1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
227
228 INUSE_ADJ_STEP_PCT = 25,
229
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
232
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
235
236 /*
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
243 *
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
246 */
247 VTIME_PER_SEC_SHIFT = 37,
248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
251
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM = 10000, /* 1% */
254 VRATE_MAX_PPM = 100000000, /* 10000% */
255
256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 VRATE_CLAMP_ADJ_PCT = 4,
258
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT = 5,
261
262 /* unbusy hysterisis */
263 UNBUSY_THR_PCT = 75,
264
265 /*
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
272 *
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
278 * unreliable.
279 *
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
284 */
285 MIN_DELAY_THR_PCT = 500,
286 MAX_DELAY_THR_PCT = 25000,
287 MIN_DELAY = 250,
288 MAX_DELAY = 250 * USEC_PER_MSEC,
289
290 /* halve debts if avg usage over 100ms is under 50% */
291 DFGV_USAGE_PCT = 50,
292 DFGV_PERIOD = 100 * USEC_PER_MSEC,
293
294 /* don't let cmds which take a very long time pin lagging for too long */
295 MAX_LAGGING_PERIODS = 10,
296
297 /* switch iff the conditions are met for longer than this */
298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
299
300 /*
301 * Count IO size in 4k pages. The 12bit shift helps keeping
302 * size-proportional components of cost calculation in closer
303 * numbers of digits to per-IO cost components.
304 */
305 IOC_PAGE_SHIFT = 12,
306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309 /* if apart further than 16M, consider randio for linear model */
310 LCOEF_RANDIO_PAGES = 4096,
311 };
312
313 enum ioc_running {
314 IOC_IDLE,
315 IOC_RUNNING,
316 IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 QOS_ENABLE,
322 QOS_CTRL,
323 NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328 QOS_RPPM,
329 QOS_RLAT,
330 QOS_WPPM,
331 QOS_WLAT,
332 QOS_MIN,
333 QOS_MAX,
334 NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339 COST_CTRL,
340 COST_MODEL,
341 NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346 I_LCOEF_RBPS,
347 I_LCOEF_RSEQIOPS,
348 I_LCOEF_RRANDIOPS,
349 I_LCOEF_WBPS,
350 I_LCOEF_WSEQIOPS,
351 I_LCOEF_WRANDIOPS,
352 NR_I_LCOEFS,
353 };
354
355 enum {
356 LCOEF_RPAGE,
357 LCOEF_RSEQIO,
358 LCOEF_RRANDIO,
359 LCOEF_WPAGE,
360 LCOEF_WSEQIO,
361 LCOEF_WRANDIO,
362 NR_LCOEFS,
363 };
364
365 enum {
366 AUTOP_INVALID,
367 AUTOP_HDD,
368 AUTOP_SSD_QD1,
369 AUTOP_SSD_DFL,
370 AUTOP_SSD_FAST,
371 };
372
373 struct ioc_gq;
374
375 struct ioc_params {
376 u32 qos[NR_QOS_PARAMS];
377 u64 i_lcoefs[NR_I_LCOEFS];
378 u64 lcoefs[NR_LCOEFS];
379 u32 too_fast_vrate_pct;
380 u32 too_slow_vrate_pct;
381 };
382
383 struct ioc_margins {
384 s64 min;
385 s64 low;
386 s64 target;
387 };
388
389 struct ioc_missed {
390 local_t nr_met;
391 local_t nr_missed;
392 u32 last_met;
393 u32 last_missed;
394 };
395
396 struct ioc_pcpu_stat {
397 struct ioc_missed missed[2];
398
399 local64_t rq_wait_ns;
400 u64 last_rq_wait_ns;
401 };
402
403 /* per device */
404 struct ioc {
405 struct rq_qos rqos;
406
407 bool enabled;
408
409 struct ioc_params params;
410 struct ioc_margins margins;
411 u32 period_us;
412 u32 timer_slack_ns;
413 u64 vrate_min;
414 u64 vrate_max;
415
416 spinlock_t lock;
417 struct timer_list timer;
418 struct list_head active_iocgs; /* active cgroups */
419 struct ioc_pcpu_stat __percpu *pcpu_stat;
420
421 enum ioc_running running;
422 atomic64_t vtime_rate;
423 u64 vtime_base_rate;
424 s64 vtime_err;
425
426 seqcount_spinlock_t period_seqcount;
427 u64 period_at; /* wallclock starttime */
428 u64 period_at_vtime; /* vtime starttime */
429
430 atomic64_t cur_period; /* inc'd each period */
431 int busy_level; /* saturation history */
432
433 bool weights_updated;
434 atomic_t hweight_gen; /* for lazy hweights */
435
436 /* debt forgivness */
437 u64 dfgv_period_at;
438 u64 dfgv_period_rem;
439 u64 dfgv_usage_us_sum;
440
441 u64 autop_too_fast_at;
442 u64 autop_too_slow_at;
443 int autop_idx;
444 bool user_qos_params:1;
445 bool user_cost_model:1;
446 };
447
448 struct iocg_pcpu_stat {
449 local64_t abs_vusage;
450 };
451
452 struct iocg_stat {
453 u64 usage_us;
454 u64 wait_us;
455 u64 indebt_us;
456 u64 indelay_us;
457 };
458
459 /* per device-cgroup pair */
460 struct ioc_gq {
461 struct blkg_policy_data pd;
462 struct ioc *ioc;
463
464 /*
465 * A iocg can get its weight from two sources - an explicit
466 * per-device-cgroup configuration or the default weight of the
467 * cgroup. `cfg_weight` is the explicit per-device-cgroup
468 * configuration. `weight` is the effective considering both
469 * sources.
470 *
471 * When an idle cgroup becomes active its `active` goes from 0 to
472 * `weight`. `inuse` is the surplus adjusted active weight.
473 * `active` and `inuse` are used to calculate `hweight_active` and
474 * `hweight_inuse`.
475 *
476 * `last_inuse` remembers `inuse` while an iocg is idle to persist
477 * surplus adjustments.
478 *
479 * `inuse` may be adjusted dynamically during period. `saved_*` are used
480 * to determine and track adjustments.
481 */
482 u32 cfg_weight;
483 u32 weight;
484 u32 active;
485 u32 inuse;
486
487 u32 last_inuse;
488 s64 saved_margin;
489
490 sector_t cursor; /* to detect randio */
491
492 /*
493 * `vtime` is this iocg's vtime cursor which progresses as IOs are
494 * issued. If lagging behind device vtime, the delta represents
495 * the currently available IO budget. If runnning ahead, the
496 * overage.
497 *
498 * `vtime_done` is the same but progressed on completion rather
499 * than issue. The delta behind `vtime` represents the cost of
500 * currently in-flight IOs.
501 */
502 atomic64_t vtime;
503 atomic64_t done_vtime;
504 u64 abs_vdebt;
505
506 /* current delay in effect and when it started */
507 u64 delay;
508 u64 delay_at;
509
510 /*
511 * The period this iocg was last active in. Used for deactivation
512 * and invalidating `vtime`.
513 */
514 atomic64_t active_period;
515 struct list_head active_list;
516
517 /* see __propagate_weights() and current_hweight() for details */
518 u64 child_active_sum;
519 u64 child_inuse_sum;
520 u64 child_adjusted_sum;
521 int hweight_gen;
522 u32 hweight_active;
523 u32 hweight_inuse;
524 u32 hweight_donating;
525 u32 hweight_after_donation;
526
527 struct list_head walk_list;
528 struct list_head surplus_list;
529
530 struct wait_queue_head waitq;
531 struct hrtimer waitq_timer;
532
533 /* timestamp at the latest activation */
534 u64 activated_at;
535
536 /* statistics */
537 struct iocg_pcpu_stat __percpu *pcpu_stat;
538 struct iocg_stat local_stat;
539 struct iocg_stat desc_stat;
540 struct iocg_stat last_stat;
541 u64 last_stat_abs_vusage;
542 u64 usage_delta_us;
543 u64 wait_since;
544 u64 indebt_since;
545 u64 indelay_since;
546
547 /* this iocg's depth in the hierarchy and ancestors including self */
548 int level;
549 struct ioc_gq *ancestors[];
550 };
551
552 /* per cgroup */
553 struct ioc_cgrp {
554 struct blkcg_policy_data cpd;
555 unsigned int dfl_weight;
556 };
557
558 struct ioc_now {
559 u64 now_ns;
560 u64 now;
561 u64 vnow;
562 u64 vrate;
563 };
564
565 struct iocg_wait {
566 struct wait_queue_entry wait;
567 struct bio *bio;
568 u64 abs_cost;
569 bool committed;
570 };
571
572 struct iocg_wake_ctx {
573 struct ioc_gq *iocg;
574 u32 hw_inuse;
575 s64 vbudget;
576 };
577
578 static const struct ioc_params autop[] = {
579 [AUTOP_HDD] = {
580 .qos = {
581 [QOS_RLAT] = 250000, /* 250ms */
582 [QOS_WLAT] = 250000,
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
585 },
586 .i_lcoefs = {
587 [I_LCOEF_RBPS] = 174019176,
588 [I_LCOEF_RSEQIOPS] = 41708,
589 [I_LCOEF_RRANDIOPS] = 370,
590 [I_LCOEF_WBPS] = 178075866,
591 [I_LCOEF_WSEQIOPS] = 42705,
592 [I_LCOEF_WRANDIOPS] = 378,
593 },
594 },
595 [AUTOP_SSD_QD1] = {
596 .qos = {
597 [QOS_RLAT] = 25000, /* 25ms */
598 [QOS_WLAT] = 25000,
599 [QOS_MIN] = VRATE_MIN_PPM,
600 [QOS_MAX] = VRATE_MAX_PPM,
601 },
602 .i_lcoefs = {
603 [I_LCOEF_RBPS] = 245855193,
604 [I_LCOEF_RSEQIOPS] = 61575,
605 [I_LCOEF_RRANDIOPS] = 6946,
606 [I_LCOEF_WBPS] = 141365009,
607 [I_LCOEF_WSEQIOPS] = 33716,
608 [I_LCOEF_WRANDIOPS] = 26796,
609 },
610 },
611 [AUTOP_SSD_DFL] = {
612 .qos = {
613 [QOS_RLAT] = 25000, /* 25ms */
614 [QOS_WLAT] = 25000,
615 [QOS_MIN] = VRATE_MIN_PPM,
616 [QOS_MAX] = VRATE_MAX_PPM,
617 },
618 .i_lcoefs = {
619 [I_LCOEF_RBPS] = 488636629,
620 [I_LCOEF_RSEQIOPS] = 8932,
621 [I_LCOEF_RRANDIOPS] = 8518,
622 [I_LCOEF_WBPS] = 427891549,
623 [I_LCOEF_WSEQIOPS] = 28755,
624 [I_LCOEF_WRANDIOPS] = 21940,
625 },
626 .too_fast_vrate_pct = 500,
627 },
628 [AUTOP_SSD_FAST] = {
629 .qos = {
630 [QOS_RLAT] = 5000, /* 5ms */
631 [QOS_WLAT] = 5000,
632 [QOS_MIN] = VRATE_MIN_PPM,
633 [QOS_MAX] = VRATE_MAX_PPM,
634 },
635 .i_lcoefs = {
636 [I_LCOEF_RBPS] = 3102524156LLU,
637 [I_LCOEF_RSEQIOPS] = 724816,
638 [I_LCOEF_RRANDIOPS] = 778122,
639 [I_LCOEF_WBPS] = 1742780862LLU,
640 [I_LCOEF_WSEQIOPS] = 425702,
641 [I_LCOEF_WRANDIOPS] = 443193,
642 },
643 .too_slow_vrate_pct = 10,
644 },
645 };
646
647 /*
648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
649 * vtime credit shortage and down on device saturation.
650 */
651 static u32 vrate_adj_pct[] =
652 { 0, 0, 0, 0,
653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656
657 static struct blkcg_policy blkcg_policy_iocost;
658
659 /* accessors and helpers */
rqos_to_ioc(struct rq_qos * rqos)660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662 return container_of(rqos, struct ioc, rqos);
663 }
664
q_to_ioc(struct request_queue * q)665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669
q_name(struct request_queue * q)670 static const char *q_name(struct request_queue *q)
671 {
672 if (blk_queue_registered(q))
673 return kobject_name(q->kobj.parent);
674 else
675 return "<unknown>";
676 }
677
ioc_name(struct ioc * ioc)678 static const char __maybe_unused *ioc_name(struct ioc *ioc)
679 {
680 return q_name(ioc->rqos.q);
681 }
682
pd_to_iocg(struct blkg_policy_data * pd)683 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
684 {
685 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
686 }
687
blkg_to_iocg(struct blkcg_gq * blkg)688 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
689 {
690 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
691 }
692
iocg_to_blkg(struct ioc_gq * iocg)693 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
694 {
695 return pd_to_blkg(&iocg->pd);
696 }
697
blkcg_to_iocc(struct blkcg * blkcg)698 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
699 {
700 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
701 struct ioc_cgrp, cpd);
702 }
703
704 /*
705 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
706 * weight, the more expensive each IO. Must round up.
