1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36
37 #include "cpu.h"
38
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init retbleed_select_mitigation(void);
42 static void __init spectre_v2_user_select_mitigation(void);
43 static void __init ssb_select_mitigation(void);
44 static void __init l1tf_select_mitigation(void);
45 static void __init mds_select_mitigation(void);
46 static void __init md_clear_update_mitigation(void);
47 static void __init md_clear_select_mitigation(void);
48 static void __init taa_select_mitigation(void);
49 static void __init mmio_select_mitigation(void);
50 static void __init srbds_select_mitigation(void);
51
52 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
53 u64 x86_spec_ctrl_base;
54 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
55
56 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
57 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
58 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
59
60 static DEFINE_MUTEX(spec_ctrl_mutex);
61
62 /*
63 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
64 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
65 */
write_spec_ctrl_current(u64 val,bool force)66 void write_spec_ctrl_current(u64 val, bool force)
67 {
68 if (this_cpu_read(x86_spec_ctrl_current) == val)
69 return;
70
71 this_cpu_write(x86_spec_ctrl_current, val);
72
73 /*
74 * When KERNEL_IBRS this MSR is written on return-to-user, unless
75 * forced the update can be delayed until that time.
76 */
77 if (force || !cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
78 wrmsrl(MSR_IA32_SPEC_CTRL, val);
79 }
80
spec_ctrl_current(void)81 u64 spec_ctrl_current(void)
82 {
83 return this_cpu_read(x86_spec_ctrl_current);
84 }
85 EXPORT_SYMBOL_GPL(spec_ctrl_current);
86
87 /*
88 * AMD specific MSR info for Speculative Store Bypass control.
89 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
90 */
91 u64 __ro_after_init x86_amd_ls_cfg_base;
92 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
93
94 /* Control conditional STIBP in switch_to() */
95 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
96 /* Control conditional IBPB in switch_mm() */
97 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
98 /* Control unconditional IBPB in switch_mm() */
99 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
100
101 /* Control MDS CPU buffer clear before returning to user space */
102 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
103 EXPORT_SYMBOL_GPL(mds_user_clear);
104 /* Control MDS CPU buffer clear before idling (halt, mwait) */
105 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
106 EXPORT_SYMBOL_GPL(mds_idle_clear);
107
108 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
109 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
110 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
111
check_bugs(void)112 void __init check_bugs(void)
113 {
114 identify_boot_cpu();
115
116 /*
117 * identify_boot_cpu() initialized SMT support information, let the
118 * core code know.
119 */
120 cpu_smt_check_topology();
121
122 if (!IS_ENABLED(CONFIG_SMP)) {
123 pr_info("CPU: ");
124 print_cpu_info(&boot_cpu_data);
125 }
126
127 /*
128 * Read the SPEC_CTRL MSR to account for reserved bits which may
129 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
130 * init code as it is not enumerated and depends on the family.
131 */
132 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
133 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
134
135 /* Select the proper CPU mitigations before patching alternatives: */
136 spectre_v1_select_mitigation();
137 spectre_v2_select_mitigation();
138 /*
139 * retbleed_select_mitigation() relies on the state set by
140 * spectre_v2_select_mitigation(); specifically it wants to know about
141 * spectre_v2=ibrs.
142 */
143 retbleed_select_mitigation();
144 /*
145 * spectre_v2_user_select_mitigation() relies on the state set by
146 * retbleed_select_mitigation(); specifically the STIBP selection is
147 * forced for UNRET.
148 */
149 spectre_v2_user_select_mitigation();
150 ssb_select_mitigation();
151 l1tf_select_mitigation();
152 md_clear_select_mitigation();
153 srbds_select_mitigation();
154
155 arch_smt_update();
156
157 #ifdef CONFIG_X86_32
158 /*
159 * Check whether we are able to run this kernel safely on SMP.
160 *
161 * - i386 is no longer supported.
162 * - In order to run on anything without a TSC, we need to be
163 * compiled for a i486.
164 */
165 if (boot_cpu_data.x86 < 4)
166 panic("Kernel requires i486+ for 'invlpg' and other features");
167
168 init_utsname()->machine[1] =
169 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
170 alternative_instructions();
171
172 fpu__init_check_bugs();
173 #else /* CONFIG_X86_64 */
174 alternative_instructions();
175
176 /*
177 * Make sure the first 2MB area is not mapped by huge pages
178 * There are typically fixed size MTRRs in there and overlapping
179 * MTRRs into large pages causes slow downs.
180 *
181 * Right now we don't do that with gbpages because there seems
182 * very little benefit for that case.
183 */
184 if (!direct_gbpages)
185 set_memory_4k((unsigned long)__va(0), 1);
186 #endif
187 }
188
189 /*
190 * NOTE: For VMX, this function is not called in the vmexit path.
191 * It uses vmx_spec_ctrl_restore_host() instead.
192 */
193 void
x86_virt_spec_ctrl(u64 guest_spec_ctrl,u64 guest_virt_spec_ctrl,bool setguest)194 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
195 {
196 u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current();
197 struct thread_info *ti = current_thread_info();
198
199 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
200 if (hostval != guestval) {
201 msrval = setguest ? guestval : hostval;
202 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
203 }
204 }
205
206 /*
207 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
208 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
209 */
210 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
211 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
212 return;
213
214 /*
215 * If the host has SSBD mitigation enabled, force it in the host's
216 * virtual MSR value. If its not permanently enabled, evaluate
217 * current's TIF_SSBD thread flag.
218 */
219 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
220 hostval = SPEC_CTRL_SSBD;
221 else
222 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
223
224 /* Sanitize the guest value */
225 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
226
227 if (hostval != guestval) {
228 unsigned long tif;
229
230 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
231 ssbd_spec_ctrl_to_tif(hostval);
232
233 speculation_ctrl_update(tif);
234 }
235 }
236 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
237
x86_amd_ssb_disable(void)238 static void x86_amd_ssb_disable(void)
239 {
240 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
241
242 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
243 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
244 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
245 wrmsrl(MSR_AMD64_LS_CFG, msrval);
246 }
247
248 #undef pr_fmt
249 #define pr_fmt(fmt) "MDS: " fmt
250
251 /* Default mitigation for MDS-affected CPUs */
252 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
253 static bool mds_nosmt __ro_after_init = false;
254
255 static const char * const mds_strings[] = {
256 [MDS_MITIGATION_OFF] = "Vulnerable",
257 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
258 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
259 };
260
mds_select_mitigation(void)261 static void __init mds_select_mitigation(void)
262 {
263 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
264 mds_mitigation = MDS_MITIGATION_OFF;
265 return;
266 }
267
268 if (mds_mitigation == MDS_MITIGATION_FULL) {
269 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
270 mds_mitigation = MDS_MITIGATION_VMWERV;
271
272 static_branch_enable(&mds_user_clear);
273
274 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
275 (mds_nosmt || cpu_mitigations_auto_nosmt()))
276 cpu_smt_disable(false);
277 }
278 }
279
mds_cmdline(char * str)280 static int __init mds_cmdline(char *str)
281 {
282 if (!boot_cpu_has_bug(X86_BUG_MDS))
283 return 0;
284
285 if (!str)
286 return -EINVAL;
287
288 if (!strcmp(str, "off"))
289 mds_mitigation = MDS_MITIGATION_OFF;
290 else if (!strcmp(str, "full"))
291 mds_mitigation = MDS_MITIGATION_FULL;
292 else if (!strcmp(str, "full,nosmt")) {
293 mds_mitigation = MDS_MITIGATION_FULL;
294 mds_nosmt = true;
295 }
296
297 return 0;
298 }
299 early_param("mds", mds_cmdline);
300
301 #undef pr_fmt
302 #define pr_fmt(fmt) "TAA: " fmt
303
304 enum taa_mitigations {
305 TAA_MITIGATION_OFF,
306 TAA_MITIGATION_UCODE_NEEDED,
307 TAA_MITIGATION_VERW,
308 TAA_MITIGATION_TSX_DISABLED,
309 };
310
311 /* Default mitigation for TAA-affected CPUs */
312 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
313 static bool taa_nosmt __ro_after_init;
314
315 static const char * const taa_strings[] = {
316 [TAA_MITIGATION_OFF] = "Vulnerable",
317 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
318 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
319 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
320 };
321
taa_select_mitigation(void)322 static void __init taa_select_mitigation(void)
323 {
324 u64 ia32_cap;
325
326 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
327 taa_mitigation = TAA_MITIGATION_OFF;
328 return;
329 }
330
331 /* TSX previously disabled by tsx=off */
332 if (!boot_cpu_has(X86_FEATURE_RTM)) {
333 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
334 return;
335 }
336
337 if (cpu_mitigations_off()) {
338 taa_mitigation = TAA_MITIGATION_OFF;
339 return;
340 }
341
342 /*
343 * TAA mitigation via VERW is turned off if both
344 * tsx_async_abort=off and mds=off are specified.
