1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a trivial dead store elimination that only considers
10 // basic-block local redundant stores.
11 //
12 // FIXME: This should eventually be extended to be a post-dominator tree
13 // traversal. Doing so would be pretty trivial.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/OrderedBasicBlock.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <iterator>
67 #include <map>
68 #include <utility>
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "dse"
73
74 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
75 STATISTIC(NumFastStores, "Number of stores deleted");
76 STATISTIC(NumFastOther, "Number of other instrs removed");
77 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
78 STATISTIC(NumModifiedStores, "Number of stores modified");
79
80 static cl::opt<bool>
81 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
82 cl::init(true), cl::Hidden,
83 cl::desc("Enable partial-overwrite tracking in DSE"));
84
85 static cl::opt<bool>
86 EnablePartialStoreMerging("enable-dse-partial-store-merging",
87 cl::init(true), cl::Hidden,
88 cl::desc("Enable partial store merging in DSE"));
89
90 //===----------------------------------------------------------------------===//
91 // Helper functions
92 //===----------------------------------------------------------------------===//
93 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
94 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
95
96 /// Delete this instruction. Before we do, go through and zero out all the
97 /// operands of this instruction. If any of them become dead, delete them and
98 /// the computation tree that feeds them.
99 /// If ValueSet is non-null, remove any deleted instructions from it as well.
100 static void
deleteDeadInstruction(Instruction * I,BasicBlock::iterator * BBI,MemoryDependenceResults & MD,const TargetLibraryInfo & TLI,InstOverlapIntervalsTy & IOL,OrderedBasicBlock & OBB,MapVector<Instruction *,bool> & ThrowableInst,SmallSetVector<const Value *,16> * ValueSet=nullptr)101 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
102 MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
103 InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
104 MapVector<Instruction *, bool> &ThrowableInst,
105 SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
106 SmallVector<Instruction*, 32> NowDeadInsts;
107
108 NowDeadInsts.push_back(I);
109 --NumFastOther;
110
111 // Keeping the iterator straight is a pain, so we let this routine tell the
112 // caller what the next instruction is after we're done mucking about.
113 BasicBlock::iterator NewIter = *BBI;
114
115 // Before we touch this instruction, remove it from memdep!
116 do {
117 Instruction *DeadInst = NowDeadInsts.pop_back_val();
118 // Mark the DeadInst as dead in the list of throwable instructions.
119 auto It = ThrowableInst.find(DeadInst);
120 if (It != ThrowableInst.end())
121 ThrowableInst[It->first] = false;
122 ++NumFastOther;
123
124 // Try to preserve debug information attached to the dead instruction.
125 salvageDebugInfo(*DeadInst);
126
127 // This instruction is dead, zap it, in stages. Start by removing it from
128 // MemDep, which needs to know the operands and needs it to be in the
129 // function.
130 MD.removeInstruction(DeadInst);
131
132 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
133 Value *Op = DeadInst->getOperand(op);
134 DeadInst->setOperand(op, nullptr);
135
136 // If this operand just became dead, add it to the NowDeadInsts list.
137 if (!Op->use_empty()) continue;
138
139 if (Instruction *OpI = dyn_cast<Instruction>(Op))
140 if (isInstructionTriviallyDead(OpI, &TLI))
141 NowDeadInsts.push_back(OpI);
142 }
143
144 if (ValueSet) ValueSet->remove(DeadInst);
145 IOL.erase(DeadInst);
146 OBB.eraseInstruction(DeadInst);
147
148 if (NewIter == DeadInst->getIterator())
149 NewIter = DeadInst->eraseFromParent();
150 else
151 DeadInst->eraseFromParent();
152 } while (!NowDeadInsts.empty());
153 *BBI = NewIter;
154 // Pop dead entries from back of ThrowableInst till we find an alive entry.