707 */
abs_cost_to_cost(u64 abs_cost,u32 hw_inuse)708 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
709 {
710 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
711 }
712
713 /*
714 * The inverse of abs_cost_to_cost(). Must round up.
715 */
cost_to_abs_cost(u64 cost,u32 hw_inuse)716 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
717 {
718 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
719 }
720
iocg_commit_bio(struct ioc_gq * iocg,struct bio * bio,u64 abs_cost,u64 cost)721 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
722 u64 abs_cost, u64 cost)
723 {
724 struct iocg_pcpu_stat *gcs;
725
726 bio->bi_iocost_cost = cost;
727 atomic64_add(cost, &iocg->vtime);
728
729 gcs = get_cpu_ptr(iocg->pcpu_stat);
730 local64_add(abs_cost, &gcs->abs_vusage);
731 put_cpu_ptr(gcs);
732 }
733
iocg_lock(struct ioc_gq * iocg,bool lock_ioc,unsigned long * flags)734 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
735 {
736 if (lock_ioc) {
737 spin_lock_irqsave(&iocg->ioc->lock, *flags);
738 spin_lock(&iocg->waitq.lock);
739 } else {
740 spin_lock_irqsave(&iocg->waitq.lock, *flags);
741 }
742 }
743
iocg_unlock(struct ioc_gq * iocg,bool unlock_ioc,unsigned long * flags)744 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
745 {
746 if (unlock_ioc) {
747 spin_unlock(&iocg->waitq.lock);
748 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
749 } else {
750 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
751 }
752 }
753
754 #define CREATE_TRACE_POINTS
755 #include <trace/events/iocost.h>
756
ioc_refresh_margins(struct ioc * ioc)757 static void ioc_refresh_margins(struct ioc *ioc)
758 {
759 struct ioc_margins *margins = &ioc->margins;
760 u32 period_us = ioc->period_us;
761 u64 vrate = ioc->vtime_base_rate;
762
763 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
764 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
765 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
766 }
767
768 /* latency Qos params changed, update period_us and all the dependent params */
ioc_refresh_period_us(struct ioc * ioc)769 static void ioc_refresh_period_us(struct ioc *ioc)
770 {
771 u32 ppm, lat, multi, period_us;
772
773 lockdep_assert_held(&ioc->lock);
774
775 /* pick the higher latency target */
776 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
777 ppm = ioc->params.qos[QOS_RPPM];
778 lat = ioc->params.qos[QOS_RLAT];
779 } else {
780 ppm = ioc->params.qos[QOS_WPPM];
781 lat = ioc->params.qos[QOS_WLAT];
782 }
783
784 /*
785 * We want the period to be long enough to contain a healthy number
786 * of IOs while short enough for granular control. Define it as a
787 * multiple of the latency target. Ideally, the multiplier should
788 * be scaled according to the percentile so that it would nominally
789 * contain a certain number of requests. Let's be simpler and
790 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
791 */
792 if (ppm)
793 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
794 else
795 multi = 2;
796 period_us = multi * lat;
797 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
798
799 /* calculate dependent params */
800 ioc->period_us = period_us;
801 ioc->timer_slack_ns = div64_u64(
802 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
803 100);
804 ioc_refresh_margins(ioc);
805 }
806
ioc_autop_idx(struct ioc * ioc)807 static int ioc_autop_idx(struct ioc *ioc)
808 {
809 int idx = ioc->autop_idx;
810 const struct ioc_params *p = &autop[idx];
811 u32 vrate_pct;
812 u64 now_ns;
813
814 /* rotational? */
815 if (!blk_queue_nonrot(ioc->rqos.q))
816 return AUTOP_HDD;
817
818 /* handle SATA SSDs w/ broken NCQ */
819 if (blk_queue_depth(ioc->rqos.q) == 1)
820 return AUTOP_SSD_QD1;
821
822 /* use one of the normal ssd sets */
823 if (idx < AUTOP_SSD_DFL)
824 return AUTOP_SSD_DFL;
825
826 /* if user is overriding anything, maintain what was there */
827 if (ioc->user_qos_params || ioc->user_cost_model)
828 return idx;
829
830 /* step up/down based on the vrate */
831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 now_ns = ktime_get_ns();
833
834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 if (!ioc->autop_too_fast_at)
836 ioc->autop_too_fast_at = now_ns;
837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838 return idx + 1;
839 } else {
840 ioc->autop_too_fast_at = 0;
841 }
842
843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 if (!ioc->autop_too_slow_at)
845 ioc->autop_too_slow_at = now_ns;
846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847 return idx - 1;
848 } else {
849 ioc->autop_too_slow_at = 0;
850 }
851
852 return idx;
853 }
854
855 /*
856 * Take the followings as input
857 *
858 * @bps maximum sequential throughput
859 * @seqiops maximum sequential 4k iops
860 * @randiops maximum random 4k iops
861 *
862 * and calculate the linear model cost coefficients.
863 *
864 * *@page per-page cost 1s / (@bps / 4096)
865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
867 */
calc_lcoefs(u64 bps,u64 seqiops,u64 randiops,u64 * page,u64 * seqio,u64 * randio)868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 u64 *page, u64 *seqio, u64 *randio)
870 {
871 u64 v;
872
873 *page = *seqio = *randio = 0;
874
875 if (bps)
876 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
877 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
878
879 if (seqiops) {
880 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
881 if (v > *page)
882 *seqio = v - *page;
883 }
884
885 if (randiops) {
886 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
887 if (v > *page)
888 *randio = v - *page;
889 }
890 }
891
ioc_refresh_lcoefs(struct ioc * ioc)892 static void ioc_refresh_lcoefs(struct ioc *ioc)
893 {
894 u64 *u = ioc->params.i_lcoefs;
895 u64 *c = ioc->params.lcoefs;
896
897 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
898 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
899 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
900 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
901 }
902
ioc_refresh_params(struct ioc * ioc,bool force)903 static bool ioc_refresh_params(struct ioc *ioc, bool force)
904 {
905 const struct ioc_params *p;
906 int idx;
907
908 lockdep_assert_held(&ioc->lock);
909
910 idx = ioc_autop_idx(ioc);
911 p = &autop[idx];
912
913 if (idx == ioc->autop_idx && !force)
914 return false;
915
916 if (idx != ioc->autop_idx)
917 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
918
919 ioc->autop_idx = idx;
920 ioc->autop_too_fast_at = 0;
921 ioc->autop_too_slow_at = 0;
922
923 if (!ioc->user_qos_params)
924 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
925 if (!ioc->user_cost_model)
926 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
927
928 ioc_refresh_period_us(ioc);
929 ioc_refresh_lcoefs(ioc);
930
931 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
932 VTIME_PER_USEC, MILLION);
933 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
934 VTIME_PER_USEC, MILLION);
935
936 return true;
937 }
938
939 /*
940 * When an iocg accumulates too much vtime or gets deactivated, we throw away
941 * some vtime, which lowers the overall device utilization. As the exact amount
942 * which is being thrown away is known, we can compensate by accelerating the
943 * vrate accordingly so that the extra vtime generated in the current period
944 * matches what got lost.
945 */
ioc_refresh_vrate(struct ioc * ioc,struct ioc_now * now)946 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
947 {
948 s64 pleft = ioc->period_at + ioc->period_us - now->now;
949 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
950 s64 vcomp, vcomp_min, vcomp_max;
951
952 lockdep_assert_held(&ioc->lock);
953
954 /* we need some time left in this period */
955 if (pleft <= 0)
956 goto done;
957
958 /*
959 * Calculate how much vrate should be adjusted to offset the error.
960 * Limit the amount of adjustment and deduct the adjusted amount from
961 * the error.
962 */
963 vcomp = -div64_s64(ioc->vtime_err, pleft);
964 vcomp_min = -(ioc->vtime_base_rate >> 1);
965 vcomp_max = ioc->vtime_base_rate;
966 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
967
968 ioc->vtime_err += vcomp * pleft;
969
970 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
971 done:
972 /* bound how much error can accumulate */
973 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
974 }
975
976 /* take a snapshot of the current [v]time and vrate */
ioc_now(struct ioc * ioc,struct ioc_now * now)977 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
978 {
979 unsigned seq;
980
981 now->now_ns = ktime_get();
982 now->now = ktime_to_us(now->now_ns);
983 now->vrate = atomic64_read(&ioc->vtime_rate);
984
985 /*
986 * The current vtime is
987 *
988 * vtime at period start + (wallclock time since the start) * vrate
989 *
990 * As a consistent snapshot of `period_at_vtime` and `period_at` is
991 * needed, they're seqcount protected.
992 */
993 do {
994 seq = read_seqcount_begin(&ioc->period_seqcount);
995 now->vnow = ioc->period_at_vtime +
996 (now->now - ioc->period_at) * now->vrate;
997 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
998 }
999
ioc_start_period(struct ioc * ioc,struct ioc_now * now)1000 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1001 {
1002 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1003
1004 write_seqcount_begin(&ioc->period_seqcount);
1005 ioc->period_at = now->now;
1006 ioc->period_at_vtime = now->vnow;
1007 write_seqcount_end(&ioc->period_seqcount);
1008
1009 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1010 add_timer(&ioc->timer);
1011 }
1012
1013 /*
1014 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1015 * weight sums and propagate upwards accordingly. If @save, the current margin
1016 * is saved to be used as reference for later inuse in-period adjustments.
1017 */
__propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1018 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1019 bool save, struct ioc_now *now)
1020 {
1021 struct ioc *ioc = iocg->ioc;
1022 int lvl;
1023
1024 lockdep_assert_held(&ioc->lock);
1025
1026 /*
1027 * For an active leaf node, its inuse shouldn't be zero or exceed
1028 * @active. An active internal node's inuse is solely determined by the
1029 * inuse to active ratio of its children regardless of @inuse.
1030 */
1031 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1032 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1033 iocg->child_active_sum);
1034 } else {
1035 inuse = clamp_t(u32, inuse, 1, active);
1036 }
1037
1038 iocg->last_inuse = iocg->inuse;
1039 if (save)
1040 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1041
1042 if (active == iocg->active && inuse == iocg->inuse)
1043 return;
1044
1045 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1046 struct ioc_gq *parent = iocg->ancestors[lvl];
1047 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1048 u32 parent_active = 0, parent_inuse = 0;
1049
1050 /* update the level sums */
1051 parent->child_active_sum += (s32)(active - child->active);
1052 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1053 /* apply the updates */
1054 child->active = active;
1055 child->inuse = inuse;
1056
1057 /*
1058 * The delta between inuse and active sums indicates that
1059 * that much of weight is being given away. Parent's inuse
1060 * and active should reflect the ratio.
1061 */
1062 if (parent->child_active_sum) {
1063 parent_active = parent->weight;
1064 parent_inuse = DIV64_U64_ROUND_UP(
1065 parent_active * parent->child_inuse_sum,
1066 parent->child_active_sum);
1067 }
1068
1069 /* do we need to keep walking up? */
1070 if (parent_active == parent->active &&
1071 parent_inuse == parent->inuse)
1072 break;
1073
1074 active = parent_active;
1075 inuse = parent_inuse;
1076 }
1077
1078 ioc->weights_updated = true;
1079 }
1080
commit_weights(struct ioc * ioc)1081 static void commit_weights(struct ioc *ioc)
1082 {
1083 lockdep_assert_held(&ioc->lock);
1084
1085 if (ioc->weights_updated) {
1086 /* paired with rmb in current_hweight(), see there */
1087 smp_wmb();
1088 atomic_inc(&ioc->hweight_gen);
1089 ioc->weights_updated = false;
1090 }
1091 }
1092
propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1093 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1094 bool save, struct ioc_now *now)
1095 {
1096 __propagate_weights(iocg, active, inuse, save, now);
1097 commit_weights(iocg->ioc);
1098 }
1099
current_hweight(struct ioc_gq * iocg,u32 * hw_activep,u32 * hw_inusep)1100 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1101 {
1102 struct ioc *ioc = iocg->ioc;
1103 int lvl;
1104 u32 hwa, hwi;
1105 int ioc_gen;
1106
1107 /* hot path - if uptodate, use cached */
1108 ioc_gen = atomic_read(&ioc->hweight_gen);
1109 if (ioc_gen == iocg->hweight_gen)
1110 goto out;
1111
1112 /*
1113 * Paired with wmb in commit_weights(). If we saw the updated
1114 * hweight_gen, all the weight updates from __propagate_weights() are
1115 * visible too.
