
509 
transpose4x3(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)510 void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
511 {
512 	Float4 tmp0 = UnpackLow(row0, row1);
513 	Float4 tmp1 = UnpackLow(row2, row3);
514 	Float4 tmp2 = UnpackHigh(row0, row1);
515 	Float4 tmp3 = UnpackHigh(row2, row3);
516 
517 	row0 = Float4(tmp0.xy, tmp1.xy);
518 	row1 = Float4(tmp0.zw, tmp1.zw);
519 	row2 = Float4(tmp2.xy, tmp3.xy);
520 }
521 
transpose4x2(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)522 void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
523 {
524 	Float4 tmp0 = UnpackLow(row0, row1);
525 	Float4 tmp1 = UnpackLow(row2, row3);
526 
527 	row0 = Float4(tmp0.xy, tmp1.xy);
528 	row1 = Float4(tmp0.zw, tmp1.zw);
529 }
530 
transpose4x1(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)531 void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
532 {
533 	Float4 tmp0 = UnpackLow(row0, row1);
534 	Float4 tmp1 = UnpackLow(row2, row3);
535 
536 	row0 = Float4(tmp0.xy, tmp1.xy);
537 }
538 
transpose2x4(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)539 void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
540 {
541 	Float4 tmp01 = UnpackLow(row0, row1);
542 	Float4 tmp23 = UnpackHigh(row0, row1);
543 
544 	row0 = tmp01;
545 	row1 = Float4(tmp01.zw, row1.zw);
546 	row2 = tmp23;
547 	row3 = Float4(tmp23.zw, row3.zw);
548 }
549 
transpose4xN(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3,int N)550 void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N)
551 {
552 	switch(N)
553 	{
554 	case 1: transpose4x1(row0, row1, row2, row3); break;
555 	case 2: transpose4x2(row0, row1, row2, row3); break;
556 	case 3: transpose4x3(row0, row1, row2, row3); break;
557 	case 4: transpose4x4(row0, row1, row2, row3); break;
558 	}
559 }
560 
halfToFloatBits(SIMD::UInt halfBits)561 SIMD::UInt halfToFloatBits(SIMD::UInt halfBits)
562 {
563 	auto magic = SIMD::UInt(126 << 23);
564 
565 	auto sign16 = halfBits & SIMD::UInt(0x8000);
566 	auto man16 = halfBits & SIMD::UInt(0x03FF);
567 	auto exp16 = halfBits & SIMD::UInt(0x7C00);
568 
569 	auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0));
570 	auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00));
571 
572 	auto sign32 = sign16 << 16;
573 	auto man32 = man16 << 13;
574 	auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13;
575 	auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000));
576 
577 	auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic));
578 
579 	return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero);
580 }
581 
floatToHalfBits(SIMD::UInt floatBits,bool storeInUpperBits)582 SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits)
583 {
584 	SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000);
585 	SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF);
586 
587 	SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000));
588 
589 	SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000);
590 	SIMD::UInt e = SIMD::UInt(113) - (abs >> 23);
591 	SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e);
592 
593 	SIMD::UInt base = (normal & abs) | (~normal & denormal);  // TODO: IfThenElse()
594 
595 	// float exponent bias is 127, half bias is 15, so adjust by -112
596 	SIMD::UInt bias = normal & SIMD::UInt(0xC8000000);
597 
598 	SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1));
599 	SIMD::UInt fp16u = rounded >> 13;
600 
601 	// Infinity
602 	fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF);
603 
604 	return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u);
605 }
606 
r11g11b10Unpack(UInt r11g11b10bits)607 Float4 r11g11b10Unpack(UInt r11g11b10bits)
608 {
609 	// 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa.
610 	// Since the Half float format also has a 5 bit exponent, we can convert these formats to half by
611 	// copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format.