155 while (!ThrowableInst.empty() && !ThrowableInst.back().second)
156 ThrowableInst.pop_back();
157 }
158
159 /// Does this instruction write some memory? This only returns true for things
160 /// that we can analyze with other helpers below.
hasAnalyzableMemoryWrite(Instruction * I,const TargetLibraryInfo & TLI)161 static bool hasAnalyzableMemoryWrite(Instruction *I,
162 const TargetLibraryInfo &TLI) {
163 if (isa<StoreInst>(I))
164 return true;
165 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
166 switch (II->getIntrinsicID()) {
167 default:
168 return false;
169 case Intrinsic::memset:
170 case Intrinsic::memmove:
171 case Intrinsic::memcpy:
172 case Intrinsic::memcpy_element_unordered_atomic:
173 case Intrinsic::memmove_element_unordered_atomic:
174 case Intrinsic::memset_element_unordered_atomic:
175 case Intrinsic::init_trampoline:
176 case Intrinsic::lifetime_end:
177 return true;
178 }
179 }
180 if (auto CS = CallSite(I)) {
181 if (Function *F = CS.getCalledFunction()) {
182 LibFunc LF;
183 if (TLI.getLibFunc(*F, LF) && TLI.has(LF)) {
184 switch (LF) {
185 case LibFunc_strcpy:
186 case LibFunc_strncpy:
187 case LibFunc_strcat:
188 case LibFunc_strncat:
189 return true;
190 default:
191 return false;
192 }
193 }
194 }
195 }
196 return false;
197 }
198
199 /// Return a Location stored to by the specified instruction. If isRemovable
200 /// returns true, this function and getLocForRead completely describe the memory
201 /// operations for this instruction.
getLocForWrite(Instruction * Inst)202 static MemoryLocation getLocForWrite(Instruction *Inst) {
203
204 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
205 return MemoryLocation::get(SI);
206
207 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
208 // memcpy/memmove/memset.
209 MemoryLocation Loc = MemoryLocation::getForDest(MI);
210 return Loc;
211 }
212
213 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
214 switch (II->getIntrinsicID()) {
215 default:
216 return MemoryLocation(); // Unhandled intrinsic.
217 case Intrinsic::init_trampoline:
218 return MemoryLocation(II->getArgOperand(0));
219 case Intrinsic::lifetime_end: {
220 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
221 return MemoryLocation(II->getArgOperand(1), Len);
222 }
223 }
224 }
225 if (auto CS = CallSite(Inst))
226 // All the supported TLI functions so far happen to have dest as their
227 // first argument.
228 return MemoryLocation(CS.getArgument(0));
229 return MemoryLocation();
230 }
231
232 /// Return the location read by the specified "hasAnalyzableMemoryWrite"
233 /// instruction if any.
getLocForRead(Instruction * Inst,const TargetLibraryInfo & TLI)234 static MemoryLocation getLocForRead(Instruction *Inst,
235 const TargetLibraryInfo &TLI) {
236 assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
237
238 // The only instructions that both read and write are the mem transfer
239 // instructions (memcpy/memmove).
240 if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
241 return MemoryLocation::getForSource(MTI);
242 return MemoryLocation();
243 }
244
245 /// If the value of this instruction and the memory it writes to is unused, may
246 /// we delete this instruction?
isRemovable(Instruction * I)247 static bool isRemovable(Instruction *I) {
248 // Don't remove volatile/atomic stores.
249 if (StoreInst *SI = dyn_cast<StoreInst>(I))
250 return SI->isUnordered();
251
252 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
253 switch (II->getIntrinsicID()) {
254 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
255 case Intrinsic::lifetime_end:
256 // Never remove dead lifetime_end's, e.g. because it is followed by a
257 // free.
258 return false;
259 case Intrinsic::init_trampoline:
260 // Always safe to remove init_trampoline.
261 return true;
262 case Intrinsic::memset:
263 case Intrinsic::memmove:
264 case Intrinsic::memcpy:
265 // Don't remove volatile memory intrinsics.