1116 *
1117 * We can race with weight updates during calculation and get it
1118 * wrong. However, hweight_gen would have changed and a future
1119 * reader will recalculate and we're guaranteed to discard the
1120 * wrong result soon.
1121 */
1122 smp_rmb();
1123
1124 hwa = hwi = WEIGHT_ONE;
1125 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1126 struct ioc_gq *parent = iocg->ancestors[lvl];
1127 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1128 u64 active_sum = READ_ONCE(parent->child_active_sum);
1129 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1130 u32 active = READ_ONCE(child->active);
1131 u32 inuse = READ_ONCE(child->inuse);
1132
1133 /* we can race with deactivations and either may read as zero */
1134 if (!active_sum || !inuse_sum)
1135 continue;
1136
1137 active_sum = max_t(u64, active, active_sum);
1138 hwa = div64_u64((u64)hwa * active, active_sum);
1139
1140 inuse_sum = max_t(u64, inuse, inuse_sum);
1141 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1142 }
1143
1144 iocg->hweight_active = max_t(u32, hwa, 1);
1145 iocg->hweight_inuse = max_t(u32, hwi, 1);
1146 iocg->hweight_gen = ioc_gen;
1147 out:
1148 if (hw_activep)
1149 *hw_activep = iocg->hweight_active;
1150 if (hw_inusep)
1151 *hw_inusep = iocg->hweight_inuse;
1152 }
1153
1154 /*
1155 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1156 * other weights stay unchanged.
1157 */
current_hweight_max(struct ioc_gq * iocg)1158 static u32 current_hweight_max(struct ioc_gq *iocg)
1159 {
1160 u32 hwm = WEIGHT_ONE;
1161 u32 inuse = iocg->active;
1162 u64 child_inuse_sum;
1163 int lvl;
1164
1165 lockdep_assert_held(&iocg->ioc->lock);
1166
1167 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1168 struct ioc_gq *parent = iocg->ancestors[lvl];
1169 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1170
1171 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1172 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1173 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1174 parent->child_active_sum);
1175 }
1176
1177 return max_t(u32, hwm, 1);
1178 }
1179
weight_updated(struct ioc_gq * iocg,struct ioc_now * now)1180 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1181 {
1182 struct ioc *ioc = iocg->ioc;
1183 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1184 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1185 u32 weight;
1186
1187 lockdep_assert_held(&ioc->lock);
1188
1189 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1190 if (weight != iocg->weight && iocg->active)
1191 propagate_weights(iocg, weight, iocg->inuse, true, now);
1192 iocg->weight = weight;
1193 }
1194
iocg_activate(struct ioc_gq * iocg,struct ioc_now * now)1195 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1196 {
1197 struct ioc *ioc = iocg->ioc;
1198 u64 last_period, cur_period;
1199 u64 vtime, vtarget;
1200 int i;
1201
1202 /*
1203 * If seem to be already active, just update the stamp to tell the
1204 * timer that we're still active. We don't mind occassional races.
1205 */
1206 if (!list_empty(&iocg->active_list)) {
1207 ioc_now(ioc, now);
1208 cur_period = atomic64_read(&ioc->cur_period);
1209 if (atomic64_read(&iocg->active_period) != cur_period)
1210 atomic64_set(&iocg->active_period, cur_period);
1211 return true;
1212 }
1213
1214 /* racy check on internal node IOs, treat as root level IOs */
1215 if (iocg->child_active_sum)
1216 return false;
1217
1218 spin_lock_irq(&ioc->lock);
1219
1220 ioc_now(ioc, now);
1221
1222 /* update period */
1223 cur_period = atomic64_read(&ioc->cur_period);
1224 last_period = atomic64_read(&iocg->active_period);
1225 atomic64_set(&iocg->active_period, cur_period);
1226
1227 /* already activated or breaking leaf-only constraint? */
1228 if (!list_empty(&iocg->active_list))
1229 goto succeed_unlock;
1230 for (i = iocg->level - 1; i > 0; i--)
1231 if (!list_empty(&iocg->ancestors[i]->active_list))
1232 goto fail_unlock;
1233
1234 if (iocg->child_active_sum)
1235 goto fail_unlock;
1236
1237 /*
1238 * Always start with the target budget. On deactivation, we throw away
1239 * anything above it.
1240 */
1241 vtarget = now->vnow - ioc->margins.target;
1242 vtime = atomic64_read(&iocg->vtime);
1243
1244 atomic64_add(vtarget - vtime, &iocg->vtime);
1245 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1246 vtime = vtarget;
1247
1248 /*
1249 * Activate, propagate weight and start period timer if not
1250 * running. Reset hweight_gen to avoid accidental match from
1251 * wrapping.
1252 */
1253 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1254 list_add(&iocg->active_list, &ioc->active_iocgs);
1255
1256 propagate_weights(iocg, iocg->weight,
1257 iocg->last_inuse ?: iocg->weight, true, now);
1258
1259 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1260 last_period, cur_period, vtime);
1261
1262 iocg->activated_at = now->now;
1263
1264 if (ioc->running == IOC_IDLE) {
1265 ioc->running = IOC_RUNNING;
1266 ioc->dfgv_period_at = now->now;
1267 ioc->dfgv_period_rem = 0;
1268 ioc_start_period(ioc, now);
1269 }
1270
1271 succeed_unlock:
1272 spin_unlock_irq(&ioc->lock);
1273 return true;
1274
1275 fail_unlock:
1276 spin_unlock_irq(&ioc->lock);
1277 return false;
1278 }
1279
iocg_kick_delay(struct ioc_gq * iocg,struct ioc_now * now)1280 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1281 {
1282 struct ioc *ioc = iocg->ioc;
1283 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1284 u64 tdelta, delay, new_delay;
1285 s64 vover, vover_pct;
1286 u32 hwa;
1287
1288 lockdep_assert_held(&iocg->waitq.lock);
1289
1290 /* calculate the current delay in effect - 1/2 every second */
1291 tdelta = now->now - iocg->delay_at;
1292 if (iocg->delay)
1293 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1294 else
1295 delay = 0;
1296
1297 /* calculate the new delay from the debt amount */
1298 current_hweight(iocg, &hwa, NULL);
1299 vover = atomic64_read(&iocg->vtime) +
1300 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1301 vover_pct = div64_s64(100 * vover,
1302 ioc->period_us * ioc->vtime_base_rate);
1303
1304 if (vover_pct <= MIN_DELAY_THR_PCT)
1305 new_delay = 0;
1306 else if (vover_pct >= MAX_DELAY_THR_PCT)
1307 new_delay = MAX_DELAY;
1308 else
1309 new_delay = MIN_DELAY +
1310 div_u64((MAX_DELAY - MIN_DELAY) *
1311 (vover_pct - MIN_DELAY_THR_PCT),
1312 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1313
1314 /* pick the higher one and apply */
1315 if (new_delay > delay) {
1316 iocg->delay = new_delay;
1317 iocg->delay_at = now->now;
1318 delay = new_delay;
1319 }
1320
1321 if (delay >= MIN_DELAY) {
1322 if (!iocg->indelay_since)
1323 iocg->indelay_since = now->now;
1324 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1325 return true;
1326 } else {
1327 if (iocg->indelay_since) {
1328 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1329 iocg->indelay_since = 0;
1330 }
1331 iocg->delay = 0;
1332 blkcg_clear_delay(blkg);
1333 return false;
1334 }
1335 }
1336
iocg_incur_debt(struct ioc_gq * iocg,u64 abs_cost,struct ioc_now * now)1337 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1338 struct ioc_now *now)
1339 {
1340 struct iocg_pcpu_stat *gcs;
1341
1342 lockdep_assert_held(&iocg->ioc->lock);
1343 lockdep_assert_held(&iocg->waitq.lock);
1344 WARN_ON_ONCE(list_empty(&iocg->active_list));
1345
1346 /*
1347 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1348 * inuse donating all of it share to others until its debt is paid off.
1349 */
1350 if (!iocg->abs_vdebt && abs_cost) {
1351 iocg->indebt_since = now->now;
1352 propagate_weights(iocg, iocg->active, 0, false, now);
1353 }
1354
1355 iocg->abs_vdebt += abs_cost;
1356
1357 gcs = get_cpu_ptr(iocg->pcpu_stat);
1358 local64_add(abs_cost, &gcs->abs_vusage);
1359 put_cpu_ptr(gcs);
1360 }
1361
iocg_pay_debt(struct ioc_gq * iocg,u64 abs_vpay,struct ioc_now * now)1362 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1363 struct ioc_now *now)
1364 {
1365 lockdep_assert_held(&iocg->ioc->lock);
1366 lockdep_assert_held(&iocg->waitq.lock);
1367
1368 /* make sure that nobody messed with @iocg */
1369 WARN_ON_ONCE(list_empty(&iocg->active_list));
1370 WARN_ON_ONCE(iocg->inuse > 1);
1371
1372 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1373
1374 /* if debt is paid in full, restore inuse */
1375 if (!iocg->abs_vdebt) {
1376 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1377 iocg->indebt_since = 0;
1378
1379 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1380 false, now);
1381 }
1382 }
1383
iocg_wake_fn(struct wait_queue_entry * wq_entry,unsigned mode,int flags,void * key)1384 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1385 int flags, void *key)
1386 {
1387 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1388 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1389 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1390
1391 ctx->vbudget -= cost;
1392
1393 if (ctx->vbudget < 0)
1394 return -1;
1395
1396 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1397 wait->committed = true;
1398
1399 /*
1400 * autoremove_wake_function() removes the wait entry only when it
1401 * actually changed the task state. We want the wait always removed.
1402 * Remove explicitly and use default_wake_function(). Note that the
1403 * order of operations is important as finish_wait() tests whether
1404 * @wq_entry is removed without grabbing the lock.
1405 */
1406 default_wake_function(wq_entry, mode, flags, key);
1407 list_del_init_careful(&wq_entry->entry);
1408 return 0;
1409 }
1410
1411 /*
1412 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1413 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1414 * addition to iocg->waitq.lock.
1415 */
iocg_kick_waitq(struct ioc_gq * iocg,bool pay_debt,struct ioc_now * now)1416 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1417 struct ioc_now *now)
1418 {
1419 struct ioc *ioc = iocg->ioc;
1420 struct iocg_wake_ctx ctx = { .iocg = iocg };
1421 u64 vshortage, expires, oexpires;
1422 s64 vbudget;
1423 u32 hwa;
1424
1425 lockdep_assert_held(&iocg->waitq.lock);
1426
1427 current_hweight(iocg, &hwa, NULL);
1428 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1429
1430 /* pay off debt */
1431 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1432 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1433 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1434 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1435
1436 lockdep_assert_held(&ioc->lock);
1437
1438 atomic64_add(vpay, &iocg->vtime);
1439 atomic64_add(vpay, &iocg->done_vtime);
1440 iocg_pay_debt(iocg, abs_vpay, now);
1441 vbudget -= vpay;
1442 }
1443
1444 if (iocg->abs_vdebt || iocg->delay)
1445 iocg_kick_delay(iocg, now);
1446
1447 /*
1448 * Debt can still be outstanding if we haven't paid all yet or the
1449 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1450 * under debt. Make sure @vbudget reflects the outstanding amount and is
1451 * not positive.
1452 */
1453 if (iocg->abs_vdebt) {
1454 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1455 vbudget = min_t(s64, 0, vbudget - vdebt);
1456 }
1457
1458 /*
1459 * Wake up the ones which are due and see how much vtime we'll need for
1460 * the next one. As paying off debt restores hw_inuse, it must be read
1461 * after the above debt payment.