345 */
346 if (taa_mitigation == TAA_MITIGATION_OFF &&
347 mds_mitigation == MDS_MITIGATION_OFF)
348 return;
349
350 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
351 taa_mitigation = TAA_MITIGATION_VERW;
352 else
353 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
354
355 /*
356 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
357 * A microcode update fixes this behavior to clear CPU buffers. It also
358 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
359 * ARCH_CAP_TSX_CTRL_MSR bit.
360 *
361 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
362 * update is required.
363 */
364 ia32_cap = x86_read_arch_cap_msr();
365 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
366 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
367 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
368
369 /*
370 * TSX is enabled, select alternate mitigation for TAA which is
371 * the same as MDS. Enable MDS static branch to clear CPU buffers.
372 *
373 * For guests that can't determine whether the correct microcode is
374 * present on host, enable the mitigation for UCODE_NEEDED as well.
375 */
376 static_branch_enable(&mds_user_clear);
377
378 if (taa_nosmt || cpu_mitigations_auto_nosmt())
379 cpu_smt_disable(false);
380 }
381
tsx_async_abort_parse_cmdline(char * str)382 static int __init tsx_async_abort_parse_cmdline(char *str)
383 {
384 if (!boot_cpu_has_bug(X86_BUG_TAA))
385 return 0;
386
387 if (!str)
388 return -EINVAL;
389
390 if (!strcmp(str, "off")) {
391 taa_mitigation = TAA_MITIGATION_OFF;
392 } else if (!strcmp(str, "full")) {
393 taa_mitigation = TAA_MITIGATION_VERW;
394 } else if (!strcmp(str, "full,nosmt")) {
395 taa_mitigation = TAA_MITIGATION_VERW;
396 taa_nosmt = true;
397 }
398
399 return 0;
400 }
401 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
402
403 #undef pr_fmt
404 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
405
406 enum mmio_mitigations {
407 MMIO_MITIGATION_OFF,
408 MMIO_MITIGATION_UCODE_NEEDED,
409 MMIO_MITIGATION_VERW,
410 };
411
412 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
413 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
414 static bool mmio_nosmt __ro_after_init = false;
415
416 static const char * const mmio_strings[] = {
417 [MMIO_MITIGATION_OFF] = "Vulnerable",
418 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
419 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
420 };
421
mmio_select_mitigation(void)422 static void __init mmio_select_mitigation(void)
423 {
424 u64 ia32_cap;
425
426 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
427 cpu_mitigations_off()) {
428 mmio_mitigation = MMIO_MITIGATION_OFF;
429 return;
430 }
431
432 if (mmio_mitigation == MMIO_MITIGATION_OFF)
433 return;
434
435 ia32_cap = x86_read_arch_cap_msr();
436
437 /*
438 * Enable CPU buffer clear mitigation for host and VMM, if also affected
439 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
440 */
441 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
442 boot_cpu_has(X86_FEATURE_RTM)))
443 static_branch_enable(&mds_user_clear);
444 else
445 static_branch_enable(&mmio_stale_data_clear);
446
447 /*
448 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
449 * be propagated to uncore buffers, clearing the Fill buffers on idle
450 * is required irrespective of SMT state.
451 */
452 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
453 static_branch_enable(&mds_idle_clear);
454
455 /*
456 * Check if the system has the right microcode.
457 *
458 * CPU Fill buffer clear mitigation is enumerated by either an explicit
459 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
460 * affected systems.
461 */
462 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
463 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
464 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
465 !(ia32_cap & ARCH_CAP_MDS_NO)))
466 mmio_mitigation = MMIO_MITIGATION_VERW;
467 else
468 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
469
470 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
471 cpu_smt_disable(false);
472 }
473
mmio_stale_data_parse_cmdline(char * str)474 static int __init mmio_stale_data_parse_cmdline(char *str)
475 {
476 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
477 return 0;
478
479 if (!str)
480 return -EINVAL;
481
482 if (!strcmp(str, "off")) {
483 mmio_mitigation = MMIO_MITIGATION_OFF;
484 } else if (!strcmp(str, "full")) {
485 mmio_mitigation = MMIO_MITIGATION_VERW;
486 } else if (!strcmp(str, "full,nosmt")) {
487 mmio_mitigation = MMIO_MITIGATION_VERW;
488 mmio_nosmt = true;
489 }
490
491 return 0;
492 }
493 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
494
495 #undef pr_fmt
496 #define pr_fmt(fmt) "" fmt
497
md_clear_update_mitigation(void)498 static void __init md_clear_update_mitigation(void)
499 {
500 if (cpu_mitigations_off())
501 return;
502
503 if (!static_key_enabled(&mds_user_clear))
504 goto out;
505
506 /*
507 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
508 * mitigation, if necessary.
509 */
510 if (mds_mitigation == MDS_MITIGATION_OFF &&
511 boot_cpu_has_bug(X86_BUG_MDS)) {
512 mds_mitigation = MDS_MITIGATION_FULL;
513 mds_select_mitigation();
514 }
515 if (taa_mitigation == TAA_MITIGATION_OFF &&
516 boot_cpu_has_bug(X86_BUG_TAA)) {
517 taa_mitigation = TAA_MITIGATION_VERW;
518 taa_select_mitigation();
519 }
520 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
521 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
522 mmio_mitigation = MMIO_MITIGATION_VERW;
523 mmio_select_mitigation();
524 }
525 out:
526 if (boot_cpu_has_bug(X86_BUG_MDS))
527 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
528 if (boot_cpu_has_bug(X86_BUG_TAA))
529 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
530 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
531 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
532 }
533
md_clear_select_mitigation(void)534 static void __init md_clear_select_mitigation(void)
535 {
536 mds_select_mitigation();
537 taa_select_mitigation();
538 mmio_select_mitigation();
539
540 /*
541 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
542 * and print their mitigation after MDS, TAA and MMIO Stale Data
543 * mitigation selection is done.
544 */
545 md_clear_update_mitigation();
546 }
547
548 #undef pr_fmt
549 #define pr_fmt(fmt) "SRBDS: " fmt
550
551 enum srbds_mitigations {
552 SRBDS_MITIGATION_OFF,
553 SRBDS_MITIGATION_UCODE_NEEDED,
554 SRBDS_MITIGATION_FULL,
555 SRBDS_MITIGATION_TSX_OFF,
556 SRBDS_MITIGATION_HYPERVISOR,
557 };
558
559 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
560
561 static const char * const srbds_strings[] = {
562 [SRBDS_MITIGATION_OFF] = "Vulnerable",
563 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
564 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
565 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
566 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
567 };
568
569 static bool srbds_off;
570
update_srbds_msr(void)571 void update_srbds_msr(void)
572 {
573 u64 mcu_ctrl;
574
575 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
576 return;
577
578 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
579 return;
580
581 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
582 return;
583
584 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
585
586 switch (srbds_mitigation) {
587 case SRBDS_MITIGATION_OFF:
588 case SRBDS_MITIGATION_TSX_OFF:
589 mcu_ctrl |= RNGDS_MITG_DIS;
590 break;
591 case SRBDS_MITIGATION_FULL:
592 mcu_ctrl &= ~RNGDS_MITG_DIS;
593 break;
594 default:
595 break;
596 }
597
598 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
599 }
600
srbds_select_mitigation(void)601 static void __init srbds_select_mitigation(void)
602 {
603 u64 ia32_cap;
604
605 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
606 return;
607
608 /*
609 * Check to see if this is one of the MDS_NO systems supporting TSX that
610 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
611 * by Processor MMIO Stale Data vulnerability.