266 return !cast<MemIntrinsic>(II)->isVolatile();
267 case Intrinsic::memcpy_element_unordered_atomic:
268 case Intrinsic::memmove_element_unordered_atomic:
269 case Intrinsic::memset_element_unordered_atomic:
270 return true;
271 }
272 }
273
274 // note: only get here for calls with analyzable writes - i.e. libcalls
275 if (auto CS = CallSite(I))
276 return CS.getInstruction()->use_empty();
277
278 return false;
279 }
280
281 /// Returns true if the end of this instruction can be safely shortened in
282 /// length.
isShortenableAtTheEnd(Instruction * I)283 static bool isShortenableAtTheEnd(Instruction *I) {
284 // Don't shorten stores for now
285 if (isa<StoreInst>(I))
286 return false;
287
288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
289 switch (II->getIntrinsicID()) {
290 default: return false;
291 case Intrinsic::memset:
292 case Intrinsic::memcpy:
293 case Intrinsic::memcpy_element_unordered_atomic:
294 case Intrinsic::memset_element_unordered_atomic:
295 // Do shorten memory intrinsics.
296 // FIXME: Add memmove if it's also safe to transform.
297 return true;
298 }
299 }
300
301 // Don't shorten libcalls calls for now.
302
303 return false;
304 }
305
306 /// Returns true if the beginning of this instruction can be safely shortened
307 /// in length.
isShortenableAtTheBeginning(Instruction * I)308 static bool isShortenableAtTheBeginning(Instruction *I) {
309 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
310 // easily done by offsetting the source address.
311 return isa<AnyMemSetInst>(I);
312 }
313
314 /// Return the pointer that is being written to.
getStoredPointerOperand(Instruction * I)315 static Value *getStoredPointerOperand(Instruction *I) {
316 //TODO: factor this to reuse getLocForWrite
317 MemoryLocation Loc = getLocForWrite(I);
318 assert(Loc.Ptr &&
319 "unable to find pointer written for analyzable instruction?");
320 // TODO: most APIs don't expect const Value *
321 return const_cast<Value*>(Loc.Ptr);
322 }
323
getPointerSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,const Function * F)324 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
325 const TargetLibraryInfo &TLI,
326 const Function *F) {
327 uint64_t Size;
328 ObjectSizeOpts Opts;
329 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
330
331 if (getObjectSize(V, Size, DL, &TLI, Opts))
332 return Size;
333 return MemoryLocation::UnknownSize;
334 }
335
336 namespace {
337
338 enum OverwriteResult {
339 OW_Begin,
340 OW_Complete,
341 OW_End,
342 OW_PartialEarlierWithFullLater,
343 OW_Unknown
344 };
345
346 } // end anonymous namespace
347
348 /// Return 'OW_Complete' if a store to the 'Later' location completely
349 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
350 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
351 /// beginning of the 'Earlier' location is overwritten by 'Later'.
352 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
353 /// overwritten by a latter (smaller) store which doesn't write outside the big
354 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
isOverwrite(const MemoryLocation & Later,const MemoryLocation & Earlier,const DataLayout & DL,const TargetLibraryInfo & TLI,int64_t & EarlierOff,int64_t & LaterOff,Instruction * DepWrite,InstOverlapIntervalsTy & IOL,AliasAnalysis & AA,const Function * F)355 static OverwriteResult isOverwrite(const MemoryLocation &Later,
356 const MemoryLocation &Earlier,
357 const DataLayout &DL,
358 const TargetLibraryInfo &TLI,
359 int64_t &EarlierOff, int64_t &LaterOff,
360 Instruction *DepWrite,
361 InstOverlapIntervalsTy &IOL,
362 AliasAnalysis &AA,
363 const Function *F) {
364 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
365 // get imprecise values here, though (except for unknown sizes).
366 if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
367 return OW_Unknown;
368
369 const uint64_t LaterSize = Later.Size.getValue();
370 const uint64_t EarlierSize = Earlier.Size.getValue();
371
372 const Value *P1 = Earlier.Ptr->stripPointerCasts();
373 const Value *P2 = Later.Ptr->stripPointerCasts();
374
375 // If the start pointers are the same, we just have to compare sizes to see if
376 // the later store was larger than the earlier store.
377 if (P1 == P2 || AA.isMustAlias(P1, P2)) {
378 // Make sure that the Later size is >= the Earlier size.
379 if (LaterSize >= EarlierSize)
380 return OW_Complete;
381 }
382
383 // Check to see if the later store is to the entire object (either a global,
384 // an alloca, or a byval/inalloca argument). If so, then it clearly
385 // overwrites any other store to the same object.