1462 */
1463 ctx.vbudget = vbudget;
1464 current_hweight(iocg, NULL, &ctx.hw_inuse);
1465
1466 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1467
1468 if (!waitqueue_active(&iocg->waitq)) {
1469 if (iocg->wait_since) {
1470 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1471 iocg->wait_since = 0;
1472 }
1473 return;
1474 }
1475
1476 if (!iocg->wait_since)
1477 iocg->wait_since = now->now;
1478
1479 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1480 return;
1481
1482 /* determine next wakeup, add a timer margin to guarantee chunking */
1483 vshortage = -ctx.vbudget;
1484 expires = now->now_ns +
1485 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1486 NSEC_PER_USEC;
1487 expires += ioc->timer_slack_ns;
1488
1489 /* if already active and close enough, don't bother */
1490 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1491 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1492 abs(oexpires - expires) <= ioc->timer_slack_ns)
1493 return;
1494
1495 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1496 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1497 }
1498
iocg_waitq_timer_fn(struct hrtimer * timer)1499 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1500 {
1501 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1502 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1503 struct ioc_now now;
1504 unsigned long flags;
1505
1506 ioc_now(iocg->ioc, &now);
1507
1508 iocg_lock(iocg, pay_debt, &flags);
1509 iocg_kick_waitq(iocg, pay_debt, &now);
1510 iocg_unlock(iocg, pay_debt, &flags);
1511
1512 return HRTIMER_NORESTART;
1513 }
1514
ioc_lat_stat(struct ioc * ioc,u32 * missed_ppm_ar,u32 * rq_wait_pct_p)1515 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1516 {
1517 u32 nr_met[2] = { };
1518 u32 nr_missed[2] = { };
1519 u64 rq_wait_ns = 0;
1520 int cpu, rw;
1521
1522 for_each_online_cpu(cpu) {
1523 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1524 u64 this_rq_wait_ns;
1525
1526 for (rw = READ; rw <= WRITE; rw++) {
1527 u32 this_met = local_read(&stat->missed[rw].nr_met);
1528 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1529
1530 nr_met[rw] += this_met - stat->missed[rw].last_met;
1531 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1532 stat->missed[rw].last_met = this_met;
1533 stat->missed[rw].last_missed = this_missed;
1534 }
1535
1536 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1537 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1538 stat->last_rq_wait_ns = this_rq_wait_ns;
1539 }
1540
1541 for (rw = READ; rw <= WRITE; rw++) {
1542 if (nr_met[rw] + nr_missed[rw])
1543 missed_ppm_ar[rw] =
1544 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1545 nr_met[rw] + nr_missed[rw]);
1546 else
1547 missed_ppm_ar[rw] = 0;
1548 }
1549
1550 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1551 ioc->period_us * NSEC_PER_USEC);
1552 }
1553
1554 /* was iocg idle this period? */
iocg_is_idle(struct ioc_gq * iocg)1555 static bool iocg_is_idle(struct ioc_gq *iocg)
1556 {
1557 struct ioc *ioc = iocg->ioc;
1558
1559 /* did something get issued this period? */
1560 if (atomic64_read(&iocg->active_period) ==
1561 atomic64_read(&ioc->cur_period))
1562 return false;
1563
1564 /* is something in flight? */
1565 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1566 return false;
1567
1568 return true;
1569 }
1570
1571 /*
1572 * Call this function on the target leaf @iocg's to build pre-order traversal
1573 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1574 * ->walk_list and the caller is responsible for dissolving the list after use.
1575 */
iocg_build_inner_walk(struct ioc_gq * iocg,struct list_head * inner_walk)1576 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1577 struct list_head *inner_walk)
1578 {
1579 int lvl;
1580
1581 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1582
1583 /* find the first ancestor which hasn't been visited yet */
1584 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1585 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1586 break;
1587 }
1588
1589 /* walk down and visit the inner nodes to get pre-order traversal */
1590 while (++lvl <= iocg->level - 1) {
1591 struct ioc_gq *inner = iocg->ancestors[lvl];
1592
1593 /* record traversal order */
1594 list_add_tail(&inner->walk_list, inner_walk);
1595 }
1596 }
1597
1598 /* collect per-cpu counters and propagate the deltas to the parent */
iocg_flush_stat_one(struct ioc_gq * iocg,struct ioc_now * now)1599 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1600 {
1601 struct ioc *ioc = iocg->ioc;
1602 struct iocg_stat new_stat;
1603 u64 abs_vusage = 0;
1604 u64 vusage_delta;
1605 int cpu;
1606
1607 lockdep_assert_held(&iocg->ioc->lock);
1608
1609 /* collect per-cpu counters */
1610 for_each_possible_cpu(cpu) {
1611 abs_vusage += local64_read(
1612 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1613 }
1614 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1615 iocg->last_stat_abs_vusage = abs_vusage;
1616
1617 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1618 iocg->local_stat.usage_us += iocg->usage_delta_us;
1619
1620 /* propagate upwards */
1621 new_stat.usage_us =
1622 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1623 new_stat.wait_us =
1624 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1625 new_stat.indebt_us =
1626 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1627 new_stat.indelay_us =
1628 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1629
1630 /* propagate the deltas to the parent */
1631 if (iocg->level > 0) {
1632 struct iocg_stat *parent_stat =
1633 &iocg->ancestors[iocg->level - 1]->desc_stat;
1634
1635 parent_stat->usage_us +=
1636 new_stat.usage_us - iocg->last_stat.usage_us;
1637 parent_stat->wait_us +=
1638 new_stat.wait_us - iocg->last_stat.wait_us;
1639 parent_stat->indebt_us +=
1640 new_stat.indebt_us - iocg->last_stat.indebt_us;
1641 parent_stat->indelay_us +=
1642 new_stat.indelay_us - iocg->last_stat.indelay_us;
1643 }
1644
1645 iocg->last_stat = new_stat;
1646 }
1647
1648 /* get stat counters ready for reading on all active iocgs */
iocg_flush_stat(struct list_head * target_iocgs,struct ioc_now * now)1649 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1650 {
1651 LIST_HEAD(inner_walk);
1652 struct ioc_gq *iocg, *tiocg;
1653
1654 /* flush leaves and build inner node walk list */
1655 list_for_each_entry(iocg, target_iocgs, active_list) {
1656 iocg_flush_stat_one(iocg, now);
1657 iocg_build_inner_walk(iocg, &inner_walk);
1658 }
1659
1660 /* keep flushing upwards by walking the inner list backwards */
1661 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1662 iocg_flush_stat_one(iocg, now);
1663 list_del_init(&iocg->walk_list);
1664 }
1665 }
1666
1667 /*
1668 * Determine what @iocg's hweight_inuse should be after donating unused
1669 * capacity. @hwm is the upper bound and used to signal no donation. This
1670 * function also throws away @iocg's excess budget.
1671 */
hweight_after_donation(struct ioc_gq * iocg,u32 old_hwi,u32 hwm,u32 usage,struct ioc_now * now)1672 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1673 u32 usage, struct ioc_now *now)
1674 {
1675 struct ioc *ioc = iocg->ioc;
1676 u64 vtime = atomic64_read(&iocg->vtime);
1677 s64 excess, delta, target, new_hwi;
1678
1679 /* debt handling owns inuse for debtors */
1680 if (iocg->abs_vdebt)
1681 return 1;
1682
1683 /* see whether minimum margin requirement is met */
1684 if (waitqueue_active(&iocg->waitq) ||
1685 time_after64(vtime, now->vnow - ioc->margins.min))
1686 return hwm;
1687
1688 /* throw away excess above target */
1689 excess = now->vnow - vtime - ioc->margins.target;
1690 if (excess > 0) {
1691 atomic64_add(excess, &iocg->vtime);
1692 atomic64_add(excess, &iocg->done_vtime);
1693 vtime += excess;
1694 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1695 }
1696
1697 /*
1698 * Let's say the distance between iocg's and device's vtimes as a
1699 * fraction of period duration is delta. Assuming that the iocg will
1700 * consume the usage determined above, we want to determine new_hwi so
1701 * that delta equals MARGIN_TARGET at the end of the next period.
1702 *
1703 * We need to execute usage worth of IOs while spending the sum of the
1704 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1705 * (delta):
1706 *
1707 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1708 *
1709 * Therefore, the new_hwi is:
1710 *
1711 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1712 */
1713 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1714 now->vnow - ioc->period_at_vtime);
1715 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1716 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1717
1718 return clamp_t(s64, new_hwi, 1, hwm);
1719 }
1720
1721 /*
1722 * For work-conservation, an iocg which isn't using all of its share should
1723 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1724 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1725 *
1726 * #1 is mathematically simpler but has the drawback of requiring synchronous
1727 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1728 * change due to donation snapbacks as it has the possibility of grossly
1729 * overshooting what's allowed by the model and vrate.
1730 *
1731 * #2 is inherently safe with local operations. The donating iocg can easily
1732 * snap back to higher weights when needed without worrying about impacts on
1733 * other nodes as the impacts will be inherently correct. This also makes idle
1734 * iocg activations safe. The only effect activations have is decreasing
1735 * hweight_inuse of others, the right solution to which is for those iocgs to
1736 * snap back to higher weights.
1737 *
1738 * So, we go with #2. The challenge is calculating how each donating iocg's
1739 * inuse should be adjusted to achieve the target donation amounts. This is done
1740 * using Andy's method described in the following pdf.
1741 *
1742 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1743 *
1744 * Given the weights and target after-donation hweight_inuse values, Andy's
1745 * method determines how the proportional distribution should look like at each
1746 * sibling level to maintain the relative relationship between all non-donating
1747 * pairs. To roughly summarize, it divides the tree into donating and
1748 * non-donating parts, calculates global donation rate which is used to
1749 * determine the target hweight_inuse for each node, and then derives per-level
1750 * proportions.
1751 *
1752 * The following pdf shows that global distribution calculated this way can be
1753 * achieved by scaling inuse weights of donating leaves and propagating the
1754 * adjustments upwards proportionally.
1755 *
1756 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1757 *
1758 * Combining the above two, we can determine how each leaf iocg's inuse should
1759 * be adjusted to achieve the target donation.
1760 *
1761 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1762 *
1763 * The inline comments use symbols from the last pdf.
1764 *
1765 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1766 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1767 * t is the sum of the absolute budgets of donating nodes in the subtree.
1768 * w is the weight of the node. w = w_f + w_t
1769 * w_f is the non-donating portion of w. w_f = w * f / b
1770 * w_b is the donating portion of w. w_t = w * t / b
1771 * s is the sum of all sibling weights. s = Sum(w) for siblings
1772 * s_f and s_t are the non-donating and donating portions of s.
1773 *
1774 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1775 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1776 * after adjustments. Subscript r denotes the root node's values.
1777 */
transfer_surpluses(struct list_head * surpluses,struct ioc_now * now)1778 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1779 {
1780 LIST_HEAD(over_hwa);
1781 LIST_HEAD(inner_walk);
1782 struct ioc_gq *iocg, *tiocg, *root_iocg;
1783 u32 after_sum, over_sum, over_target, gamma;
1784
1785 /*
1786 * It's pretty unlikely but possible for the total sum of
1787 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1788 * confuse the following calculations. If such condition is detected,
1789 * scale down everyone over its full share equally to keep the sum below
1790 * WEIGHT_ONE.
1791 */
1792 after_sum = 0;
1793 over_sum = 0;
1794 list_for_each_entry(iocg, surpluses, surplus_list) {
1795 u32 hwa;
1796
1797 current_hweight(iocg, &hwa, NULL);
1798 after_sum += iocg->hweight_after_donation;
1799
1800 if (iocg->hweight_after_donation > hwa) {
1801 over_sum += iocg->hweight_after_donation;
1802 list_add(&iocg->walk_list, &over_hwa);
1803 }
1804 }
1805
1806 if (after_sum >= WEIGHT_ONE) {
1807 /*
1808 * The delta should be deducted from the over_sum, calculate
1809 * target over_sum value.
1810 */
1811 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1812 WARN_ON_ONCE(over_sum <= over_delta);
1813 over_target = over_sum - over_delta;
1814 } else {
1815 over_target = 0;
1816 }
1817
1818 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1819 if (over_target)
1820 iocg->hweight_after_donation =
1821 div_u64((u64)iocg->hweight_after_donation *
1822 over_target, over_sum);
1823 list_del_init(&iocg->walk_list);
1824 }
1825
1826 /*
1827 * Build pre-order inner node walk list and prepare for donation
1828 * adjustment calculations.
1829 */
1830 list_for_each_entry(iocg, surpluses, surplus_list) {
1831 iocg_build_inner_walk(iocg, &inner_walk);
1832 }
1833
1834 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1835 WARN_ON_ONCE(root_iocg->level > 0);
1836
1837 list_for_each_entry(iocg, &inner_walk, walk_list) {
1838 iocg->child_adjusted_sum = 0;
1839 iocg->hweight_donating = 0;
1840 iocg->hweight_after_donation = 0;
1841 }
1842
1843 /*
1844 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1845 * up the hierarchy.
1846 */
1847 list_for_each_entry(iocg, surpluses, surplus_list) {
1848 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1849
1850 parent->hweight_donating += iocg->hweight_donating;
1851 parent->hweight_after_donation += iocg->hweight_after_donation;
1852 }
1853
1854 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1855 if (iocg->level > 0) {
1856 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1857
1858 parent->hweight_donating += iocg->hweight_donating;
1859 parent->hweight_after_donation += iocg->hweight_after_donation;
1860 }
1861 }
1862
1863 /*
1864 * Calculate inner hwa's (b) and make sure the donation values are
1865 * within the accepted ranges as we're doing low res calculations with
1866 * roundups.