612 */
613 ia32_cap = x86_read_arch_cap_msr();
614 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
615 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
616 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
617 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
618 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
619 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
620 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
621 else if (cpu_mitigations_off() || srbds_off)
622 srbds_mitigation = SRBDS_MITIGATION_OFF;
623
624 update_srbds_msr();
625 pr_info("%s\n", srbds_strings[srbds_mitigation]);
626 }
627
srbds_parse_cmdline(char * str)628 static int __init srbds_parse_cmdline(char *str)
629 {
630 if (!str)
631 return -EINVAL;
632
633 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
634 return 0;
635
636 srbds_off = !strcmp(str, "off");
637 return 0;
638 }
639 early_param("srbds", srbds_parse_cmdline);
640
641 #undef pr_fmt
642 #define pr_fmt(fmt) "Spectre V1 : " fmt
643
644 enum spectre_v1_mitigation {
645 SPECTRE_V1_MITIGATION_NONE,
646 SPECTRE_V1_MITIGATION_AUTO,
647 };
648
649 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
650 SPECTRE_V1_MITIGATION_AUTO;
651
652 static const char * const spectre_v1_strings[] = {
653 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
654 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
655 };
656
657 /*
658 * Does SMAP provide full mitigation against speculative kernel access to
659 * userspace?
660 */
smap_works_speculatively(void)661 static bool smap_works_speculatively(void)
662 {
663 if (!boot_cpu_has(X86_FEATURE_SMAP))
664 return false;
665
666 /*
667 * On CPUs which are vulnerable to Meltdown, SMAP does not
668 * prevent speculative access to user data in the L1 cache.
669 * Consider SMAP to be non-functional as a mitigation on these
670 * CPUs.
671 */
672 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
673 return false;
674
675 return true;
676 }
677
spectre_v1_select_mitigation(void)678 static void __init spectre_v1_select_mitigation(void)
679 {
680 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
681 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
682 return;
683 }
684
685 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
686 /*
687 * With Spectre v1, a user can speculatively control either
688 * path of a conditional swapgs with a user-controlled GS
689 * value. The mitigation is to add lfences to both code paths.
690 *
691 * If FSGSBASE is enabled, the user can put a kernel address in
692 * GS, in which case SMAP provides no protection.
693 *
694 * If FSGSBASE is disabled, the user can only put a user space
695 * address in GS. That makes an attack harder, but still
696 * possible if there's no SMAP protection.
697 */
698 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
699 !smap_works_speculatively()) {
700 /*
701 * Mitigation can be provided from SWAPGS itself or
702 * PTI as the CR3 write in the Meltdown mitigation
703 * is serializing.
704 *
705 * If neither is there, mitigate with an LFENCE to
706 * stop speculation through swapgs.
707 */
708 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
709 !boot_cpu_has(X86_FEATURE_PTI))
710 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
711
712 /*
713 * Enable lfences in the kernel entry (non-swapgs)
714 * paths, to prevent user entry from speculatively
715 * skipping swapgs.
716 */
717 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
718 }
719 }
720
721 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
722 }
723
nospectre_v1_cmdline(char * str)724 static int __init nospectre_v1_cmdline(char *str)
725 {
726 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
727 return 0;
728 }
729 early_param("nospectre_v1", nospectre_v1_cmdline);
730
731 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
732 SPECTRE_V2_NONE;
733
734 #undef pr_fmt
735 #define pr_fmt(fmt) "RETBleed: " fmt
736
737 enum retbleed_mitigation {
738 RETBLEED_MITIGATION_NONE,
739 RETBLEED_MITIGATION_UNRET,
740 RETBLEED_MITIGATION_IBPB,
741 RETBLEED_MITIGATION_IBRS,
742 RETBLEED_MITIGATION_EIBRS,
743 };
744
745 enum retbleed_mitigation_cmd {
746 RETBLEED_CMD_OFF,
747 RETBLEED_CMD_AUTO,
748 RETBLEED_CMD_UNRET,
749 RETBLEED_CMD_IBPB,
750 };
751
752 const char * const retbleed_strings[] = {
753 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
754 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
755 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
756 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
757 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
758 };
759
760 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
761 RETBLEED_MITIGATION_NONE;
762 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
763 RETBLEED_CMD_AUTO;
764
765 static int __ro_after_init retbleed_nosmt = false;
766
retbleed_parse_cmdline(char * str)767 static int __init retbleed_parse_cmdline(char *str)
768 {
769 if (!str)
770 return -EINVAL;
771
772 while (str) {
773 char *next = strchr(str, ',');
774 if (next) {
775 *next = 0;
776 next++;
777 }
778
779 if (!strcmp(str, "off")) {
780 retbleed_cmd = RETBLEED_CMD_OFF;
781 } else if (!strcmp(str, "auto")) {
782 retbleed_cmd = RETBLEED_CMD_AUTO;
783 } else if (!strcmp(str, "unret")) {
784 retbleed_cmd = RETBLEED_CMD_UNRET;
785 } else if (!strcmp(str, "ibpb")) {
786 retbleed_cmd = RETBLEED_CMD_IBPB;
787 } else if (!strcmp(str, "nosmt")) {
788 retbleed_nosmt = true;
789 } else {
790 pr_err("Ignoring unknown retbleed option (%s).", str);
791 }
792
793 str = next;
794 }
795
796 return 0;
797 }
798 early_param("retbleed", retbleed_parse_cmdline);
799
800 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
801 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
802
retbleed_select_mitigation(void)803 static void __init retbleed_select_mitigation(void)
804 {
805 bool mitigate_smt = false;
806
807 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
808 return;
809
810 switch (retbleed_cmd) {
811 case RETBLEED_CMD_OFF:
812 return;
813
814 case RETBLEED_CMD_UNRET:
815 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
816 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
817 } else {
818 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
819 goto do_cmd_auto;
820 }
821 break;
822
823 case RETBLEED_CMD_IBPB:
824 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
825 pr_err("WARNING: CPU does not support IBPB.\n");
826 goto do_cmd_auto;
827 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
828 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
829 } else {
830 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
831 goto do_cmd_auto;
832 }
833 break;
834
835 do_cmd_auto:
836 case RETBLEED_CMD_AUTO:
837 default:
838 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
839 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
840 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
841 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
842 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
843 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
844 }
845
846 /*
847 * The Intel mitigation (IBRS or eIBRS) was already selected in
848 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
849 * be set accordingly below.
850 */
851
852 break;
853 }
854
855 switch (retbleed_mitigation) {
856 case RETBLEED_MITIGATION_UNRET:
857 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
858 setup_force_cpu_cap(X86_FEATURE_UNRET);
859
860 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
861 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
862 pr_err(RETBLEED_UNTRAIN_MSG);
863
864 mitigate_smt = true;
865 break;
866
867 case RETBLEED_MITIGATION_IBPB:
868 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
869 mitigate_smt = true;
870 break;
871
872 default:
873 break;
874 }
875
876 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
877 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
878 cpu_smt_disable(false);
879
880 /*
881 * Let IBRS trump all on Intel without affecting the effects of the
882 * retbleed= cmdline option.