386 const Value *UO1 = GetUnderlyingObject(P1, DL),
387 *UO2 = GetUnderlyingObject(P2, DL);
388
389 // If we can't resolve the same pointers to the same object, then we can't
390 // analyze them at all.
391 if (UO1 != UO2)
392 return OW_Unknown;
393
394 // If the "Later" store is to a recognizable object, get its size.
395 uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
396 if (ObjectSize != MemoryLocation::UnknownSize)
397 if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
398 return OW_Complete;
399
400 // Okay, we have stores to two completely different pointers. Try to
401 // decompose the pointer into a "base + constant_offset" form. If the base
402 // pointers are equal, then we can reason about the two stores.
403 EarlierOff = 0;
404 LaterOff = 0;
405 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
406 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
407
408 // If the base pointers still differ, we have two completely different stores.
409 if (BP1 != BP2)
410 return OW_Unknown;
411
412 // The later store completely overlaps the earlier store if:
413 //
414 // 1. Both start at the same offset and the later one's size is greater than
415 // or equal to the earlier one's, or
416 //
417 // |--earlier--|
418 // |-- later --|
419 //
420 // 2. The earlier store has an offset greater than the later offset, but which
421 // still lies completely within the later store.
422 //
423 // |--earlier--|
424 // |----- later ------|
425 //
426 // We have to be careful here as *Off is signed while *.Size is unsigned.
427 if (EarlierOff >= LaterOff &&
428 LaterSize >= EarlierSize &&
429 uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
430 return OW_Complete;
431
432 // We may now overlap, although the overlap is not complete. There might also
433 // be other incomplete overlaps, and together, they might cover the complete
434 // earlier write.
435 // Note: The correctness of this logic depends on the fact that this function
436 // is not even called providing DepWrite when there are any intervening reads.
437 if (EnablePartialOverwriteTracking &&
438 LaterOff < int64_t(EarlierOff + EarlierSize) &&
439 int64_t(LaterOff + LaterSize) >= EarlierOff) {
440
441 // Insert our part of the overlap into the map.
442 auto &IM = IOL[DepWrite];
443 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
444 << ", " << int64_t(EarlierOff + EarlierSize)
445 << ") Later [" << LaterOff << ", "
446 << int64_t(LaterOff + LaterSize) << ")\n");
447
448 // Make sure that we only insert non-overlapping intervals and combine
449 // adjacent intervals. The intervals are stored in the map with the ending
450 // offset as the key (in the half-open sense) and the starting offset as
451 // the value.
452 int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
453
454 // Find any intervals ending at, or after, LaterIntStart which start
455 // before LaterIntEnd.
456 auto ILI = IM.lower_bound(LaterIntStart);
457 if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
458 // This existing interval is overlapped with the current store somewhere
459 // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
460 // intervals and adjusting our start and end.
461 LaterIntStart = std::min(LaterIntStart, ILI->second);
462 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
463 ILI = IM.erase(ILI);
464
465 // Continue erasing and adjusting our end in case other previous
466 // intervals are also overlapped with the current store.
467 //
468 // |--- ealier 1 ---| |--- ealier 2 ---|
469 // |------- later---------|
470 //
471 while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
472 assert(ILI->second > LaterIntStart && "Unexpected interval");
473 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
474 ILI = IM.erase(ILI);
475 }
476 }
477
478 IM[LaterIntEnd] = LaterIntStart;
479
480 ILI = IM.begin();
481 if (ILI->second <= EarlierOff &&
482 ILI->first >= int64_t(EarlierOff + EarlierSize)) {
483 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
484 << EarlierOff << ", "
485 << int64_t(EarlierOff + EarlierSize)
486 << ") Composite Later [" << ILI->second << ", "
487 << ILI->first << ")\n");
488 ++NumCompletePartials;
489 return OW_Complete;
490 }
491 }
492
493 // Check for an earlier store which writes to all the memory locations that
494 // the later store writes to.
495 if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
496 int64_t(EarlierOff + EarlierSize) > LaterOff &&
497 uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
498 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
499 << EarlierOff << ", "
500 << int64_t(EarlierOff + EarlierSize)
501 << ") by a later store [" << LaterOff << ", "
502 << int64_t(LaterOff + LaterSize) << ")\n");
503 // TODO: Maybe come up with a better name?