1867 */
1868 list_for_each_entry(iocg, &inner_walk, walk_list) {
1869 if (iocg->level) {
1870 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1871
1872 iocg->hweight_active = DIV64_U64_ROUND_UP(
1873 (u64)parent->hweight_active * iocg->active,
1874 parent->child_active_sum);
1875
1876 }
1877
1878 iocg->hweight_donating = min(iocg->hweight_donating,
1879 iocg->hweight_active);
1880 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1881 iocg->hweight_donating - 1);
1882 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1883 iocg->hweight_donating <= 1 ||
1884 iocg->hweight_after_donation == 0)) {
1885 pr_warn("iocg: invalid donation weights in ");
1886 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1887 pr_cont(": active=%u donating=%u after=%u\n",
1888 iocg->hweight_active, iocg->hweight_donating,
1889 iocg->hweight_after_donation);
1890 }
1891 }
1892
1893 /*
1894 * Calculate the global donation rate (gamma) - the rate to adjust
1895 * non-donating budgets by.
1896 *
1897 * No need to use 64bit multiplication here as the first operand is
1898 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1899 *
1900 * We know that there are beneficiary nodes and the sum of the donating
1901 * hweights can't be whole; however, due to the round-ups during hweight
1902 * calculations, root_iocg->hweight_donating might still end up equal to
1903 * or greater than whole. Limit the range when calculating the divider.
1904 *
1905 * gamma = (1 - t_r') / (1 - t_r)
1906 */
1907 gamma = DIV_ROUND_UP(
1908 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1909 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1910
1911 /*
1912 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1913 * nodes.
1914 */
1915 list_for_each_entry(iocg, &inner_walk, walk_list) {
1916 struct ioc_gq *parent;
1917 u32 inuse, wpt, wptp;
1918 u64 st, sf;
1919
1920 if (iocg->level == 0) {
1921 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1922 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1923 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1924 WEIGHT_ONE - iocg->hweight_after_donation);
1925 continue;
1926 }
1927
1928 parent = iocg->ancestors[iocg->level - 1];
1929
1930 /* b' = gamma * b_f + b_t' */
1931 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1932 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1933 WEIGHT_ONE) + iocg->hweight_after_donation;
1934
1935 /* w' = s' * b' / b'_p */
1936 inuse = DIV64_U64_ROUND_UP(
1937 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1938 parent->hweight_inuse);
1939
1940 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1941 st = DIV64_U64_ROUND_UP(
1942 iocg->child_active_sum * iocg->hweight_donating,
1943 iocg->hweight_active);
1944 sf = iocg->child_active_sum - st;
1945 wpt = DIV64_U64_ROUND_UP(
1946 (u64)iocg->active * iocg->hweight_donating,
1947 iocg->hweight_active);
1948 wptp = DIV64_U64_ROUND_UP(
1949 (u64)inuse * iocg->hweight_after_donation,
1950 iocg->hweight_inuse);
1951
1952 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1953 }
1954
1955 /*
1956 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1957 * we can finally determine leaf adjustments.
1958 */
1959 list_for_each_entry(iocg, surpluses, surplus_list) {
1960 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1961 u32 inuse;
1962
1963 /*
1964 * In-debt iocgs participated in the donation calculation with
1965 * the minimum target hweight_inuse. Configuring inuse
1966 * accordingly would work fine but debt handling expects
1967 * @iocg->inuse stay at the minimum and we don't wanna
1968 * interfere.
1969 */
1970 if (iocg->abs_vdebt) {
1971 WARN_ON_ONCE(iocg->inuse > 1);
1972 continue;
1973 }
1974
1975 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1976 inuse = DIV64_U64_ROUND_UP(
1977 parent->child_adjusted_sum * iocg->hweight_after_donation,
1978 parent->hweight_inuse);
1979
1980 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1981 iocg->inuse, inuse,
1982 iocg->hweight_inuse,
1983 iocg->hweight_after_donation);
1984
1985 __propagate_weights(iocg, iocg->active, inuse, true, now);
1986 }
1987
1988 /* walk list should be dissolved after use */
1989 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1990 list_del_init(&iocg->walk_list);
1991 }
1992
1993 /*
1994 * A low weight iocg can amass a large amount of debt, for example, when
1995 * anonymous memory gets reclaimed aggressively. If the system has a lot of
1996 * memory paired with a slow IO device, the debt can span multiple seconds or
1997 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
1998 * up blocked paying its debt while the IO device is idle.
1999 *
2000 * The following protects against such cases. If the device has been
2001 * sufficiently idle for a while, the debts are halved and delays are
2002 * recalculated.
2003 */
ioc_forgive_debts(struct ioc * ioc,u64 usage_us_sum,int nr_debtors,struct ioc_now * now)2004 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2005 struct ioc_now *now)
2006 {
2007 struct ioc_gq *iocg;
2008 u64 dur, usage_pct, nr_cycles;
2009
2010 /* if no debtor, reset the cycle */
2011 if (!nr_debtors) {
2012 ioc->dfgv_period_at = now->now;
2013 ioc->dfgv_period_rem = 0;
2014 ioc->dfgv_usage_us_sum = 0;
2015 return;
2016 }
2017
2018 /*
2019 * Debtors can pass through a lot of writes choking the device and we
2020 * don't want to be forgiving debts while the device is struggling from
2021 * write bursts. If we're missing latency targets, consider the device
2022 * fully utilized.
2023 */
2024 if (ioc->busy_level > 0)
2025 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2026
2027 ioc->dfgv_usage_us_sum += usage_us_sum;
2028 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2029 return;
2030
2031 /*
2032 * At least DFGV_PERIOD has passed since the last period. Calculate the
2033 * average usage and reset the period counters.
2034 */
2035 dur = now->now - ioc->dfgv_period_at;
2036 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2037
2038 ioc->dfgv_period_at = now->now;
2039 ioc->dfgv_usage_us_sum = 0;
2040
2041 /* if was too busy, reset everything */
2042 if (usage_pct > DFGV_USAGE_PCT) {
2043 ioc->dfgv_period_rem = 0;
2044 return;
2045 }
2046
2047 /*
2048 * Usage is lower than threshold. Let's forgive some debts. Debt
2049 * forgiveness runs off of the usual ioc timer but its period usually
2050 * doesn't match ioc's. Compensate the difference by performing the
2051 * reduction as many times as would fit in the duration since the last
2052 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2053 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2054 * reductions is doubled.
2055 */
2056 nr_cycles = dur + ioc->dfgv_period_rem;
2057 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2058
2059 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2060 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2061
2062 if (!iocg->abs_vdebt && !iocg->delay)
2063 continue;
2064
2065 spin_lock(&iocg->waitq.lock);
2066
2067 old_debt = iocg->abs_vdebt;
2068 old_delay = iocg->delay;
2069
2070 if (iocg->abs_vdebt)
2071 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2072 if (iocg->delay)
2073 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2074
2075 iocg_kick_waitq(iocg, true, now);
2076
2077 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2078 old_debt, iocg->abs_vdebt,
2079 old_delay, iocg->delay);
2080
2081 spin_unlock(&iocg->waitq.lock);
2082 }
2083 }
2084
ioc_timer_fn(struct timer_list * timer)2085 static void ioc_timer_fn(struct timer_list *timer)
2086 {
2087 struct ioc *ioc = container_of(timer, struct ioc, timer);
2088 struct ioc_gq *iocg, *tiocg;
2089 struct ioc_now now;
2090 LIST_HEAD(surpluses);
2091 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2092 u64 usage_us_sum = 0;
2093 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2094 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2095 u32 missed_ppm[2], rq_wait_pct;
2096 u64 period_vtime;
2097 int prev_busy_level;
2098
2099 /* how were the latencies during the period? */
2100 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2101
2102 /* take care of active iocgs */
2103 spin_lock_irq(&ioc->lock);
2104
2105 ioc_now(ioc, &now);
2106
2107 period_vtime = now.vnow - ioc->period_at_vtime;
2108 if (WARN_ON_ONCE(!period_vtime)) {
2109 spin_unlock_irq(&ioc->lock);
2110 return;
2111 }
2112
2113 /*
2114 * Waiters determine the sleep durations based on the vrate they
2115 * saw at the time of sleep. If vrate has increased, some waiters
2116 * could be sleeping for too long. Wake up tardy waiters which
2117 * should have woken up in the last period and expire idle iocgs.
2118 */
2119 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2120 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2121 !iocg->delay && !iocg_is_idle(iocg))
2122 continue;
2123
2124 spin_lock(&iocg->waitq.lock);
2125
2126 /* flush wait and indebt stat deltas */
2127 if (iocg->wait_since) {
2128 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2129 iocg->wait_since = now.now;
2130 }
2131 if (iocg->indebt_since) {
2132 iocg->local_stat.indebt_us +=
2133 now.now - iocg->indebt_since;
2134 iocg->indebt_since = now.now;
2135 }
2136 if (iocg->indelay_since) {
2137 iocg->local_stat.indelay_us +=
2138 now.now - iocg->indelay_since;
2139 iocg->indelay_since = now.now;
2140 }
2141
2142 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2143 iocg->delay) {
2144 /* might be oversleeping vtime / hweight changes, kick */
2145 iocg_kick_waitq(iocg, true, &now);
2146 if (iocg->abs_vdebt || iocg->delay)
2147 nr_debtors++;
2148 } else if (iocg_is_idle(iocg)) {
2149 /* no waiter and idle, deactivate */
2150 u64 vtime = atomic64_read(&iocg->vtime);
2151 s64 excess;
2152
2153 /*
2154 * @iocg has been inactive for a full duration and will
2155 * have a high budget. Account anything above target as
2156 * error and throw away. On reactivation, it'll start
2157 * with the target budget.
2158 */
2159 excess = now.vnow - vtime - ioc->margins.target;
2160 if (excess > 0) {
2161 u32 old_hwi;
2162
2163 current_hweight(iocg, NULL, &old_hwi);
2164 ioc->vtime_err -= div64_u64(excess * old_hwi,
2165 WEIGHT_ONE);
2166 }
2167
2168 __propagate_weights(iocg, 0, 0, false, &now);
2169 list_del_init(&iocg->active_list);
2170 }
2171
2172 spin_unlock(&iocg->waitq.lock);
2173 }
2174 commit_weights(ioc);
2175
2176 /*
2177 * Wait and indebt stat are flushed above and the donation calculation
2178 * below needs updated usage stat. Let's bring stat up-to-date.
2179 */
2180 iocg_flush_stat(&ioc->active_iocgs, &now);
2181
2182 /* calc usage and see whether some weights need to be moved around */
2183 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2184 u64 vdone, vtime, usage_us, usage_dur;
2185 u32 usage, hw_active, hw_inuse;
2186
2187 /*
2188 * Collect unused and wind vtime closer to vnow to prevent
2189 * iocgs from accumulating a large amount of budget.
2190 */
2191 vdone = atomic64_read(&iocg->done_vtime);
2192 vtime = atomic64_read(&iocg->vtime);
2193 current_hweight(iocg, &hw_active, &hw_inuse);
2194
2195 /*
2196 * Latency QoS detection doesn't account for IOs which are
2197 * in-flight for longer than a period. Detect them by
2198 * comparing vdone against period start. If lagging behind
2199 * IOs from past periods, don't increase vrate.
2200 */
2201 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2202 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2203 time_after64(vtime, vdone) &&
2204 time_after64(vtime, now.vnow -
2205 MAX_LAGGING_PERIODS * period_vtime) &&
2206 time_before64(vdone, now.vnow - period_vtime))
2207 nr_lagging++;
2208
2209 /*
2210 * Determine absolute usage factoring in in-flight IOs to avoid
2211 * high-latency completions appearing as idle.
2212 */
2213 usage_us = iocg->usage_delta_us;
2214 usage_us_sum += usage_us;
2215
2216 if (vdone != vtime) {
2217 u64 inflight_us = DIV64_U64_ROUND_UP(
2218 cost_to_abs_cost(vtime - vdone, hw_inuse),
2219 ioc->vtime_base_rate);
2220 usage_us = max(usage_us, inflight_us);
2221 }
2222
2223 /* convert to hweight based usage ratio */
2224 if (time_after64(iocg->activated_at, ioc->period_at))
2225 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2226 else
2227 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2228
2229 usage = clamp_t(u32,
2230 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2231 usage_dur),
2232 1, WEIGHT_ONE);
2233
2234 /* see whether there's surplus vtime */
2235 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2236 if (hw_inuse < hw_active ||
2237 (!waitqueue_active(&iocg->waitq) &&
2238 time_before64(vtime, now.vnow - ioc->margins.low))) {
2239 u32 hwa, old_hwi, hwm, new_hwi;
2240
2241 /*
2242 * Already donating or accumulated enough to start.