883 */
884 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
885 switch (spectre_v2_enabled) {
886 case SPECTRE_V2_IBRS:
887 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
888 break;
889 case SPECTRE_V2_EIBRS:
890 case SPECTRE_V2_EIBRS_RETPOLINE:
891 case SPECTRE_V2_EIBRS_LFENCE:
892 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
893 break;
894 default:
895 pr_err(RETBLEED_INTEL_MSG);
896 }
897 }
898
899 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
900 }
901
902 #undef pr_fmt
903 #define pr_fmt(fmt) "Spectre V2 : " fmt
904
905 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
906 SPECTRE_V2_USER_NONE;
907 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
908 SPECTRE_V2_USER_NONE;
909
910 #ifdef CONFIG_RETPOLINE
911 static bool spectre_v2_bad_module;
912
retpoline_module_ok(bool has_retpoline)913 bool retpoline_module_ok(bool has_retpoline)
914 {
915 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
916 return true;
917
918 pr_err("System may be vulnerable to spectre v2\n");
919 spectre_v2_bad_module = true;
920 return false;
921 }
922
spectre_v2_module_string(void)923 static inline const char *spectre_v2_module_string(void)
924 {
925 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
926 }
927 #else
spectre_v2_module_string(void)928 static inline const char *spectre_v2_module_string(void) { return ""; }
929 #endif
930
931 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
932 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
933 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
934
935 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)936 void unpriv_ebpf_notify(int new_state)
937 {
938 if (new_state)
939 return;
940
941 /* Unprivileged eBPF is enabled */
942
943 switch (spectre_v2_enabled) {
944 case SPECTRE_V2_EIBRS:
945 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
946 break;
947 case SPECTRE_V2_EIBRS_LFENCE:
948 if (sched_smt_active())
949 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
950 break;
951 default:
952 break;
953 }
954 }
955 #endif
956
match_option(const char * arg,int arglen,const char * opt)957 static inline bool match_option(const char *arg, int arglen, const char *opt)
958 {
959 int len = strlen(opt);
960
961 return len == arglen && !strncmp(arg, opt, len);
962 }
963
964 /* The kernel command line selection for spectre v2 */
965 enum spectre_v2_mitigation_cmd {
966 SPECTRE_V2_CMD_NONE,
967 SPECTRE_V2_CMD_AUTO,
968 SPECTRE_V2_CMD_FORCE,
969 SPECTRE_V2_CMD_RETPOLINE,
970 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
971 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
972 SPECTRE_V2_CMD_EIBRS,
973 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
974 SPECTRE_V2_CMD_EIBRS_LFENCE,
975 SPECTRE_V2_CMD_IBRS,
976 };
977
978 enum spectre_v2_user_cmd {
979 SPECTRE_V2_USER_CMD_NONE,
980 SPECTRE_V2_USER_CMD_AUTO,
981 SPECTRE_V2_USER_CMD_FORCE,
982 SPECTRE_V2_USER_CMD_PRCTL,
983 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
984 SPECTRE_V2_USER_CMD_SECCOMP,
985 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
986 };
987
988 static const char * const spectre_v2_user_strings[] = {
989 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
990 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
991 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
992 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
993 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
994 };
995
996 static const struct {
997 const char *option;
998 enum spectre_v2_user_cmd cmd;
999 bool secure;
1000 } v2_user_options[] __initconst = {
1001 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1002 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1003 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1004 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1005 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1006 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1007 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1008 };
1009
spec_v2_user_print_cond(const char * reason,bool secure)1010 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1011 {
1012 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1013 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1014 }
1015
1016 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1017
1018 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1019 spectre_v2_parse_user_cmdline(void)
1020 {
1021 char arg[20];
1022 int ret, i;
1023
1024 switch (spectre_v2_cmd) {
1025 case SPECTRE_V2_CMD_NONE:
1026 return SPECTRE_V2_USER_CMD_NONE;
1027 case SPECTRE_V2_CMD_FORCE:
1028 return SPECTRE_V2_USER_CMD_FORCE;
1029 default:
1030 break;
1031 }
1032
1033 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1034 arg, sizeof(arg));
1035 if (ret < 0)
1036 return SPECTRE_V2_USER_CMD_AUTO;
1037
1038 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1039 if (match_option(arg, ret, v2_user_options[i].option)) {
1040 spec_v2_user_print_cond(v2_user_options[i].option,
1041 v2_user_options[i].secure);
1042 return v2_user_options[i].cmd;
1043 }
1044 }
1045
1046 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1047 return SPECTRE_V2_USER_CMD_AUTO;
1048 }
1049
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1050 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1051 {
1052 return mode == SPECTRE_V2_IBRS ||
1053 mode == SPECTRE_V2_EIBRS ||
1054 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1055 mode == SPECTRE_V2_EIBRS_LFENCE;
1056 }
1057
1058 static void __init
spectre_v2_user_select_mitigation(void)1059 spectre_v2_user_select_mitigation(void)
1060 {
1061 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1062 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1063 enum spectre_v2_user_cmd cmd;
1064
1065 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1066 return;
1067
1068 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1069 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1070 smt_possible = false;
1071
1072 cmd = spectre_v2_parse_user_cmdline();
1073 switch (cmd) {
1074 case SPECTRE_V2_USER_CMD_NONE:
1075 goto set_mode;
1076 case SPECTRE_V2_USER_CMD_FORCE:
1077 mode = SPECTRE_V2_USER_STRICT;
1078 break;
1079 case SPECTRE_V2_USER_CMD_PRCTL:
1080 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1081 mode = SPECTRE_V2_USER_PRCTL;
1082 break;
1083 case SPECTRE_V2_USER_CMD_AUTO:
1084 case SPECTRE_V2_USER_CMD_SECCOMP:
1085 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1086 if (IS_ENABLED(CONFIG_SECCOMP))
1087 mode = SPECTRE_V2_USER_SECCOMP;
1088 else
1089 mode = SPECTRE_V2_USER_PRCTL;
1090 break;
1091 }
1092
1093 /* Initialize Indirect Branch Prediction Barrier */
1094 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1095 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1096
1097 spectre_v2_user_ibpb = mode;
1098 switch (cmd) {
1099 case SPECTRE_V2_USER_CMD_FORCE:
1100 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1101 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1102 static_branch_enable(&switch_mm_always_ibpb);
1103 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1104 break;
1105 case SPECTRE_V2_USER_CMD_PRCTL:
1106 case SPECTRE_V2_USER_CMD_AUTO:
1107 case SPECTRE_V2_USER_CMD_SECCOMP:
1108 static_branch_enable(&switch_mm_cond_ibpb);
1109 break;
1110 default:
1111 break;
1112 }
1113
1114 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1115 static_key_enabled(&switch_mm_always_ibpb) ?
1116 "always-on" : "conditional");
1117 }
1118
1119 /*
1120 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1121 * STIBP is not required.
1122 */
1123 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1124 !smt_possible ||
1125 spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1126 return;
1127
1128 /*
1129 * At this point, an STIBP mode other than "off" has been set.
1130 * If STIBP support is not being forced, check if STIBP always-on
1131 * is preferred.
1132 */
1133 if (mode != SPECTRE_V2_USER_STRICT &&
1134 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1135 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1136
1137 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET) {
1138 if (mode != SPECTRE_V2_USER_STRICT &&
1139 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1140 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1141 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1142 }
1143
1144 spectre_v2_user_stibp = mode;
1145
1146 set_mode:
1147 pr_info("%s\n", spectre_v2_user_strings[mode]);
1148 }
1149
1150 static const char * const spectre_v2_strings[] = {
1151 [SPECTRE_V2_NONE] = "Vulnerable",
1152 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1153 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1154 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
1155 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
1156 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
1157 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1158 };
1159
1160 static const struct {
1161 const char *option;
1162 enum spectre_v2_mitigation_cmd cmd;
1163 bool secure;
1164 } mitigation_options[] __initconst = {
1165 { "off", SPECTRE_V2_CMD_NONE, false },
1166 { "on", SPECTRE_V2_CMD_FORCE, true },
1167 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1168 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1169 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1170 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1171 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1172 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1173 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1174 { "auto", SPECTRE_V2_CMD_AUTO, false },
1175 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1176 };
1177
spec_v2_print_cond(const char * reason,bool secure)1178 static void __init spec_v2_print_cond(const char *reason, bool secure)
1179 {
1180 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1181 pr_info("%s selected on command line.\n", reason);
1182 }
1183
spectre_v2_parse_cmdline(void)1184 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1185 {
1186 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1187 char arg[20];
1188 int ret, i;
1189
1190 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1191 cpu_mitigations_off())
1192 return SPECTRE_V2_CMD_NONE;
1193
1194 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1195 if (ret < 0)
1196 return SPECTRE_V2_CMD_AUTO;
1197
1198 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1199 if (!match_option(arg, ret, mitigation_options[i].option))
1200 continue;
1201 cmd = mitigation_options[i].cmd;
1202 break;
1203 }
1204
1205 if (i >= ARRAY_SIZE(mitigation_options)) {
1206 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1207 return SPECTRE_V2_CMD_AUTO;
1208 }
1209
1210 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1211 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1212 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1213 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1214 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1215 !IS_ENABLED(CONFIG_RETPOLINE)) {
1216 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1217 mitigation_options[i].option);
1218 return SPECTRE_V2_CMD_AUTO;
1219 }
1220
1221 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1222 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1223 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1224 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1225 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1226 mitigation_options[i].option);
1227 return SPECTRE_V2_CMD_AUTO;
1228 }
1229
1230 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1231 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1232 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1233 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1234 mitigation_options[i].option);
1235 return SPECTRE_V2_CMD_AUTO;
1236 }
1237
1238 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1239 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1240 mitigation_options[i].option);
1241 return SPECTRE_V2_CMD_AUTO;
1242 }
1243
1244 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1245 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1246 mitigation_options[i].option);
1247 return SPECTRE_V2_CMD_AUTO;
1248 }
1249
1250 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1251 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1252 mitigation_options[i].option);
1253 return SPECTRE_V2_CMD_AUTO;
1254 }
1255
1256 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) {
1257 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1258 mitigation_options[i].option);
1259 return SPECTRE_V2_CMD_AUTO;
1260 }
1261
1262 spec_v2_print_cond(mitigation_options[i].option,
1263 mitigation_options[i].secure);
1264 return cmd;
1265 }
1266
spectre_v2_select_retpoline(void)1267 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1268 {
1269 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1270 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1271 return SPECTRE_V2_NONE;
1272 }
1273
1274 return SPECTRE_V2_RETPOLINE;
1275 }
1276
1277 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1278 static void __init spec_ctrl_disable_kernel_rrsba(void)
1279 {
1280 u64 ia32_cap;
1281
1282 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1283 return;
1284
1285 ia32_cap = x86_read_arch_cap_msr();
1286
1287 if (ia32_cap & ARCH_CAP_RRSBA) {
1288 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1289 write_spec_ctrl_current(x86_spec_ctrl_base, true);
1290 }
1291 }
1292
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1293 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1294 {
1295 /*
1296 * Similar to context switches, there are two types of RSB attacks
1297 * after VM exit:
1298 *
1299 * 1) RSB underflow
1300 *
1301 * 2) Poisoned RSB entry
1302 *
1303 * When retpoline is enabled, both are mitigated by filling/clearing
1304 * the RSB.