504 return OW_PartialEarlierWithFullLater;
505 }
506
507 // Another interesting case is if the later store overwrites the end of the
508 // earlier store.
509 //
510 // |--earlier--|
511 // |-- later --|
512 //
513 // In this case we may want to trim the size of earlier to avoid generating
514 // writes to addresses which will definitely be overwritten later
515 if (!EnablePartialOverwriteTracking &&
516 (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
517 int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
518 return OW_End;
519
520 // Finally, we also need to check if the later store overwrites the beginning
521 // of the earlier store.
522 //
523 // |--earlier--|
524 // |-- later --|
525 //
526 // In this case we may want to move the destination address and trim the size
527 // of earlier to avoid generating writes to addresses which will definitely
528 // be overwritten later.
529 if (!EnablePartialOverwriteTracking &&
530 (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
531 assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
532 "Expect to be handled as OW_Complete");
533 return OW_Begin;
534 }
535 // Otherwise, they don't completely overlap.
536 return OW_Unknown;
537 }
538
539 /// If 'Inst' might be a self read (i.e. a noop copy of a
540 /// memory region into an identical pointer) then it doesn't actually make its
541 /// input dead in the traditional sense. Consider this case:
542 ///
543 /// memmove(A <- B)
544 /// memmove(A <- A)
545 ///
546 /// In this case, the second store to A does not make the first store to A dead.
547 /// The usual situation isn't an explicit A<-A store like this (which can be
548 /// trivially removed) but a case where two pointers may alias.
549 ///
550 /// This function detects when it is unsafe to remove a dependent instruction
551 /// because the DSE inducing instruction may be a self-read.
isPossibleSelfRead(Instruction * Inst,const MemoryLocation & InstStoreLoc,Instruction * DepWrite,const TargetLibraryInfo & TLI,AliasAnalysis & AA)552 static bool isPossibleSelfRead(Instruction *Inst,
553 const MemoryLocation &InstStoreLoc,
554 Instruction *DepWrite,
555 const TargetLibraryInfo &TLI,
556 AliasAnalysis &AA) {
557 // Self reads can only happen for instructions that read memory. Get the
558 // location read.
559 MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
560 if (!InstReadLoc.Ptr)
561 return false; // Not a reading instruction.
562
563 // If the read and written loc obviously don't alias, it isn't a read.
564 if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
565 return false;
566
567 if (isa<AnyMemCpyInst>(Inst)) {
568 // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
569 // but in practice memcpy(A <- B) either means that A and B are disjoint or
570 // are equal (i.e. there are not partial overlaps). Given that, if we have:
571 //
572 // memcpy/memmove(A <- B) // DepWrite
573 // memcpy(A <- B) // Inst
574 //
575 // with Inst reading/writing a >= size than DepWrite, we can reason as
576 // follows:
577 //
578 // - If A == B then both the copies are no-ops, so the DepWrite can be
579 // removed.
580 // - If A != B then A and B are disjoint locations in Inst. Since
581 // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
582 // Therefore DepWrite can be removed.
583 MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
584
585 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
586 return false;
587 }
588
589 // If DepWrite doesn't read memory or if we can't prove it is a must alias,
590 // then it can't be considered dead.
591 return true;
592 }
593
594 /// Returns true if the memory which is accessed by the second instruction is not
595 /// modified between the first and the second instruction.
596 /// Precondition: Second instruction must be dominated by the first
597 /// instruction.
memoryIsNotModifiedBetween(Instruction * FirstI,Instruction * SecondI,AliasAnalysis * AA)598 static bool memoryIsNotModifiedBetween(Instruction *FirstI,
599 Instruction *SecondI,
600 AliasAnalysis *AA) {
601 SmallVector<BasicBlock *, 16> WorkList;
602 SmallPtrSet<BasicBlock *, 8> Visited;
603 BasicBlock::iterator FirstBBI(FirstI);
604 ++FirstBBI;
605 BasicBlock::iterator SecondBBI(SecondI);
606 BasicBlock *FirstBB = FirstI->getParent();
607 BasicBlock *SecondBB = SecondI->getParent();
608 MemoryLocation MemLoc = MemoryLocation::get(SecondI);
609
610 // Start checking the store-block.