2243 * Determine the donation amount.
2244 */
2245 current_hweight(iocg, &hwa, &old_hwi);
2246 hwm = current_hweight_max(iocg);
2247 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2248 usage, &now);
2249 /*
2250 * Donation calculation assumes hweight_after_donation
2251 * to be positive, a condition that a donor w/ hwa < 2
2252 * can't meet. Don't bother with donation if hwa is
2253 * below 2. It's not gonna make a meaningful difference
2254 * anyway.
2255 */
2256 if (new_hwi < hwm && hwa >= 2) {
2257 iocg->hweight_donating = hwa;
2258 iocg->hweight_after_donation = new_hwi;
2259 list_add(&iocg->surplus_list, &surpluses);
2260 } else {
2261 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2262 iocg->inuse, iocg->active,
2263 iocg->hweight_inuse, new_hwi);
2264
2265 __propagate_weights(iocg, iocg->active,
2266 iocg->active, true, &now);
2267 nr_shortages++;
2268 }
2269 } else {
2270 /* genuinely short on vtime */
2271 nr_shortages++;
2272 }
2273 }
2274
2275 if (!list_empty(&surpluses) && nr_shortages)
2276 transfer_surpluses(&surpluses, &now);
2277
2278 commit_weights(ioc);
2279
2280 /* surplus list should be dissolved after use */
2281 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2282 list_del_init(&iocg->surplus_list);
2283
2284 /*
2285 * If q is getting clogged or we're missing too much, we're issuing
2286 * too much IO and should lower vtime rate. If we're not missing
2287 * and experiencing shortages but not surpluses, we're too stingy
2288 * and should increase vtime rate.
2289 */
2290 prev_busy_level = ioc->busy_level;
2291 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2292 missed_ppm[READ] > ppm_rthr ||
2293 missed_ppm[WRITE] > ppm_wthr) {
2294 /* clearly missing QoS targets, slow down vrate */
2295 ioc->busy_level = max(ioc->busy_level, 0);
2296 ioc->busy_level++;
2297 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2298 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2299 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2300 /* QoS targets are being met with >25% margin */
2301 if (nr_shortages) {
2302 /*
2303 * We're throttling while the device has spare
2304 * capacity. If vrate was being slowed down, stop.
2305 */
2306 ioc->busy_level = min(ioc->busy_level, 0);
2307
2308 /*
2309 * If there are IOs spanning multiple periods, wait
2310 * them out before pushing the device harder.
2311 */
2312 if (!nr_lagging)
2313 ioc->busy_level--;
2314 } else {
2315 /*
2316 * Nobody is being throttled and the users aren't
2317 * issuing enough IOs to saturate the device. We
2318 * simply don't know how close the device is to
2319 * saturation. Coast.
2320 */
2321 ioc->busy_level = 0;
2322 }
2323 } else {
2324 /* inside the hysterisis margin, we're good */
2325 ioc->busy_level = 0;
2326 }
2327
2328 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2329
2330 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2331 u64 vrate = ioc->vtime_base_rate;
2332 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2333
2334 /* rq_wait signal is always reliable, ignore user vrate_min */
2335 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2336 vrate_min = VRATE_MIN;
2337
2338 /*
2339 * If vrate is out of bounds, apply clamp gradually as the
2340 * bounds can change abruptly. Otherwise, apply busy_level
2341 * based adjustment.
2342 */
2343 if (vrate < vrate_min) {
2344 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2345 100);
2346 vrate = min(vrate, vrate_min);
2347 } else if (vrate > vrate_max) {
2348 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2349 100);
2350 vrate = max(vrate, vrate_max);
2351 } else {
2352 int idx = min_t(int, abs(ioc->busy_level),
2353 ARRAY_SIZE(vrate_adj_pct) - 1);
2354 u32 adj_pct = vrate_adj_pct[idx];
2355
2356 if (ioc->busy_level > 0)
2357 adj_pct = 100 - adj_pct;
2358 else
2359 adj_pct = 100 + adj_pct;
2360
2361 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2362 vrate_min, vrate_max);
2363 }
2364
2365 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2366 nr_lagging, nr_shortages);
2367
2368 ioc->vtime_base_rate = vrate;
2369 ioc_refresh_margins(ioc);
2370 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2371 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2372 missed_ppm, rq_wait_pct, nr_lagging,
2373 nr_shortages);
2374 }
2375
2376 ioc_refresh_params(ioc, false);
2377
2378 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2379
2380 /*
2381 * This period is done. Move onto the next one. If nothing's
2382 * going on with the device, stop the timer.
2383 */
2384 atomic64_inc(&ioc->cur_period);
2385
2386 if (ioc->running != IOC_STOP) {
2387 if (!list_empty(&ioc->active_iocgs)) {
2388 ioc_start_period(ioc, &now);
2389 } else {
2390 ioc->busy_level = 0;
2391 ioc->vtime_err = 0;
2392 ioc->running = IOC_IDLE;
2393 }
2394
2395 ioc_refresh_vrate(ioc, &now);
2396 }
2397
2398 spin_unlock_irq(&ioc->lock);
2399 }
2400
adjust_inuse_and_calc_cost(struct ioc_gq * iocg,u64 vtime,u64 abs_cost,struct ioc_now * now)2401 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2402 u64 abs_cost, struct ioc_now *now)
2403 {
2404 struct ioc *ioc = iocg->ioc;
2405 struct ioc_margins *margins = &ioc->margins;
2406 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2407 u32 hwi, adj_step;
2408 s64 margin;
2409 u64 cost, new_inuse;
2410
2411 current_hweight(iocg, NULL, &hwi);
2412 old_hwi = hwi;
2413 cost = abs_cost_to_cost(abs_cost, hwi);
2414 margin = now->vnow - vtime - cost;
2415
2416 /* debt handling owns inuse for debtors */
2417 if (iocg->abs_vdebt)
2418 return cost;
2419
2420 /*
2421 * We only increase inuse during period and do so iff the margin has
2422 * deteriorated since the previous adjustment.
2423 */
2424 if (margin >= iocg->saved_margin || margin >= margins->low ||
2425 iocg->inuse == iocg->active)
2426 return cost;
2427
2428 spin_lock_irq(&ioc->lock);
2429
2430 /* we own inuse only when @iocg is in the normal active state */
2431 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2432 spin_unlock_irq(&ioc->lock);
2433 return cost;
2434 }
2435
2436 /*
2437 * Bump up inuse till @abs_cost fits in the existing budget.
2438 * adj_step must be determined after acquiring ioc->lock - we might
2439 * have raced and lost to another thread for activation and could
2440 * be reading 0 iocg->active before ioc->lock which will lead to
2441 * infinite loop.
2442 */
2443 new_inuse = iocg->inuse;
2444 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2445 do {
2446 new_inuse = new_inuse + adj_step;
2447 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2448 current_hweight(iocg, NULL, &hwi);
2449 cost = abs_cost_to_cost(abs_cost, hwi);
2450 } while (time_after64(vtime + cost, now->vnow) &&
2451 iocg->inuse != iocg->active);
2452
2453 spin_unlock_irq(&ioc->lock);
2454
2455 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2456 old_inuse, iocg->inuse, old_hwi, hwi);
2457
2458 return cost;
2459 }
2460
calc_vtime_cost_builtin(struct bio * bio,struct ioc_gq * iocg,bool is_merge,u64 * costp)2461 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2462 bool is_merge, u64 *costp)
2463 {
2464 struct ioc *ioc = iocg->ioc;
2465 u64 coef_seqio, coef_randio, coef_page;
2466 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2467 u64 seek_pages = 0;
2468 u64 cost = 0;
2469
2470 switch (bio_op(bio)) {
2471 case REQ_OP_READ:
2472 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2473 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2474 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2475 break;
2476 case REQ_OP_WRITE:
2477 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2478 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2479 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2480 break;
2481 default:
2482 goto out;
2483 }
2484
2485 if (iocg->cursor) {
2486 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2487 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2488 }
2489
2490 if (!is_merge) {
2491 if (seek_pages > LCOEF_RANDIO_PAGES) {
2492 cost += coef_randio;
2493 } else {
2494 cost += coef_seqio;
2495 }
2496 }
2497 cost += pages * coef_page;
2498 out:
2499 *costp = cost;
2500 }
2501
calc_vtime_cost(struct bio * bio,struct ioc_gq * iocg,bool is_merge)2502 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2503 {
2504 u64 cost;
2505
2506 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2507 return cost;
2508 }
2509
calc_size_vtime_cost_builtin(struct request * rq,struct ioc * ioc,u64 * costp)2510 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2511 u64 *costp)
2512 {
2513 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2514
2515 switch (req_op(rq)) {
2516 case REQ_OP_READ:
2517 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2518 break;
2519 case REQ_OP_WRITE:
2520 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2521 break;
2522 default:
2523 *costp = 0;
2524 }
2525 }
2526
calc_size_vtime_cost(struct request * rq,struct ioc * ioc)2527 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2528 {
2529 u64 cost;
2530
2531 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2532 return cost;
2533 }
2534
ioc_rqos_throttle(struct rq_qos * rqos,struct bio * bio)2535 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2536 {
2537 struct blkcg_gq *blkg = bio->bi_blkg;
2538 struct ioc *ioc = rqos_to_ioc(rqos);
2539 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2540 struct ioc_now now;
2541 struct iocg_wait wait;
2542 u64 abs_cost, cost, vtime;
2543 bool use_debt, ioc_locked;
2544 unsigned long flags;
2545
2546 /* bypass IOs if disabled, still initializing, or for root cgroup */
2547 if (!ioc->enabled || !iocg || !iocg->level)
2548 return;
2549
2550 /* calculate the absolute vtime cost */
2551 abs_cost = calc_vtime_cost(bio, iocg, false);
2552 if (!abs_cost)
2553 return;
2554
2555 if (!iocg_activate(iocg, &now))
2556 return;
2557
2558 iocg->cursor = bio_end_sector(bio);
2559 vtime = atomic64_read(&iocg->vtime);
2560 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2561
2562 /*
2563 * If no one's waiting and within budget, issue right away. The
2564 * tests are racy but the races aren't systemic - we only miss once
2565 * in a while which is fine.
2566 */
2567 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2568 time_before_eq64(vtime + cost, now.vnow)) {
2569 iocg_commit_bio(iocg, bio, abs_cost, cost);
2570 return;
2571 }
2572
2573 /*
2574 * We're over budget. This can be handled in two ways. IOs which may
2575 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2576 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2577 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2578 * whether debt handling is needed and acquire locks accordingly.
2579 */
2580 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2581 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2582 retry_lock:
2583 iocg_lock(iocg, ioc_locked, &flags);
2584
2585 /*
2586 * @iocg must stay activated for debt and waitq handling. Deactivation
2587 * is synchronized against both ioc->lock and waitq.lock and we won't
2588 * get deactivated as long as we're waiting or has debt, so we're good
2589 * if we're activated here. In the unlikely cases that we aren't, just
2590 * issue the IO.
2591 */
2592 if (unlikely(list_empty(&iocg->active_list))) {
2593 iocg_unlock(iocg, ioc_locked, &flags);
2594 iocg_commit_bio(iocg, bio, abs_cost, cost);
2595 return;
2596 }
2597
2598 /*
2599 * We're over budget. If @bio has to be issued regardless, remember
2600 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2601 * off the debt before waking more IOs.
2602 *
2603 * This way, the debt is continuously paid off each period with the
2604 * actual budget available to the cgroup. If we just wound vtime, we
2605 * would incorrectly use the current hw_inuse for the entire amount
2606 * which, for example, can lead to the cgroup staying blocked for a
2607 * long time even with substantially raised hw_inuse.
2608 *
2609 * An iocg with vdebt should stay online so that the timer can keep
2610 * deducting its vdebt and [de]activate use_delay mechanism
2611 * accordingly. We don't want to race against the timer trying to
2612 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2613 * penalizing the cgroup and its descendants.
2614 */
2615 if (use_debt) {
2616 iocg_incur_debt(iocg, abs_cost, &now);
2617 if (iocg_kick_delay(iocg, &now))
2618 blkcg_schedule_throttle(rqos->q,
2619 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2620 iocg_unlock(iocg, ioc_locked, &flags);
2621 return;
2622 }
2623
2624 /* guarantee that iocgs w/ waiters have maximum inuse */
2625 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2626 if (!ioc_locked) {
2627 iocg_unlock(iocg, false, &flags);
2628 ioc_locked = true;
2629 goto retry_lock;
2630 }
2631 propagate_weights(iocg, iocg->active, iocg->active, true,
2632 &now);
2633 }
2634
2635 /*
2636 * Append self to the waitq and schedule the wakeup timer if we're
2637 * the first waiter. The timer duration is calculated based on the
2638 * current vrate. vtime and hweight changes can make it too short
2639 * or too long. Each wait entry records the absolute cost it's
2640 * waiting for to allow re-evaluation using a custom wait entry.