1305 *
1306 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1307 * prediction isolation protections, RSB still needs to be cleared
1308 * because of #2. Note that SMEP provides no protection here, unlike
1309 * user-space-poisoned RSB entries.
1310 *
1311 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1312 * bug is present then a LITE version of RSB protection is required,
1313 * just a single call needs to retire before a RET is executed.
1314 */
1315 switch (mode) {
1316 case SPECTRE_V2_NONE:
1317 return;
1318
1319 case SPECTRE_V2_EIBRS_LFENCE:
1320 case SPECTRE_V2_EIBRS:
1321 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1322 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1323 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1324 }
1325 return;
1326
1327 case SPECTRE_V2_EIBRS_RETPOLINE:
1328 case SPECTRE_V2_RETPOLINE:
1329 case SPECTRE_V2_LFENCE:
1330 case SPECTRE_V2_IBRS:
1331 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1332 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1333 return;
1334 }
1335
1336 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1337 dump_stack();
1338 }
1339
spectre_v2_select_mitigation(void)1340 static void __init spectre_v2_select_mitigation(void)
1341 {
1342 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1343 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1344
1345 /*
1346 * If the CPU is not affected and the command line mode is NONE or AUTO
1347 * then nothing to do.
1348 */
1349 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1350 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1351 return;
1352
1353 switch (cmd) {
1354 case SPECTRE_V2_CMD_NONE:
1355 return;
1356
1357 case SPECTRE_V2_CMD_FORCE:
1358 case SPECTRE_V2_CMD_AUTO:
1359 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1360 mode = SPECTRE_V2_EIBRS;
1361 break;
1362 }
1363
1364 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1365 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1366 retbleed_cmd != RETBLEED_CMD_OFF &&
1367 boot_cpu_has(X86_FEATURE_IBRS) &&
1368 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1369 mode = SPECTRE_V2_IBRS;
1370 break;
1371 }
1372
1373 mode = spectre_v2_select_retpoline();
1374 break;
1375
1376 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1377 pr_err(SPECTRE_V2_LFENCE_MSG);
1378 mode = SPECTRE_V2_LFENCE;
1379 break;
1380
1381 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1382 mode = SPECTRE_V2_RETPOLINE;
1383 break;
1384
1385 case SPECTRE_V2_CMD_RETPOLINE:
1386 mode = spectre_v2_select_retpoline();
1387 break;
1388
1389 case SPECTRE_V2_CMD_IBRS:
1390 mode = SPECTRE_V2_IBRS;
1391 break;
1392
1393 case SPECTRE_V2_CMD_EIBRS:
1394 mode = SPECTRE_V2_EIBRS;
1395 break;
1396
1397 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1398 mode = SPECTRE_V2_EIBRS_LFENCE;
1399 break;
1400
1401 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1402 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1403 break;
1404 }
1405
1406 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1407 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1408
1409 if (spectre_v2_in_ibrs_mode(mode)) {
1410 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1411 write_spec_ctrl_current(x86_spec_ctrl_base, true);
1412 }
1413
1414 switch (mode) {
1415 case SPECTRE_V2_NONE:
1416 case SPECTRE_V2_EIBRS:
1417 break;
1418
1419 case SPECTRE_V2_IBRS:
1420 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1421 break;
1422
1423 case SPECTRE_V2_LFENCE:
1424 case SPECTRE_V2_EIBRS_LFENCE:
1425 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1426 fallthrough;
1427
1428 case SPECTRE_V2_RETPOLINE:
1429 case SPECTRE_V2_EIBRS_RETPOLINE:
1430 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1431 break;
1432 }
1433
1434 /*
1435 * Disable alternate RSB predictions in kernel when indirect CALLs and
1436 * JMPs gets protection against BHI and Intramode-BTI, but RET
1437 * prediction from a non-RSB predictor is still a risk.
1438 */
1439 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1440 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1441 mode == SPECTRE_V2_RETPOLINE)
1442 spec_ctrl_disable_kernel_rrsba();
1443
1444 spectre_v2_enabled = mode;
1445 pr_info("%s\n", spectre_v2_strings[mode]);
1446
1447 /*
1448 * If Spectre v2 protection has been enabled, fill the RSB during a
1449 * context switch. In general there are two types of RSB attacks
1450 * across context switches, for which the CALLs/RETs may be unbalanced.
1451 *
1452 * 1) RSB underflow
1453 *
1454 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1455 * speculated return targets may come from the branch predictor,
1456 * which could have a user-poisoned BTB or BHB entry.
1457 *
1458 * AMD has it even worse: *all* returns are speculated from the BTB,
1459 * regardless of the state of the RSB.
1460 *
1461 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1462 * scenario is mitigated by the IBRS branch prediction isolation
1463 * properties, so the RSB buffer filling wouldn't be necessary to
1464 * protect against this type of attack.
1465 *
1466 * The "user -> user" attack scenario is mitigated by RSB filling.
1467 *
1468 * 2) Poisoned RSB entry
1469 *
1470 * If the 'next' in-kernel return stack is shorter than 'prev',
1471 * 'next' could be tricked into speculating with a user-poisoned RSB
1472 * entry.
1473 *
1474 * The "user -> kernel" attack scenario is mitigated by SMEP and
1475 * eIBRS.
1476 *
1477 * The "user -> user" scenario, also known as SpectreBHB, requires
1478 * RSB clearing.
1479 *
1480 * So to mitigate all cases, unconditionally fill RSB on context
1481 * switches.
1482 *
1483 * FIXME: Is this pointless for retbleed-affected AMD?
1484 */
1485 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1486 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1487
1488 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1489
1490 /*
1491 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1492 * and Enhanced IBRS protect firmware too, so enable IBRS around
1493 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1494 * enabled.
1495 *
1496 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1497 * the user might select retpoline on the kernel command line and if
1498 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1499 * enable IBRS around firmware calls.
1500 */
1501 if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1502 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1503 pr_info("Enabling Restricted Speculation for firmware calls\n");
1504 }
1505
1506 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1507 spectre_v2_cmd = cmd;
1508 }
1509
update_stibp_msr(void * __unused)1510 static void update_stibp_msr(void * __unused)
1511 {
1512 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1513 write_spec_ctrl_current(val, true);
1514 }
1515
1516 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1517 static void update_stibp_strict(void)
1518 {
1519 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1520
1521 if (sched_smt_active())
1522 mask |= SPEC_CTRL_STIBP;
1523
1524 if (mask == x86_spec_ctrl_base)
1525 return;
1526
1527 pr_info("Update user space SMT mitigation: STIBP %s\n",
1528 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1529 x86_spec_ctrl_base = mask;
1530 on_each_cpu(update_stibp_msr, NULL, 1);
1531 }
1532
1533 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1534 static void update_indir_branch_cond(void)
1535 {
1536 if (sched_smt_active())
1537 static_branch_enable(&switch_to_cond_stibp);
1538 else
1539 static_branch_disable(&switch_to_cond_stibp);
1540 }
1541
1542 #undef pr_fmt
1543 #define pr_fmt(fmt) fmt
1544
1545 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1546 static void update_mds_branch_idle(void)
1547 {
1548 u64 ia32_cap = x86_read_arch_cap_msr();
1549
1550 /*
1551 * Enable the idle clearing if SMT is active on CPUs which are
1552 * affected only by MSBDS and not any other MDS variant.