611 WorkList.push_back(SecondBB);
612 bool isFirstBlock = true;
613
614 // Check all blocks going backward until we reach the load-block.
615 while (!WorkList.empty()) {
616 BasicBlock *B = WorkList.pop_back_val();
617
618 // Ignore instructions before LI if this is the FirstBB.
619 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
620
621 BasicBlock::iterator EI;
622 if (isFirstBlock) {
623 // Ignore instructions after SI if this is the first visit of SecondBB.
624 assert(B == SecondBB && "first block is not the store block");
625 EI = SecondBBI;
626 isFirstBlock = false;
627 } else {
628 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
629 // In this case we also have to look at instructions after SI.
630 EI = B->end();
631 }
632 for (; BI != EI; ++BI) {
633 Instruction *I = &*BI;
634 if (I->mayWriteToMemory() && I != SecondI)
635 if (isModSet(AA->getModRefInfo(I, MemLoc)))
636 return false;
637 }
638 if (B != FirstBB) {
639 assert(B != &FirstBB->getParent()->getEntryBlock() &&
640 "Should not hit the entry block because SI must be dominated by LI");
641 for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
642 if (!Visited.insert(*PredI).second)
643 continue;
644 WorkList.push_back(*PredI);
645 }
646 }
647 }
648 return true;
649 }
650
651 /// Find all blocks that will unconditionally lead to the block BB and append
652 /// them to F.
findUnconditionalPreds(SmallVectorImpl<BasicBlock * > & Blocks,BasicBlock * BB,DominatorTree * DT)653 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
654 BasicBlock *BB, DominatorTree *DT) {
655 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
656 BasicBlock *Pred = *I;
657 if (Pred == BB) continue;
658 Instruction *PredTI = Pred->getTerminator();
659 if (PredTI->getNumSuccessors() != 1)
660 continue;
661
662 if (DT->isReachableFromEntry(Pred))
663 Blocks.push_back(Pred);
664 }
665 }
666
667 /// Handle frees of entire structures whose dependency is a store
668 /// to a field of that structure.
handleFree(CallInst * F,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,OrderedBasicBlock & OBB,MapVector<Instruction *,bool> & ThrowableInst)669 static bool handleFree(CallInst *F, AliasAnalysis *AA,
670 MemoryDependenceResults *MD, DominatorTree *DT,
671 const TargetLibraryInfo *TLI,
672 InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
673 MapVector<Instruction *, bool> &ThrowableInst) {
674 bool MadeChange = false;
675
676 MemoryLocation Loc = MemoryLocation(F->getOperand(0));
677 SmallVector<BasicBlock *, 16> Blocks;
678 Blocks.push_back(F->getParent());
679 const DataLayout &DL = F->getModule()->getDataLayout();
680
681 while (!Blocks.empty()) {
682 BasicBlock *BB = Blocks.pop_back_val();
683 Instruction *InstPt = BB->getTerminator();
684 if (BB == F->getParent()) InstPt = F;
685
686 MemDepResult Dep =
687 MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
688 while (Dep.isDef() || Dep.isClobber()) {
689 Instruction *Dependency = Dep.getInst();
690 if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
691 !isRemovable(Dependency))
692 break;
693
694 Value *DepPointer =
695 GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
696
697 // Check for aliasing.
698 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
699 break;
700
701 LLVM_DEBUG(
702 dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
703 << *Dependency << '\n');
704
705 // DCE instructions only used to calculate that store.
706 BasicBlock::iterator BBI(Dependency);
707 deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB,
708 ThrowableInst);
709 ++NumFastStores;
710 MadeChange = true;
711
712 // Inst's old Dependency is now deleted. Compute the next dependency,
713 // which may also be dead, as in
714 // s[0] = 0;
715 // s[1] = 0; // This has just been deleted.