2641 *
2642 * If too short, the timer simply reschedules itself. If too long,
2643 * the period timer will notice and trigger wakeups.
2644 *
2645 * All waiters are on iocg->waitq and the wait states are
2646 * synchronized using waitq.lock.
2647 */
2648 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2649 wait.wait.private = current;
2650 wait.bio = bio;
2651 wait.abs_cost = abs_cost;
2652 wait.committed = false; /* will be set true by waker */
2653
2654 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2655 iocg_kick_waitq(iocg, ioc_locked, &now);
2656
2657 iocg_unlock(iocg, ioc_locked, &flags);
2658
2659 while (true) {
2660 set_current_state(TASK_UNINTERRUPTIBLE);
2661 if (wait.committed)
2662 break;
2663 io_schedule();
2664 }
2665
2666 /* waker already committed us, proceed */
2667 finish_wait(&iocg->waitq, &wait.wait);
2668 }
2669
ioc_rqos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)2670 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2671 struct bio *bio)
2672 {
2673 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2674 struct ioc *ioc = rqos_to_ioc(rqos);
2675 sector_t bio_end = bio_end_sector(bio);
2676 struct ioc_now now;
2677 u64 vtime, abs_cost, cost;
2678 unsigned long flags;
2679
2680 /* bypass if disabled, still initializing, or for root cgroup */
2681 if (!ioc->enabled || !iocg || !iocg->level)
2682 return;
2683
2684 abs_cost = calc_vtime_cost(bio, iocg, true);
2685 if (!abs_cost)
2686 return;
2687
2688 ioc_now(ioc, &now);
2689
2690 vtime = atomic64_read(&iocg->vtime);
2691 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2692
2693 /* update cursor if backmerging into the request at the cursor */
2694 if (blk_rq_pos(rq) < bio_end &&
2695 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2696 iocg->cursor = bio_end;
2697
2698 /*
2699 * Charge if there's enough vtime budget and the existing request has
2700 * cost assigned.
2701 */
2702 if (rq->bio && rq->bio->bi_iocost_cost &&
2703 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2704 iocg_commit_bio(iocg, bio, abs_cost, cost);
2705 return;
2706 }
2707
2708 /*
2709 * Otherwise, account it as debt if @iocg is online, which it should
2710 * be for the vast majority of cases. See debt handling in
2711 * ioc_rqos_throttle() for details.
2712 */
2713 spin_lock_irqsave(&ioc->lock, flags);
2714 spin_lock(&iocg->waitq.lock);
2715
2716 if (likely(!list_empty(&iocg->active_list))) {
2717 iocg_incur_debt(iocg, abs_cost, &now);
2718 if (iocg_kick_delay(iocg, &now))
2719 blkcg_schedule_throttle(rqos->q,
2720 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2721 } else {
2722 iocg_commit_bio(iocg, bio, abs_cost, cost);
2723 }
2724
2725 spin_unlock(&iocg->waitq.lock);
2726 spin_unlock_irqrestore(&ioc->lock, flags);
2727 }
2728
ioc_rqos_done_bio(struct rq_qos * rqos,struct bio * bio)2729 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2730 {
2731 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2732
2733 if (iocg && bio->bi_iocost_cost)
2734 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2735 }
2736
ioc_rqos_done(struct rq_qos * rqos,struct request * rq)2737 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2738 {
2739 struct ioc *ioc = rqos_to_ioc(rqos);
2740 struct ioc_pcpu_stat *ccs;
2741 u64 on_q_ns, rq_wait_ns, size_nsec;
2742 int pidx, rw;
2743
2744 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2745 return;
2746
2747 switch (req_op(rq) & REQ_OP_MASK) {
2748 case REQ_OP_READ:
2749 pidx = QOS_RLAT;
2750 rw = READ;
2751 break;
2752 case REQ_OP_WRITE:
2753 pidx = QOS_WLAT;
2754 rw = WRITE;
2755 break;
2756 default:
2757 return;
2758 }
2759
2760 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2761 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2762 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2763
2764 ccs = get_cpu_ptr(ioc->pcpu_stat);
2765
2766 if (on_q_ns <= size_nsec ||
2767 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2768 local_inc(&ccs->missed[rw].nr_met);
2769 else
2770 local_inc(&ccs->missed[rw].nr_missed);
2771
2772 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2773
2774 put_cpu_ptr(ccs);
2775 }
2776
ioc_rqos_queue_depth_changed(struct rq_qos * rqos)2777 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2778 {
2779 struct ioc *ioc = rqos_to_ioc(rqos);
2780
2781 spin_lock_irq(&ioc->lock);
2782 ioc_refresh_params(ioc, false);
2783 spin_unlock_irq(&ioc->lock);
2784 }
2785
ioc_rqos_exit(struct rq_qos * rqos)2786 static void ioc_rqos_exit(struct rq_qos *rqos)
2787 {
2788 struct ioc *ioc = rqos_to_ioc(rqos);
2789
2790 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2791
2792 spin_lock_irq(&ioc->lock);
2793 ioc->running = IOC_STOP;
2794 spin_unlock_irq(&ioc->lock);
2795
2796 del_timer_sync(&ioc->timer);
2797 free_percpu(ioc->pcpu_stat);
2798 kfree(ioc);
2799 }
2800
2801 static struct rq_qos_ops ioc_rqos_ops = {
2802 .throttle = ioc_rqos_throttle,
2803 .merge = ioc_rqos_merge,
2804 .done_bio = ioc_rqos_done_bio,
2805 .done = ioc_rqos_done,
2806 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2807 .exit = ioc_rqos_exit,
2808 };
2809
blk_iocost_init(struct request_queue * q)2810 static int blk_iocost_init(struct request_queue *q)
2811 {
2812 struct ioc *ioc;
2813 struct rq_qos *rqos;
2814 int i, cpu, ret;
2815
2816 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2817 if (!ioc)
2818 return -ENOMEM;
2819
2820 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2821 if (!ioc->pcpu_stat) {
2822 kfree(ioc);
2823 return -ENOMEM;
2824 }
2825
2826 for_each_possible_cpu(cpu) {
2827 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2828
2829 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2830 local_set(&ccs->missed[i].nr_met, 0);
2831 local_set(&ccs->missed[i].nr_missed, 0);
2832 }
2833 local64_set(&ccs->rq_wait_ns, 0);
2834 }
2835
2836 rqos = &ioc->rqos;
2837 rqos->id = RQ_QOS_COST;
2838 rqos->ops = &ioc_rqos_ops;
2839 rqos->q = q;
2840
2841 spin_lock_init(&ioc->lock);
2842 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2843 INIT_LIST_HEAD(&ioc->active_iocgs);
2844
2845 ioc->running = IOC_IDLE;
2846 ioc->vtime_base_rate = VTIME_PER_USEC;
2847 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2848 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2849 ioc->period_at = ktime_to_us(ktime_get());
2850 atomic64_set(&ioc->cur_period, 0);
2851 atomic_set(&ioc->hweight_gen, 0);
2852
2853 spin_lock_irq(&ioc->lock);
2854 ioc->autop_idx = AUTOP_INVALID;
2855 ioc_refresh_params(ioc, true);
2856 spin_unlock_irq(&ioc->lock);
2857
2858 /*
2859 * rqos must be added before activation to allow iocg_pd_init() to
2860 * lookup the ioc from q. This means that the rqos methods may get
2861 * called before policy activation completion, can't assume that the
2862 * target bio has an iocg associated and need to test for NULL iocg.
2863 */
2864 rq_qos_add(q, rqos);
2865 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2866 if (ret) {
2867 rq_qos_del(q, rqos);
2868 free_percpu(ioc->pcpu_stat);
2869 kfree(ioc);
2870 return ret;
2871 }
2872 return 0;
2873 }
2874
ioc_cpd_alloc(gfp_t gfp)2875 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2876 {
2877 struct ioc_cgrp *iocc;
2878
2879 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2880 if (!iocc)
2881 return NULL;
2882
2883 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2884 return &iocc->cpd;
2885 }
2886
ioc_cpd_free(struct blkcg_policy_data * cpd)2887 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2888 {
2889 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2890 }
2891
ioc_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)2892 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2893 struct blkcg *blkcg)
2894 {
2895 int levels = blkcg->css.cgroup->level + 1;
2896 struct ioc_gq *iocg;
2897
2898 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2899 if (!iocg)
2900 return NULL;
2901
2902 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2903 if (!iocg->pcpu_stat) {
2904 kfree(iocg);
2905 return NULL;
2906 }
2907
2908 return &iocg->pd;
2909 }
2910
ioc_pd_init(struct blkg_policy_data * pd)2911 static void ioc_pd_init(struct blkg_policy_data *pd)
2912 {
2913 struct ioc_gq *iocg = pd_to_iocg(pd);
2914 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2915 struct ioc *ioc = q_to_ioc(blkg->q);
2916 struct ioc_now now;
2917 struct blkcg_gq *tblkg;
2918 unsigned long flags;
2919
2920 ioc_now(ioc, &now);
2921
2922 iocg->ioc = ioc;
2923 atomic64_set(&iocg->vtime, now.vnow);
2924 atomic64_set(&iocg->done_vtime, now.vnow);
2925 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2926 INIT_LIST_HEAD(&iocg->active_list);
2927 INIT_LIST_HEAD(&iocg->walk_list);
2928 INIT_LIST_HEAD(&iocg->surplus_list);
2929 iocg->hweight_active = WEIGHT_ONE;
2930 iocg->hweight_inuse = WEIGHT_ONE;
2931
2932 init_waitqueue_head(&iocg->waitq);
2933 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2934 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2935
2936 iocg->level = blkg->blkcg->css.cgroup->level;
2937
2938 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2939 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2940 iocg->ancestors[tiocg->level] = tiocg;
2941 }
2942
2943 spin_lock_irqsave(&ioc->lock, flags);
2944 weight_updated(iocg, &now);
2945 spin_unlock_irqrestore(&ioc->lock, flags);
2946 }
2947
ioc_pd_free(struct blkg_policy_data * pd)2948 static void ioc_pd_free(struct blkg_policy_data *pd)
2949 {
2950 struct ioc_gq *iocg = pd_to_iocg(pd);
2951 struct ioc *ioc = iocg->ioc;
2952 unsigned long flags;
2953
2954 if (ioc) {
2955 spin_lock_irqsave(&ioc->lock, flags);
2956
2957 if (!list_empty(&iocg->active_list)) {
2958 struct ioc_now now;
2959
2960 ioc_now(ioc, &now);
2961 propagate_weights(iocg, 0, 0, false, &now);
2962 list_del_init(&iocg->active_list);
2963 }
2964
2965 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2966 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2967
2968 spin_unlock_irqrestore(&ioc->lock, flags);
2969
2970 hrtimer_cancel(&iocg->waitq_timer);
2971 }
2972 free_percpu(iocg->pcpu_stat);
2973 kfree(iocg);
2974 }
2975
ioc_pd_stat(struct blkg_policy_data * pd,char * buf,size_t size)2976 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2977 {
2978 struct ioc_gq *iocg = pd_to_iocg(pd);
2979 struct ioc *ioc = iocg->ioc;
2980 size_t pos = 0;
2981
2982 if (!ioc->enabled)
2983 return 0;
2984
2985 if (iocg->level == 0) {
2986 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2987 ioc->vtime_base_rate * 10000,
2988 VTIME_PER_USEC);
2989 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2990 vp10k / 100, vp10k % 100);
2991 }
2992
2993 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2994 iocg->last_stat.usage_us);
2995
2996 if (blkcg_debug_stats)
2997 pos += scnprintf(buf + pos, size - pos,
2998 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2999 iocg->last_stat.wait_us,
3000 iocg->last_stat.indebt_us,
3001 iocg->last_stat.indelay_us);
3002
3003 return pos;
3004 }
3005
ioc_weight_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3006 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3007 int off)
3008 {
3009 const char *dname = blkg_dev_name(pd->blkg);
3010 struct ioc_gq *iocg = pd_to_iocg(pd);
3011
3012 if (dname && iocg->cfg_weight)
3013 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3014 return 0;