1553 *
1554 * The other variants cannot be mitigated when SMT is enabled, so
1555 * clearing the buffers on idle just to prevent the Store Buffer
1556 * repartitioning leak would be a window dressing exercise.
1557 */
1558 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1559 return;
1560
1561 if (sched_smt_active()) {
1562 static_branch_enable(&mds_idle_clear);
1563 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1564 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1565 static_branch_disable(&mds_idle_clear);
1566 }
1567 }
1568
1569 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1570 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1571 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1572
cpu_bugs_smt_update(void)1573 void cpu_bugs_smt_update(void)
1574 {
1575 mutex_lock(&spec_ctrl_mutex);
1576
1577 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1578 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1579 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1580
1581 switch (spectre_v2_user_stibp) {
1582 case SPECTRE_V2_USER_NONE:
1583 break;
1584 case SPECTRE_V2_USER_STRICT:
1585 case SPECTRE_V2_USER_STRICT_PREFERRED:
1586 update_stibp_strict();
1587 break;
1588 case SPECTRE_V2_USER_PRCTL:
1589 case SPECTRE_V2_USER_SECCOMP:
1590 update_indir_branch_cond();
1591 break;
1592 }
1593
1594 switch (mds_mitigation) {
1595 case MDS_MITIGATION_FULL:
1596 case MDS_MITIGATION_VMWERV:
1597 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1598 pr_warn_once(MDS_MSG_SMT);
1599 update_mds_branch_idle();
1600 break;
1601 case MDS_MITIGATION_OFF:
1602 break;
1603 }
1604
1605 switch (taa_mitigation) {
1606 case TAA_MITIGATION_VERW:
1607 case TAA_MITIGATION_UCODE_NEEDED:
1608 if (sched_smt_active())
1609 pr_warn_once(TAA_MSG_SMT);
1610 break;
1611 case TAA_MITIGATION_TSX_DISABLED:
1612 case TAA_MITIGATION_OFF:
1613 break;
1614 }
1615
1616 switch (mmio_mitigation) {
1617 case MMIO_MITIGATION_VERW:
1618 case MMIO_MITIGATION_UCODE_NEEDED:
1619 if (sched_smt_active())
1620 pr_warn_once(MMIO_MSG_SMT);
1621 break;
1622 case MMIO_MITIGATION_OFF:
1623 break;
1624 }
1625
1626 mutex_unlock(&spec_ctrl_mutex);
1627 }
1628
1629 #undef pr_fmt
1630 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1631
1632 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1633
1634 /* The kernel command line selection */
1635 enum ssb_mitigation_cmd {
1636 SPEC_STORE_BYPASS_CMD_NONE,
1637 SPEC_STORE_BYPASS_CMD_AUTO,
1638 SPEC_STORE_BYPASS_CMD_ON,
1639 SPEC_STORE_BYPASS_CMD_PRCTL,
1640 SPEC_STORE_BYPASS_CMD_SECCOMP,
1641 };
1642
1643 static const char * const ssb_strings[] = {
1644 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1645 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1646 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1647 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1648 };
1649
1650 static const struct {
1651 const char *option;
1652 enum ssb_mitigation_cmd cmd;
1653 } ssb_mitigation_options[] __initconst = {
1654 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1655 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1656 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1657 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1658 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1659 };
1660
ssb_parse_cmdline(void)1661 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1662 {
1663 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1664 char arg[20];
1665 int ret, i;
1666
1667 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1668 cpu_mitigations_off()) {
1669 return SPEC_STORE_BYPASS_CMD_NONE;
1670 } else {
1671 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1672 arg, sizeof(arg));
1673 if (ret < 0)
1674 return SPEC_STORE_BYPASS_CMD_AUTO;
1675
1676 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1677 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1678 continue;
1679
1680 cmd = ssb_mitigation_options[i].cmd;
1681 break;
1682 }
1683
1684 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1685 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1686 return SPEC_STORE_BYPASS_CMD_AUTO;
1687 }
1688 }
1689
1690 return cmd;
1691 }
1692
__ssb_select_mitigation(void)1693 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1694 {
1695 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1696 enum ssb_mitigation_cmd cmd;
1697
1698 if (!boot_cpu_has(X86_FEATURE_SSBD))
1699 return mode;
1700
1701 cmd = ssb_parse_cmdline();
1702 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1703 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1704 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1705 return mode;
1706
1707 switch (cmd) {
1708 case SPEC_STORE_BYPASS_CMD_AUTO:
1709 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1710 /*
1711 * Choose prctl+seccomp as the default mode if seccomp is
1712 * enabled.
1713 */
1714 if (IS_ENABLED(CONFIG_SECCOMP))
1715 mode = SPEC_STORE_BYPASS_SECCOMP;
1716 else
1717 mode = SPEC_STORE_BYPASS_PRCTL;
1718 break;
1719 case SPEC_STORE_BYPASS_CMD_ON:
1720 mode = SPEC_STORE_BYPASS_DISABLE;
1721 break;
1722 case SPEC_STORE_BYPASS_CMD_PRCTL:
1723 mode = SPEC_STORE_BYPASS_PRCTL;
1724 break;
1725 case SPEC_STORE_BYPASS_CMD_NONE:
1726 break;
1727 }
1728
1729 /*
1730 * We have three CPU feature flags that are in play here:
1731 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1732 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1733 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1734 */
1735 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1736 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1737 /*
1738 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1739 * use a completely different MSR and bit dependent on family.
1740 */
1741 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1742 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1743 x86_amd_ssb_disable();
1744 } else {
1745 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1746 write_spec_ctrl_current(x86_spec_ctrl_base, true);
1747 }
1748 }
1749
1750 return mode;
1751 }
1752
ssb_select_mitigation(void)1753 static void ssb_select_mitigation(void)
1754 {
1755 ssb_mode = __ssb_select_mitigation();
1756
1757 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1758 pr_info("%s\n", ssb_strings[ssb_mode]);
1759 }
1760
1761 #undef pr_fmt
1762 #define pr_fmt(fmt) "Speculation prctl: " fmt
1763
task_update_spec_tif(struct task_struct * tsk)1764 static void task_update_spec_tif(struct task_struct *tsk)
1765 {
1766 /* Force the update of the real TIF bits */
1767 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1768
1769 /*
1770 * Immediately update the speculation control MSRs for the current
1771 * task, but for a non-current task delay setting the CPU
1772 * mitigation until it is scheduled next.
1773 *
1774 * This can only happen for SECCOMP mitigation. For PRCTL it's
1775 * always the current task.
1776 */
1777 if (tsk == current)
1778 speculation_ctrl_update_current();
1779 }
1780
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)1781 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1782 {
1783 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1784 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1785 return -ENXIO;
1786
1787 switch (ctrl) {
1788 case PR_SPEC_ENABLE:
1789 /* If speculation is force disabled, enable is not allowed */
1790 if (task_spec_ssb_force_disable(task))
1791 return -EPERM;
1792 task_clear_spec_ssb_disable(task);
1793 task_clear_spec_ssb_noexec(task);
1794 task_update_spec_tif(task);
1795 break;
1796 case PR_SPEC_DISABLE:
1797 task_set_spec_ssb_disable(task);
1798 task_clear_spec_ssb_noexec(task);
1799 task_update_spec_tif(task);
1800 break;
1801 case PR_SPEC_FORCE_DISABLE:
1802 task_set_spec_ssb_disable(task);
1803 task_set_spec_ssb_force_disable(task);
1804 task_clear_spec_ssb_noexec(task);
1805 task_update_spec_tif(task);
1806 break;
1807 case PR_SPEC_DISABLE_NOEXEC:
1808 if (task_spec_ssb_force_disable(task))
1809 return -EPERM;
1810 task_set_spec_ssb_disable(task);
1811 task_set_spec_ssb_noexec(task);
1812 task_update_spec_tif(task);
1813 break;
1814 default:
1815 return -ERANGE;
1816 }
1817 return 0;
1818 }
1819
is_spec_ib_user_controlled(void)1820 static bool is_spec_ib_user_controlled(void)
1821 {
1822 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1823 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1824 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1825 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1826 }
1827
ib_prctl_set(struct task_struct * task,unsigned long ctrl)1828 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1829 {
1830 switch (ctrl) {
1831 case PR_SPEC_ENABLE:
1832 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1833 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1834 return 0;
1835
1836 /*
1837 * With strict mode for both IBPB and STIBP, the instruction
1838 * code paths avoid checking this task flag and instead,
1839 * unconditionally run the instruction. However, STIBP and IBPB
1840 * are independent and either can be set to conditionally
1841 * enabled regardless of the mode of the other.