716 // free(s);
717 Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
718 }
719
720 if (Dep.isNonLocal())
721 findUnconditionalPreds(Blocks, BB, DT);
722 }
723
724 return MadeChange;
725 }
726
727 /// Check to see if the specified location may alias any of the stack objects in
728 /// the DeadStackObjects set. If so, they become live because the location is
729 /// being loaded.
removeAccessedObjects(const MemoryLocation & LoadedLoc,SmallSetVector<const Value *,16> & DeadStackObjects,const DataLayout & DL,AliasAnalysis * AA,const TargetLibraryInfo * TLI,const Function * F)730 static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
731 SmallSetVector<const Value *, 16> &DeadStackObjects,
732 const DataLayout &DL, AliasAnalysis *AA,
733 const TargetLibraryInfo *TLI,
734 const Function *F) {
735 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
736
737 // A constant can't be in the dead pointer set.
738 if (isa<Constant>(UnderlyingPointer))
739 return;
740
741 // If the kill pointer can be easily reduced to an alloca, don't bother doing
742 // extraneous AA queries.
743 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
744 DeadStackObjects.remove(UnderlyingPointer);
745 return;
746 }
747
748 // Remove objects that could alias LoadedLoc.
749 DeadStackObjects.remove_if([&](const Value *I) {
750 // See if the loaded location could alias the stack location.
751 MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
752 return !AA->isNoAlias(StackLoc, LoadedLoc);
753 });
754 }
755
756 /// Remove dead stores to stack-allocated locations in the function end block.
757 /// Ex:
758 /// %A = alloca i32
759 /// ...
760 /// store i32 1, i32* %A
761 /// ret void
handleEndBlock(BasicBlock & BB,AliasAnalysis * AA,MemoryDependenceResults * MD,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,OrderedBasicBlock & OBB,MapVector<Instruction *,bool> & ThrowableInst)762 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
763 MemoryDependenceResults *MD,
764 const TargetLibraryInfo *TLI,
765 InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
766 MapVector<Instruction *, bool> &ThrowableInst) {
767 bool MadeChange = false;
768
769 // Keep track of all of the stack objects that are dead at the end of the
770 // function.
771 SmallSetVector<const Value*, 16> DeadStackObjects;
772
773 // Find all of the alloca'd pointers in the entry block.
774 BasicBlock &Entry = BB.getParent()->front();
775 for (Instruction &I : Entry) {
776 if (isa<AllocaInst>(&I))
777 DeadStackObjects.insert(&I);
778
779 // Okay, so these are dead heap objects, but if the pointer never escapes
780 // then it's leaked by this function anyways.
781 else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
782 DeadStackObjects.insert(&I);
783 }
784
785 // Treat byval or inalloca arguments the same, stores to them are dead at the
786 // end of the function.
787 for (Argument &AI : BB.getParent()->args())
788 if (AI.hasByValOrInAllocaAttr())
789 DeadStackObjects.insert(&AI);
790
791 const DataLayout &DL = BB.getModule()->getDataLayout();
792
793 // Scan the basic block backwards
794 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
795 --BBI;
796
797 // If we find a store, check to see if it points into a dead stack value.
798 if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
799 // See through pointer-to-pointer bitcasts
800 SmallVector<const Value *, 4> Pointers;
801 GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
802
803 // Stores to stack values are valid candidates for removal.
804 bool AllDead = true;
805 for (const Value *Pointer : Pointers)
806 if (!DeadStackObjects.count(Pointer)) {
807 AllDead = false;
808 break;
809 }
810
811 if (AllDead) {
812 Instruction *Dead = &*BBI;
813
814 LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
815 << *Dead << "\n Objects: ";
816 for (SmallVectorImpl<const Value *>::iterator I =
817 Pointers.begin(),
818 E = Pointers.end();
819 I != E; ++I) {
820 dbgs() << **I;
821 if (std::next(I) != E)
822 dbgs() << ", ";
823 } dbgs()
824 << '\n');
825
826 // DCE instructions only used to calculate that store.
827 deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst,
828 &DeadStackObjects);
829 ++NumFastStores;
830 MadeChange = true;
831 continue;
832 }
833 }
834
835 // Remove any dead non-memory-mutating instructions.
836 if (isInstructionTriviallyDead(&*BBI, TLI)) {
837 LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
838 << *&*BBI << '\n');
839 deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst,
840 &DeadStackObjects);
841 ++NumFastOther;
842 MadeChange = true;
843 continue;
844 }
845
846 if (isa<AllocaInst>(BBI)) {
847 // Remove allocas from the list of dead stack objects; there can't be
848 // any references before the definition.