612 	// In this case, we have:
613 	// MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB
614 	UInt4 halfBits;
615 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0);
616 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1);
617 	halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2);
618 	halfBits = Insert(halfBits, UInt(0x00003C00u), 3);
619 	return As<Float4>(halfToFloatBits(halfBits));
620 }
621 
r11g11b10Pack(const Float4 & value)622 UInt r11g11b10Pack(const Float4 &value)
623 {
624 	// 10 and 11 bit floats are unsigned, so their minimal value is 0
625 	auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true);
626 	// Truncates instead of rounding. See b/147900455
627 	UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0);
628 	return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1);
629 }
630 
AnyTrue(rr::RValue<sw::SIMD::Int> const & ints)631 rr::RValue<rr::Bool> AnyTrue(rr::RValue<sw::SIMD::Int> const &ints)
632 {
633 	return rr::SignMask(ints) != 0;
634 }
635 
AnyFalse(rr::RValue<sw::SIMD::Int> const & ints)636 rr::RValue<rr::Bool> AnyFalse(rr::RValue<sw::SIMD::Int> const &ints)
637 {
638 	return rr::SignMask(~ints) != 0;
639 }
640 
Sign(rr::RValue<sw::SIMD::Float> const & val)641 rr::RValue<sw::SIMD::Float> Sign(rr::RValue<sw::SIMD::Float> const &val)
642 {
643 	return rr::As<sw::SIMD::Float>((rr::As<sw::SIMD::UInt>(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000));
644 }
645 
646 // Returns the <whole, frac> of val.
647 // Both whole and frac will have the same sign as val.
648 std::pair<rr::RValue<sw::SIMD::Float>, rr::RValue<sw::SIMD::Float>>
Modf(rr::RValue<sw::SIMD::Float> const & val)649 Modf(rr::RValue<sw::SIMD::Float> const &val)
650 {
651 	auto abs = Abs(val);
652 	auto sign = Sign(val);
653 	auto whole = Floor(abs) * sign;
654 	auto frac = Frac(abs) * sign;
655 	return std::make_pair(whole, frac);
656 }
657 
658 // Returns the number of 1s in bits, per lane.
CountBits(rr::RValue<sw::SIMD::UInt> const & bits)659 sw::SIMD::UInt CountBits(rr::RValue<sw::SIMD::UInt> const &bits)
660 {
661 	// TODO: Add an intrinsic to reactor. Even if there isn't a
662 	// single vector instruction, there may be target-dependent
663 	// ways to make this faster.
664 	// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
665 	sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555));
666 	c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333));
667 	c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F);
668 	c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF);
669 	c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF);
670 	return c;
671 }
672 
673 // Returns 1 << bits.
674 // If the resulting bit overflows a 32 bit integer, 0 is returned.
NthBit32(rr::RValue<sw::SIMD::UInt> const & bits)675 rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits)
676 {
677 	return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32)));
678 }
679 
680 // Returns bitCount number of of 1's starting from the LSB.
Bitmask32(rr::RValue<sw::SIMD::UInt> const & bitCount)681 rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount)
682 {
683 	return NthBit32(bitCount) - sw::SIMD::UInt(1);
684 }
685 
686 // Performs a fused-multiply add, returning a * b + c.
FMA(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c)687 rr::RValue<sw::SIMD::Float> FMA(
688     rr::RValue<sw::SIMD::Float> const &a,
689     rr::RValue<sw::SIMD::Float> const &b,
690     rr::RValue<sw::SIMD::Float> const &c)
691 {
692 	return a * b + c;
693 }
694 
695 // Returns the exponent of the floating point number f.
696 // Assumes IEEE 754
Exponent(rr::RValue<sw::SIMD::Float> f)697 rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f)
698 {
699 	auto v = rr::As<sw::SIMD::UInt>(f);
700 	return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126));
701 }
702 
703 // Returns y if y < x; otherwise result is x.
704 // If one operand is a NaN, the other operand is the result.
705 // If both operands are NaN, the result is a NaN.
NMin(rr::RValue<sw::SIMD::Float> const & x,rr::RValue<sw::SIMD::Float> const & y)706 rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
707 {
708 	using namespace rr;
709 	auto xIsNan = IsNan(x);
710 	auto yIsNan = IsNan(y);
711 	return As<sw::SIMD::Float>(
712 	    // If neither are NaN, return min
713 	    ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) |
714 	    // If one operand is a NaN, the other operand is the result
715 	    // If both operands are NaN, the result is a NaN.
716 	    ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
717 	    (xIsNan & As<sw::SIMD::Int>(y)));
718 }
719 
720 // Returns y if y > x; otherwise result is x.
721 // If one operand is a NaN, the other operand is the result.
722 // If both operands are NaN, the result is a NaN.