1842 *
1843 * If either is set to conditional, allow the task flag to be
1844 * updated, unless it was force-disabled by a previous prctl
1845 * call. Currently, this is possible on an AMD CPU which has the
1846 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1847 * kernel is booted with 'spectre_v2_user=seccomp', then
1848 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1849 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1850 */
1851 if (!is_spec_ib_user_controlled() ||
1852 task_spec_ib_force_disable(task))
1853 return -EPERM;
1854
1855 task_clear_spec_ib_disable(task);
1856 task_update_spec_tif(task);
1857 break;
1858 case PR_SPEC_DISABLE:
1859 case PR_SPEC_FORCE_DISABLE:
1860 /*
1861 * Indirect branch speculation is always allowed when
1862 * mitigation is force disabled.
1863 */
1864 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1865 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1866 return -EPERM;
1867
1868 if (!is_spec_ib_user_controlled())
1869 return 0;
1870
1871 task_set_spec_ib_disable(task);
1872 if (ctrl == PR_SPEC_FORCE_DISABLE)
1873 task_set_spec_ib_force_disable(task);
1874 task_update_spec_tif(task);
1875 if (task == current)
1876 indirect_branch_prediction_barrier();
1877 break;
1878 default:
1879 return -ERANGE;
1880 }
1881 return 0;
1882 }
1883
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)1884 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1885 unsigned long ctrl)
1886 {
1887 switch (which) {
1888 case PR_SPEC_STORE_BYPASS:
1889 return ssb_prctl_set(task, ctrl);
1890 case PR_SPEC_INDIRECT_BRANCH:
1891 return ib_prctl_set(task, ctrl);
1892 default:
1893 return -ENODEV;
1894 }
1895 }
1896
1897 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)1898 void arch_seccomp_spec_mitigate(struct task_struct *task)
1899 {
1900 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1901 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1902 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1903 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1904 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1905 }
1906 #endif
1907
ssb_prctl_get(struct task_struct * task)1908 static int ssb_prctl_get(struct task_struct *task)
1909 {
1910 switch (ssb_mode) {
1911 case SPEC_STORE_BYPASS_DISABLE:
1912 return PR_SPEC_DISABLE;
1913 case SPEC_STORE_BYPASS_SECCOMP:
1914 case SPEC_STORE_BYPASS_PRCTL:
1915 if (task_spec_ssb_force_disable(task))
1916 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1917 if (task_spec_ssb_noexec(task))
1918 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1919 if (task_spec_ssb_disable(task))
1920 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1921 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1922 default:
1923 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1924 return PR_SPEC_ENABLE;
1925 return PR_SPEC_NOT_AFFECTED;
1926 }
1927 }
1928
ib_prctl_get(struct task_struct * task)1929 static int ib_prctl_get(struct task_struct *task)
1930 {
1931 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1932 return PR_SPEC_NOT_AFFECTED;
1933
1934 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1935 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1936 return PR_SPEC_ENABLE;
1937 else if (is_spec_ib_user_controlled()) {
1938 if (task_spec_ib_force_disable(task))
1939 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1940 if (task_spec_ib_disable(task))
1941 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1942 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1943 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1944 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1945 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1946 return PR_SPEC_DISABLE;
1947 else
1948 return PR_SPEC_NOT_AFFECTED;
1949 }
1950
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)1951 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1952 {
1953 switch (which) {
1954 case PR_SPEC_STORE_BYPASS:
1955 return ssb_prctl_get(task);
1956 case PR_SPEC_INDIRECT_BRANCH:
1957 return ib_prctl_get(task);
1958 default:
1959 return -ENODEV;
1960 }
1961 }
1962
x86_spec_ctrl_setup_ap(void)1963 void x86_spec_ctrl_setup_ap(void)
1964 {
1965 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1966 write_spec_ctrl_current(x86_spec_ctrl_base, true);
1967
1968 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1969 x86_amd_ssb_disable();
1970 }
1971
1972 bool itlb_multihit_kvm_mitigation;
1973 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1974
1975 #undef pr_fmt
1976 #define pr_fmt(fmt) "L1TF: " fmt
1977
1978 /* Default mitigation for L1TF-affected CPUs */
1979 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1980 #if IS_ENABLED(CONFIG_KVM_INTEL)
1981 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1982 #endif
1983 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1984 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1985
1986 /*
1987 * These CPUs all support 44bits physical address space internally in the
1988 * cache but CPUID can report a smaller number of physical address bits.
1989 *
1990 * The L1TF mitigation uses the top most address bit for the inversion of
1991 * non present PTEs. When the installed memory reaches into the top most
1992 * address bit due to memory holes, which has been observed on machines
1993 * which report 36bits physical address bits and have 32G RAM installed,
1994 * then the mitigation range check in l1tf_select_mitigation() triggers.
1995 * This is a false positive because the mitigation is still possible due to
1996 * the fact that the cache uses 44bit internally. Use the cache bits
1997 * instead of the reported physical bits and adjust them on the affected
1998 * machines to 44bit if the reported bits are less than 44.
1999 */
override_cache_bits(struct cpuinfo_x86 * c)2000 static void override_cache_bits(struct cpuinfo_x86 *c)
2001 {
2002 if (c->x86 != 6)
2003 return;
2004
2005 switch (c->x86_model) {
2006 case INTEL_FAM6_NEHALEM:
2007 case INTEL_FAM6_WESTMERE:
2008 case INTEL_FAM6_SANDYBRIDGE:
2009 case INTEL_FAM6_IVYBRIDGE:
2010 case INTEL_FAM6_HASWELL:
2011 case INTEL_FAM6_HASWELL_L:
2012 case INTEL_FAM6_HASWELL_G:
2013 case INTEL_FAM6_BROADWELL:
2014 case INTEL_FAM6_BROADWELL_G:
2015 case INTEL_FAM6_SKYLAKE_L:
2016 case INTEL_FAM6_SKYLAKE:
2017 case INTEL_FAM6_KABYLAKE_L:
2018 case INTEL_FAM6_KABYLAKE:
2019 if (c->x86_cache_bits < 44)
2020 c->x86_cache_bits = 44;
2021 break;
2022 }
2023 }
2024
l1tf_select_mitigation(void)2025 static void __init l1tf_select_mitigation(void)
2026 {
2027 u64 half_pa;
2028
2029 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2030 return;
2031
2032 if (cpu_mitigations_off())
2033 l1tf_mitigation = L1TF_MITIGATION_OFF;
2034 else if (cpu_mitigations_auto_nosmt())
2035 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2036
2037 override_cache_bits(&boot_cpu_data);
2038
2039 switch (l1tf_mitigation) {
2040 case L1TF_MITIGATION_OFF:
2041 case L1TF_MITIGATION_FLUSH_NOWARN:
2042 case L1TF_MITIGATION_FLUSH:
2043 break;
2044 case L1TF_MITIGATION_FLUSH_NOSMT:
2045 case L1TF_MITIGATION_FULL:
2046 cpu_smt_disable(false);
2047 break;
2048 case L1TF_MITIGATION_FULL_FORCE:
2049 cpu_smt_disable(true);
2050 break;
2051 }
2052
2053 #if CONFIG_PGTABLE_LEVELS == 2
2054 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2055 return;
2056 #endif
2057
2058 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2059 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2060 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2061 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2062 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2063 half_pa);
2064 pr_info("However, doing so will make a part of your RAM unusable.\n");
2065 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2066 return;
2067 }
2068
2069 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2070 }
2071
l1tf_cmdline(char * str)2072 static int __init l1tf_cmdline(char *str)
2073 {
2074 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2075 return 0;
2076
2077 if (!str)
2078 return -EINVAL;
2079
2080 if (!strcmp(str, "off"))
2081 l1tf_mitigation = L1TF_MITIGATION_OFF;
2082 else if (!strcmp(str, "flush,nowarn"))
2083 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2084 else if (!strcmp(str, "flush"))
2085 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2086 else if (!strcmp(str, "flush,nosmt"))
2087 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2088 else if (!strcmp(str, "full"))
2089 l1tf_mitigation = L1TF_MITIGATION_FULL;
2090 else if (!strcmp(str, "full,force"))
2091 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2092
2093 return 0;
2094 }
2095 early_param("l1tf", l1tf_cmdline);
2096
2097 #undef pr_fmt
2098 #define pr_fmt(fmt) fmt
2099
2100 #ifdef CONFIG_SYSFS
2101
2102 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2103
2104 #if IS_ENABLED(CONFIG_KVM_INTEL)
2105 static const char * const l1tf_vmx_states[] = {
2106 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2107 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2108 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2109 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2110 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2111 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2112 };
2113
l1tf_show_state(char * buf)2114 static ssize_t l1tf_show_state(char *buf)
2115 {
2116 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2117 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2118