3015 }
3016
3017
ioc_weight_show(struct seq_file * sf,void * v)3018 static int ioc_weight_show(struct seq_file *sf, void *v)
3019 {
3020 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3021 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3022
3023 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3024 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3025 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3026 return 0;
3027 }
3028
ioc_weight_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3029 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3030 size_t nbytes, loff_t off)
3031 {
3032 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3033 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3034 struct blkg_conf_ctx ctx;
3035 struct ioc_now now;
3036 struct ioc_gq *iocg;
3037 u32 v;
3038 int ret;
3039
3040 if (!strchr(buf, ':')) {
3041 struct blkcg_gq *blkg;
3042
3043 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3044 return -EINVAL;
3045
3046 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3047 return -EINVAL;
3048
3049 spin_lock_irq(&blkcg->lock);
3050 iocc->dfl_weight = v * WEIGHT_ONE;
3051 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3052 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3053
3054 if (iocg) {
3055 spin_lock(&iocg->ioc->lock);
3056 ioc_now(iocg->ioc, &now);
3057 weight_updated(iocg, &now);
3058 spin_unlock(&iocg->ioc->lock);
3059 }
3060 }
3061 spin_unlock_irq(&blkcg->lock);
3062
3063 return nbytes;
3064 }
3065
3066 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3067 if (ret)
3068 return ret;
3069
3070 iocg = blkg_to_iocg(ctx.blkg);
3071
3072 if (!strncmp(ctx.body, "default", 7)) {
3073 v = 0;
3074 } else {
3075 if (!sscanf(ctx.body, "%u", &v))
3076 goto einval;
3077 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3078 goto einval;
3079 }
3080
3081 spin_lock(&iocg->ioc->lock);
3082 iocg->cfg_weight = v * WEIGHT_ONE;
3083 ioc_now(iocg->ioc, &now);
3084 weight_updated(iocg, &now);
3085 spin_unlock(&iocg->ioc->lock);
3086
3087 blkg_conf_finish(&ctx);
3088 return nbytes;
3089
3090 einval:
3091 blkg_conf_finish(&ctx);
3092 return -EINVAL;
3093 }
3094
ioc_qos_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3095 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3096 int off)
3097 {
3098 const char *dname = blkg_dev_name(pd->blkg);
3099 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3100
3101 if (!dname)
3102 return 0;
3103
3104 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3105 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3106 ioc->params.qos[QOS_RPPM] / 10000,
3107 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3108 ioc->params.qos[QOS_RLAT],
3109 ioc->params.qos[QOS_WPPM] / 10000,
3110 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3111 ioc->params.qos[QOS_WLAT],
3112 ioc->params.qos[QOS_MIN] / 10000,
3113 ioc->params.qos[QOS_MIN] % 10000 / 100,
3114 ioc->params.qos[QOS_MAX] / 10000,
3115 ioc->params.qos[QOS_MAX] % 10000 / 100);
3116 return 0;
3117 }
3118
ioc_qos_show(struct seq_file * sf,void * v)3119 static int ioc_qos_show(struct seq_file *sf, void *v)
3120 {
3121 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3122
3123 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3124 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3125 return 0;
3126 }
3127
3128 static const match_table_t qos_ctrl_tokens = {
3129 { QOS_ENABLE, "enable=%u" },
3130 { QOS_CTRL, "ctrl=%s" },
3131 { NR_QOS_CTRL_PARAMS, NULL },
3132 };
3133
3134 static const match_table_t qos_tokens = {
3135 { QOS_RPPM, "rpct=%s" },
3136 { QOS_RLAT, "rlat=%u" },
3137 { QOS_WPPM, "wpct=%s" },
3138 { QOS_WLAT, "wlat=%u" },
3139 { QOS_MIN, "min=%s" },
3140 { QOS_MAX, "max=%s" },
3141 { NR_QOS_PARAMS, NULL },
3142 };
3143
ioc_qos_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3144 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3145 size_t nbytes, loff_t off)
3146 {
3147 struct gendisk *disk;
3148 struct ioc *ioc;
3149 u32 qos[NR_QOS_PARAMS];
3150 bool enable, user;
3151 char *p;
3152 int ret;
3153
3154 disk = blkcg_conf_get_disk(&input);
3155 if (IS_ERR(disk))
3156 return PTR_ERR(disk);
3157
3158 ioc = q_to_ioc(disk->queue);
3159 if (!ioc) {
3160 ret = blk_iocost_init(disk->queue);
3161 if (ret)
3162 goto err;
3163 ioc = q_to_ioc(disk->queue);
3164 }
3165
3166 spin_lock_irq(&ioc->lock);
3167 memcpy(qos, ioc->params.qos, sizeof(qos));
3168 enable = ioc->enabled;
3169 user = ioc->user_qos_params;
3170 spin_unlock_irq(&ioc->lock);
3171
3172 while ((p = strsep(&input, " \t\n"))) {
3173 substring_t args[MAX_OPT_ARGS];
3174 char buf[32];
3175 int tok;
3176 s64 v;
3177
3178 if (!*p)
3179 continue;
3180
3181 switch (match_token(p, qos_ctrl_tokens, args)) {
3182 case QOS_ENABLE:
3183 match_u64(&args[0], &v);
3184 enable = v;
3185 continue;
3186 case QOS_CTRL:
3187 match_strlcpy(buf, &args[0], sizeof(buf));
3188 if (!strcmp(buf, "auto"))
3189 user = false;
3190 else if (!strcmp(buf, "user"))
3191 user = true;
3192 else
3193 goto einval;
3194 continue;
3195 }
3196
3197 tok = match_token(p, qos_tokens, args);
3198 switch (tok) {
3199 case QOS_RPPM:
3200 case QOS_WPPM:
3201 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3202 sizeof(buf))
3203 goto einval;
3204 if (cgroup_parse_float(buf, 2, &v))
3205 goto einval;
3206 if (v < 0 || v > 10000)
3207 goto einval;
3208 qos[tok] = v * 100;
3209 break;
3210 case QOS_RLAT:
3211 case QOS_WLAT:
3212 if (match_u64(&args[0], &v))
3213 goto einval;
3214 qos[tok] = v;
3215 break;
3216 case QOS_MIN:
3217 case QOS_MAX:
3218 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3219 sizeof(buf))
3220 goto einval;
3221 if (cgroup_parse_float(buf, 2, &v))
3222 goto einval;
3223 if (v < 0)
3224 goto einval;
3225 qos[tok] = clamp_t(s64, v * 100,
3226 VRATE_MIN_PPM, VRATE_MAX_PPM);
3227 break;
3228 default:
3229 goto einval;
3230 }
3231 user = true;
3232 }
3233
3234 if (qos[QOS_MIN] > qos[QOS_MAX])
3235 goto einval;
3236
3237 spin_lock_irq(&ioc->lock);
3238
3239 if (enable) {
3240 blk_stat_enable_accounting(ioc->rqos.q);
3241 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3242 ioc->enabled = true;
3243 } else {
3244 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3245 ioc->enabled = false;
3246 }
3247
3248 if (user) {
3249 memcpy(ioc->params.qos, qos, sizeof(qos));
3250 ioc->user_qos_params = true;
3251 } else {
3252 ioc->user_qos_params = false;
3253 }
3254
3255 ioc_refresh_params(ioc, true);
3256 spin_unlock_irq(&ioc->lock);
3257
3258 put_disk_and_module(disk);
3259 return nbytes;
3260 einval:
3261 ret = -EINVAL;
3262 err:
3263 put_disk_and_module(disk);
3264 return ret;
3265 }
3266
ioc_cost_model_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3267 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3268 struct blkg_policy_data *pd, int off)
3269 {
3270 const char *dname = blkg_dev_name(pd->blkg);
3271 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3272 u64 *u = ioc->params.i_lcoefs;
3273
3274 if (!dname)
3275 return 0;
3276
3277 seq_printf(sf, "%s ctrl=%s model=linear "
3278 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3279 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3280 dname, ioc->user_cost_model ? "user" : "auto",
3281 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3282 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3283 return 0;
3284 }
3285
ioc_cost_model_show(struct seq_file * sf,void * v)3286 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3287 {
3288 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3289
3290 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3291 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3292 return 0;
3293 }
3294
3295 static const match_table_t cost_ctrl_tokens = {
3296 { COST_CTRL, "ctrl=%s" },
3297 { COST_MODEL, "model=%s" },
3298 { NR_COST_CTRL_PARAMS, NULL },
3299 };
3300
3301 static const match_table_t i_lcoef_tokens = {
3302 { I_LCOEF_RBPS, "rbps=%u" },
3303 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3304 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3305 { I_LCOEF_WBPS, "wbps=%u" },
3306 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3307 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3308 { NR_I_LCOEFS, NULL },
3309 };
3310
ioc_cost_model_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3311 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3312 size_t nbytes, loff_t off)
3313 {
3314 struct gendisk *disk;
3315 struct ioc *ioc;
3316 u64 u[NR_I_LCOEFS];
3317 bool user;
3318 char *p;
3319 int ret;
3320
3321 disk = blkcg_conf_get_disk(&input);
3322 if (IS_ERR(disk))
3323 return PTR_ERR(disk);
3324
3325 ioc = q_to_ioc(disk->queue);
3326 if (!ioc) {
3327 ret = blk_iocost_init(disk->queue);
3328 if (ret)
3329 goto err;
3330 ioc = q_to_ioc(disk->queue);
3331 }
3332
3333 spin_lock_irq(&ioc->lock);
3334 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3335 user = ioc->user_cost_model;
3336 spin_unlock_irq(&ioc->lock);
3337
3338 while ((p = strsep(&input, " \t\n"))) {
3339 substring_t args[MAX_OPT_ARGS];
3340 char buf[32];
3341 int tok;
3342 u64 v;
3343
3344 if (!*p)
3345 continue;
3346
3347 switch (match_token(p, cost_ctrl_tokens, args)) {
3348 case COST_CTRL:
3349 match_strlcpy(buf, &args[0], sizeof(buf));
3350 if (!strcmp(buf, "auto"))
3351 user = false;
3352 else if (!strcmp(buf, "user"))
3353 user = true;
3354 else
3355 goto einval;
3356 continue;
3357 case COST_MODEL:
3358 match_strlcpy(buf, &args[0], sizeof(buf));
3359 if (strcmp(buf, "linear"))
3360 goto einval;
3361 continue;
3362 }
3363
3364 tok = match_token(p, i_lcoef_tokens, args);
3365 if (tok == NR_I_LCOEFS)
3366 goto einval;
3367 if (match_u64(&args[0], &v))
3368 goto einval;
3369 u[tok] = v;
3370 user = true;
3371 }
3372
3373 spin_lock_irq(&ioc->lock);
3374 if (user) {
3375 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3376 ioc->user_cost_model = true;
3377 } else {
3378 ioc->user_cost_model = false;
3379 }
3380 ioc_refresh_params(ioc, true);
3381 spin_unlock_irq(&ioc->lock);
3382
3383 put_disk_and_module(disk);
3384 return nbytes;
3385
3386 einval:
3387 ret = -EINVAL;
3388 err:
3389 put_disk_and_module(disk);
3390 return ret;
3391 }
3392
3393 static struct cftype ioc_files[] = {
3394 {
3395 .name = "weight",
3396 .flags = CFTYPE_NOT_ON_ROOT,
3397 .seq_show = ioc_weight_show,
3398 .write = ioc_weight_write,
3399 },
3400 {
3401 .name = "cost.qos",
3402 .flags = CFTYPE_ONLY_ON_ROOT,
3403 .seq_show = ioc_qos_show,
3404 .write = ioc_qos_write,
3405 },
3406 {
3407 .name = "cost.model",
3408 .flags = CFTYPE_ONLY_ON_ROOT,
3409 .seq_show = ioc_cost_model_show,
3410 .write = ioc_cost_model_write,
3411 },
3412 {}
3413 };
3414
3415 static struct blkcg_policy blkcg_policy_iocost = {
3416 .dfl_cftypes = ioc_files,
3417 .cpd_alloc_fn = ioc_cpd_alloc,
3418 .cpd_free_fn = ioc_cpd_free,
3419 .pd_alloc_fn = ioc_pd_alloc,
3420 .pd_init_fn = ioc_pd_init,
3421 .pd_free_fn = ioc_pd_free,
3422 .pd_stat_fn = ioc_pd_stat,
3423 };
3424
ioc_init(void)3425 static int __init ioc_init(void)
3426 {
3427 return blkcg_policy_register(&blkcg_policy_iocost);
3428 }
3429
ioc_exit(void)3430 static void __exit ioc_exit(void)
3431 {
3432 blkcg_policy_unregister(&blkcg_policy_iocost);
3433 }
3434
3435 module_init(ioc_init);
3436 module_exit(ioc_exit);
3437