NMax(rr::RValue<sw::SIMD::Float> const & x,rr::RValue<sw::SIMD::Float> const & y)723 rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
724 {
725 	using namespace rr;
726 	auto xIsNan = IsNan(x);
727 	auto yIsNan = IsNan(y);
728 	return As<sw::SIMD::Float>(
729 	    // If neither are NaN, return max
730 	    ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) |
731 	    // If one operand is a NaN, the other operand is the result
732 	    // If both operands are NaN, the result is a NaN.
733 	    ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
734 	    (xIsNan & As<sw::SIMD::Int>(y)));
735 }
736 
737 // Returns the determinant of a 2x2 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d)738 rr::RValue<sw::SIMD::Float> Determinant(
739     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
740     rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
741 {
742 	return a * d - b * c;
743 }
744 
745 // Returns the determinant of a 3x3 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i)746 rr::RValue<sw::SIMD::Float> Determinant(
747     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
748     rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
749     rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
750 {
751 	return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h;
752 }
753 
754 // Returns the determinant of a 4x4 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i,rr::RValue<sw::SIMD::Float> const & j,rr::RValue<sw::SIMD::Float> const & k,rr::RValue<sw::SIMD::Float> const & l,rr::RValue<sw::SIMD::Float> const & m,rr::RValue<sw::SIMD::Float> const & n,rr::RValue<sw::SIMD::Float> const & o,rr::RValue<sw::SIMD::Float> const & p)755 rr::RValue<sw::SIMD::Float> Determinant(
756     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
757     rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
758     rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
759     rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
760 {
761 	return a * Determinant(f, g, h,
762 	                       j, k, l,
763 	                       n, o, p) -
764 	       b * Determinant(e, g, h,
765 	                       i, k, l,
766 	                       m, o, p) +
767 	       c * Determinant(e, f, h,
768 	                       i, j, l,
769 	                       m, n, p) -
770 	       d * Determinant(e, f, g,
771 	                       i, j, k,
772 	                       m, n, o);
773 }
774 
775 // Returns the inverse of a 2x2 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d)776 std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse(
777     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
778     rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
779 {
780 	auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d);
781 	return { { s * d, -s * b, -s * c, s * a } };
782 }
783 
784 // Returns the inverse of a 3x3 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i)785 std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse(
786     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
787     rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
788     rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
789 {
790 	auto s = sw::SIMD::Float(1.0f) / Determinant(
791 	                                     a, b, c,
792 	                                     d, e, f,
793 	                                     g, h, i);  // TODO: duplicate arithmetic calculating the det and below.
794 
795 	return { {
796 		s * (e * i - f * h),
797 		s * (c * h - b * i),
798 		s * (b * f - c * e),
799 		s * (f * g - d * i),
800 		s * (a * i - c * g),
801 		s * (c * d - a * f),
802 		s * (d * h - e * g),
803 		s * (b * g - a * h),
804 		s * (a * e - b * d),
805 	} };
806 }
807 
808 // Returns the inverse of a 4x4 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i,rr::RValue<sw::SIMD::Float> const & j,rr::RValue<sw::SIMD::Float> const & k,rr::RValue<sw::SIMD::Float> const & l,rr::RValue<sw::SIMD::Float> const & m,rr::RValue<sw::SIMD::Float> const & n,rr::RValue<sw::SIMD::Float> const & o,rr::RValue<sw::SIMD::Float> const & p)809 std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse(
810     rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
811     rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
812     rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
813     rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
814 {
815 	auto s = sw::SIMD::Float(1.0f) / Determinant(
816 	                                     a, b, c, d,
817 	                                     e, f, g, h,
818 	                                     i, j, k, l,
819 	                                     m, n, o, p);  // TODO: duplicate arithmetic calculating the det and below.