2119 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2120 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2121 sched_smt_active())) {
2122 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2123 l1tf_vmx_states[l1tf_vmx_mitigation]);
2124 }
2125
2126 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2127 l1tf_vmx_states[l1tf_vmx_mitigation],
2128 sched_smt_active() ? "vulnerable" : "disabled");
2129 }
2130
itlb_multihit_show_state(char * buf)2131 static ssize_t itlb_multihit_show_state(char *buf)
2132 {
2133 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2134 !boot_cpu_has(X86_FEATURE_VMX))
2135 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
2136 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2137 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
2138 else if (itlb_multihit_kvm_mitigation)
2139 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
2140 else
2141 return sprintf(buf, "KVM: Vulnerable\n");
2142 }
2143 #else
l1tf_show_state(char * buf)2144 static ssize_t l1tf_show_state(char *buf)
2145 {
2146 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2147 }
2148
itlb_multihit_show_state(char * buf)2149 static ssize_t itlb_multihit_show_state(char *buf)
2150 {
2151 return sprintf(buf, "Processor vulnerable\n");
2152 }
2153 #endif
2154
mds_show_state(char * buf)2155 static ssize_t mds_show_state(char *buf)
2156 {
2157 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2158 return sprintf(buf, "%s; SMT Host state unknown\n",
2159 mds_strings[mds_mitigation]);
2160 }
2161
2162 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2163 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2164 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2165 sched_smt_active() ? "mitigated" : "disabled"));
2166 }
2167
2168 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2169 sched_smt_active() ? "vulnerable" : "disabled");
2170 }
2171
tsx_async_abort_show_state(char * buf)2172 static ssize_t tsx_async_abort_show_state(char *buf)
2173 {
2174 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2175 (taa_mitigation == TAA_MITIGATION_OFF))
2176 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
2177
2178 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2179 return sprintf(buf, "%s; SMT Host state unknown\n",
2180 taa_strings[taa_mitigation]);
2181 }
2182
2183 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2184 sched_smt_active() ? "vulnerable" : "disabled");
2185 }
2186
mmio_stale_data_show_state(char * buf)2187 static ssize_t mmio_stale_data_show_state(char *buf)
2188 {
2189 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2190 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2191
2192 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2193 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2194 mmio_strings[mmio_mitigation]);
2195 }
2196
2197 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2198 sched_smt_active() ? "vulnerable" : "disabled");
2199 }
2200
stibp_state(void)2201 static char *stibp_state(void)
2202 {
2203 if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2204 return "";
2205
2206 switch (spectre_v2_user_stibp) {
2207 case SPECTRE_V2_USER_NONE:
2208 return ", STIBP: disabled";
2209 case SPECTRE_V2_USER_STRICT:
2210 return ", STIBP: forced";
2211 case SPECTRE_V2_USER_STRICT_PREFERRED:
2212 return ", STIBP: always-on";
2213 case SPECTRE_V2_USER_PRCTL:
2214 case SPECTRE_V2_USER_SECCOMP:
2215 if (static_key_enabled(&switch_to_cond_stibp))
2216 return ", STIBP: conditional";
2217 }
2218 return "";
2219 }
2220
ibpb_state(void)2221 static char *ibpb_state(void)
2222 {
2223 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2224 if (static_key_enabled(&switch_mm_always_ibpb))
2225 return ", IBPB: always-on";
2226 if (static_key_enabled(&switch_mm_cond_ibpb))
2227 return ", IBPB: conditional";
2228 return ", IBPB: disabled";
2229 }
2230 return "";
2231 }
2232
pbrsb_eibrs_state(void)2233 static char *pbrsb_eibrs_state(void)
2234 {
2235 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2236 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2237 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2238 return ", PBRSB-eIBRS: SW sequence";
2239 else
2240 return ", PBRSB-eIBRS: Vulnerable";
2241 } else {
2242 return ", PBRSB-eIBRS: Not affected";
2243 }
2244 }
2245
spectre_v2_show_state(char * buf)2246 static ssize_t spectre_v2_show_state(char *buf)
2247 {
2248 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2249 return sprintf(buf, "Vulnerable: LFENCE\n");
2250
2251 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2252 return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2253
2254 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2255 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2256 return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2257
2258 return sprintf(buf, "%s%s%s%s%s%s%s\n",
2259 spectre_v2_strings[spectre_v2_enabled],
2260 ibpb_state(),
2261 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2262 stibp_state(),
2263 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2264 pbrsb_eibrs_state(),
2265 spectre_v2_module_string());
2266 }
2267
srbds_show_state(char * buf)2268 static ssize_t srbds_show_state(char *buf)
2269 {
2270 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
2271 }
2272
retbleed_show_state(char * buf)2273 static ssize_t retbleed_show_state(char *buf)
2274 {
2275 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET) {
2276 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2277 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2278 return sprintf(buf, "Vulnerable: untrained return thunk on non-Zen uarch\n");
2279
2280 return sprintf(buf, "%s; SMT %s\n",
2281 retbleed_strings[retbleed_mitigation],
2282 !sched_smt_active() ? "disabled" :
2283 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2284 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2285 "enabled with STIBP protection" : "vulnerable");
2286 }
2287
2288 return sprintf(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2289 }
2290
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2291 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2292 char *buf, unsigned int bug)
2293 {
2294 if (!boot_cpu_has_bug(bug))
2295 return sprintf(buf, "Not affected\n");
2296
2297 switch (bug) {
2298 case X86_BUG_CPU_MELTDOWN:
2299 if (boot_cpu_has(X86_FEATURE_PTI))
2300 return sprintf(buf, "Mitigation: PTI\n");
2301
2302 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2303 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2304
2305 break;
2306
2307 case X86_BUG_SPECTRE_V1:
2308 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2309
2310 case X86_BUG_SPECTRE_V2:
2311 return spectre_v2_show_state(buf);
2312
2313 case X86_BUG_SPEC_STORE_BYPASS:
2314 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2315
2316 case X86_BUG_L1TF:
2317 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2318 return l1tf_show_state(buf);
2319 break;
2320
2321 case X86_BUG_MDS:
2322 return mds_show_state(buf);
2323
2324 case X86_BUG_TAA:
2325 return tsx_async_abort_show_state(buf);
2326
2327 case X86_BUG_ITLB_MULTIHIT:
2328 return itlb_multihit_show_state(buf);
2329
2330 case X86_BUG_SRBDS:
2331 return srbds_show_state(buf);
2332
2333 case X86_BUG_MMIO_STALE_DATA:
2334 return mmio_stale_data_show_state(buf);
2335
2336 case X86_BUG_RETBLEED:
2337 return retbleed_show_state(buf);
2338
2339 default:
2340 break;
2341 }
2342
2343 return sprintf(buf, "Vulnerable\n");
2344 }
2345
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2346 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2347 {
2348 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2349 }
2350
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)2351 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2352 {
2353 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2354 }
2355
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)2356 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2357 {
2358 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2359 }
2360
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)2361 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2362 {
2363 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2364 }
2365
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)2366 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2367 {
2368 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2369 }
2370
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)2371 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2372 {
2373 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2374 }
2375
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)2376 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2377 {
2378 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2379 }
2380
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)2381 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2382 {
2383 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2384 }
2385
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)2386 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2387 {
2388 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2389 }
2390
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)2391 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2392 {
2393 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2394 }
2395
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)2396 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2397 {
2398 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2399 }
2400 #endif
2401