820 
821 	auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n;
822 	auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n;
823 	auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j;
824 	auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m;
825 	auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i;
826 	auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i;
827 
828 	return { {
829 		s * (f * kplo - g * jpln + h * jokn),
830 		s * (-b * kplo + c * jpln - d * jokn),
831 		s * (b * gpho - c * fphn + d * fogn),
832 		s * (-b * glhk + c * flhj - d * fkgj),
833 
834 		s * (-e * kplo + g * iplm - h * iokm),
835 		s * (a * kplo - c * iplm + d * iokm),
836 		s * (-a * gpho + c * ephm - d * eogm),
837 		s * (a * glhk - c * elhi + d * ekgi),
838 
839 		s * (e * jpln - f * iplm + h * injm),
840 		s * (-a * jpln + b * iplm - d * injm),
841 		s * (a * fphn - b * ephm + d * enfm),
842 		s * (-a * flhj + b * elhi - d * ejfi),
843 
844 		s * (-e * jokn + f * iokm - g * injm),
845 		s * (a * jokn - b * iokm + c * injm),
846 		s * (-a * fogn + b * eogm - c * enfm),
847 		s * (a * fkgj - b * ekgi + c * ejfi),
848 	} };
849 }
850 
851 namespace SIMD {
852 
Pointer(rr::Pointer<Byte> base,rr::Int limit)853 Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit)
854     : base(base)
855     , dynamicLimit(limit)
856     , staticLimit(0)
857     , dynamicOffsets(0)
858     , staticOffsets{}
859     , hasDynamicLimit(true)
860     , hasDynamicOffsets(false)
861 {}
862 
Pointer(rr::Pointer<Byte> base,unsigned int limit)863 Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit)
864     : base(base)
865     , dynamicLimit(0)
866     , staticLimit(limit)
867     , dynamicOffsets(0)
868     , staticOffsets{}
869     , hasDynamicLimit(false)
870     , hasDynamicOffsets(false)
871 {}
872 
Pointer(rr::Pointer<Byte> base,rr::Int limit,SIMD::Int offset)873 Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit, SIMD::Int offset)
874     : base(base)
875     , dynamicLimit(limit)
876     , staticLimit(0)
877     , dynamicOffsets(offset)
878     , staticOffsets{}
879     , hasDynamicLimit(true)
880     , hasDynamicOffsets(true)
881 {}
882 
Pointer(rr::Pointer<Byte> base,unsigned int limit,SIMD::Int offset)883 Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit, SIMD::Int offset)
884     : base(base)
885     , dynamicLimit(0)
886     , staticLimit(limit)
887     , dynamicOffsets(offset)
888     , staticOffsets{}
889     , hasDynamicLimit(false)
890     , hasDynamicOffsets(true)
891 {}
892 
operator +=(Int i)893 Pointer &Pointer::operator+=(Int i)
894 {
895 	dynamicOffsets += i;
896 	hasDynamicOffsets = true;
897 	return *this;
898 }
899 
operator *=(Int i)900 Pointer &Pointer::operator*=(Int i)
901 {
902 	dynamicOffsets = offsets() * i;
903 	staticOffsets = {};
904 	hasDynamicOffsets = true;
905 	return *this;
906 }
907 
operator +(SIMD::Int i)908 Pointer Pointer::operator+(SIMD::Int i)
909 {
910 	Pointer p = *this;
911 	p += i;
912 	return p;
913 }
operator *(SIMD::Int i)914 Pointer Pointer::operator*(SIMD::Int i)
915 {
916 	Pointer p = *this;
917 	p *= i;
918 	return p;
919 }
920 
operator +=(int i)921 Pointer &Pointer::operator+=(int i)
922 {
923 	for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] += i; }
924 	return *this;
925 }
926 
operator *=(int i)927 Pointer &Pointer::operator*=(int i)
928 {
929 	for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] *= i; }
930 	if(hasDynamicOffsets)
931 	{
932 		dynamicOffsets *= SIMD::Int(i);
933 	}
934 	return *this;
935 }
936 
operator +(int i)937 Pointer Pointer::operator+(int i)
938 {
939 	Pointer p = *this;
940 	p += i;
941 	return p;
942 }
operator *(int i)943 Pointer Pointer::operator*(int i)
944 {
945 	Pointer p = *this;
946 	p *= i;
947 	return p;
948 }
949 
offsets() const950 SIMD::Int Pointer::offsets() const
951 {
952 	static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
953 	return dynamicOffsets + SIMD::Int(staticOffsets[0], staticOffsets[1], staticOffsets[2], staticOffsets[3]);
954 }
955 
isInBounds(unsigned int accessSize,OutOfBoundsBehavior robustness) const956 SIMD::Int Pointer::isInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const
957 {
958 	ASSERT(accessSize > 0);
959 
960 	if(isStaticallyInBounds(accessSize, robustness))
961 	{
962 		return SIMD::Int(0xffffffff);
963 	}
964 
965 	if(!hasDynamicOffsets && !hasDynamicLimit)
966 	{
967 		// Common fast paths.
968 		static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
969 		return SIMD::Int(
970 		    (staticOffsets[0] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
971 		    (staticOffsets[1] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
972 		    (staticOffsets[2] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
973 		    (staticOffsets[3] + accessSize - 1 < staticLimit) ? 0xffffffff : 0);
974 	}
975 
976 	return CmpLT(offsets() + SIMD::Int(accessSize - 1), SIMD::Int(limit()));
977 }
978 
isStaticallyInBounds(unsigned int accessSize,OutOfBoundsBehavior robustness) const979 bool Pointer::isStaticallyInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const
980 {
981 	if(hasDynamicOffsets)
982 	{
983 		return false;
984 	}
985 
986 	if(hasDynamicLimit)
987 	{
988 		if(hasStaticEqualOffsets() || hasStaticSequentialOffsets(accessSize))
989 		{
990 			switch(robustness)
991 			{
992 			case OutOfBoundsBehavior::UndefinedBehavior:
993 				// With this robustness setting the application/compiler guarantees in-bounds accesses on active lanes,
994 				// but since it can't know in advance which branches are taken this must be true even for inactives lanes.
995 				return true;
996 			case OutOfBoundsBehavior::Nullify:
997 			case OutOfBoundsBehavior::RobustBufferAccess:
998 			case OutOfBoundsBehavior::UndefinedValue:
999 				return false;
1000 			}
1001 		}
1002 	}
1003 
1004 	for(int i = 0; i < SIMD::Width; i++)
1005 	{
1006 		if(staticOffsets[i] + accessSize - 1 >= staticLimit)
1007 		{
1008 			return false;
1009 		}
1010 	}
1011 
1012 	return true;
1013 }
1014 
limit() const1015 rr::Int Pointer::limit() const
1016 {
1017 	return dynamicLimit + staticLimit;
1018 }
1019 
1020 // Returns true if all offsets are sequential
1021 // (N+0*step, N+1*step, N+2*step, N+3*step)
hasSequentialOffsets(unsigned int step) const1022 rr::Bool Pointer::hasSequentialOffsets(unsigned int step) const
1023 {
1024 	if(hasDynamicOffsets)
1025 	{
1026 		auto o = offsets();
1027 		static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1028 		return rr::SignMask(~CmpEQ(o.yzww, o + SIMD::Int(1 * step, 2 * step, 3 * step, 0))) == 0;
1029 	}
1030 	return hasStaticSequentialOffsets(step);
1031 }
1032 
1033 // Returns true if all offsets are are compile-time static and
1034 // sequential (N+0*step, N+1*step, N+2*step, N+3*step)
hasStaticSequentialOffsets(unsigned int step) const1035 bool Pointer::hasStaticSequentialOffsets(unsigned int step) const
1036 {
1037 	if(hasDynamicOffsets)
1038 	{
1039 		return false;
1040 	}
1041 	for(int i = 1; i < SIMD::Width; i++)
1042 	{
1043 		if(staticOffsets[i - 1] + int32_t(step) != staticOffsets[i]) { return false; }
1044 	}
1045 	return true;
1046 }
1047 
1048 // Returns true if all offsets are equal (N, N, N, N)
hasEqualOffsets() const1049 rr::Bool Pointer::hasEqualOffsets() const
1050 {
1051 	if(hasDynamicOffsets)
1052 	{
1053 		auto o = offsets();
1054 		static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1055 		return rr::SignMask(~CmpEQ(o, o.yzwx)) == 0;
1056 	}
1057 	return hasStaticEqualOffsets();
1058 }
1059 
1060 // Returns true if all offsets are compile-time static and are equal
1061 // (N, N, N, N)
hasStaticEqualOffsets() const1062 bool Pointer::hasStaticEqualOffsets() const
1063 {
1064 	if(hasDynamicOffsets)
1065 	{
1066 		return false;
1067 	}
1068 	for(int i = 1; i < SIMD::Width; i++)
1069 	{
1070 		if(staticOffsets[i - 1] != staticOffsets[i]) { return false; }
1071 	}
1072 	return true;
1073 }
1074 
1075 }  // namespace SIMD
1076 
1077 }  // namespace sw
1078