849 DeadStackObjects.remove(&*BBI);
850 continue;
851 }
852
853 if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
854 // Remove allocation function calls from the list of dead stack objects;
855 // there can't be any references before the definition.
856 if (isAllocLikeFn(&*BBI, TLI))
857 DeadStackObjects.remove(&*BBI);
858
859 // If this call does not access memory, it can't be loading any of our
860 // pointers.
861 if (AA->doesNotAccessMemory(Call))
862 continue;
863
864 // If the call might load from any of our allocas, then any store above
865 // the call is live.
866 DeadStackObjects.remove_if([&](const Value *I) {
867 // See if the call site touches the value.
868 return isRefSet(AA->getModRefInfo(
869 Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
870 });
871
872 // If all of the allocas were clobbered by the call then we're not going
873 // to find anything else to process.
874 if (DeadStackObjects.empty())
875 break;
876
877 continue;
878 }
879
880 // We can remove the dead stores, irrespective of the fence and its ordering
881 // (release/acquire/seq_cst). Fences only constraints the ordering of
882 // already visible stores, it does not make a store visible to other
883 // threads. So, skipping over a fence does not change a store from being
884 // dead.
885 if (isa<FenceInst>(*BBI))
886 continue;
887
888 MemoryLocation LoadedLoc;
889
890 // If we encounter a use of the pointer, it is no longer considered dead
891 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
892 if (!L->isUnordered()) // Be conservative with atomic/volatile load
893 break;
894 LoadedLoc = MemoryLocation::get(L);
895 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
896 LoadedLoc = MemoryLocation::get(V);
897 } else if (!BBI->mayReadFromMemory()) {
898 // Instruction doesn't read memory. Note that stores that weren't removed
899 // above will hit this case.
900 continue;
901 } else {
902 // Unknown inst; assume it clobbers everything.
903 break;
904 }
905
906 // Remove any allocas from the DeadPointer set that are loaded, as this
907 // makes any stores above the access live.
908 removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
909
910 // If all of the allocas were clobbered by the access then we're not going
911 // to find anything else to process.
912 if (DeadStackObjects.empty())
913 break;
914 }
915
916 return MadeChange;
917 }
918
tryToShorten(Instruction * EarlierWrite,int64_t & EarlierOffset,int64_t & EarlierSize,int64_t LaterOffset,int64_t LaterSize,bool IsOverwriteEnd)919 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
920 int64_t &EarlierSize, int64_t LaterOffset,
921 int64_t LaterSize, bool IsOverwriteEnd) {
922 // TODO: base this on the target vector size so that if the earlier
923 // store was too small to get vector writes anyway then its likely
924 // a good idea to shorten it
925 // Power of 2 vector writes are probably always a bad idea to optimize
926 // as any store/memset/memcpy is likely using vector instructions so
927 // shortening it to not vector size is likely to be slower
928 auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
929 unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
930 if (!IsOverwriteEnd)
931 LaterOffset = int64_t(LaterOffset + LaterSize);
932
933 if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
934 !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
935 return false;
936
937 int64_t NewLength = IsOverwriteEnd
938 ? LaterOffset - EarlierOffset
939 : EarlierSize - (LaterOffset - EarlierOffset);
940
941 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
942 // When shortening an atomic memory intrinsic, the newly shortened
943 // length must remain an integer multiple of the element size.
944 const uint32_t ElementSize = AMI->getElementSizeInBytes();
945 if (0 != NewLength % ElementSize)
946 return false;
947 }
948
949 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
950 << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
951 << *EarlierWrite << "\n KILLER (offset " << LaterOffset
952 << ", " << EarlierSize << ")\n");
953
954 Value *EarlierWriteLength = EarlierIntrinsic->getLength();
955 Value *TrimmedLength =
956 ConstantInt::get(EarlierWriteLength->getType(), NewLength);
957 EarlierIntrinsic->setLength(TrimmedLength);
958
959 EarlierSize = NewLength;
960 if (!IsOverwriteEnd) {
961 int64_t OffsetMoved = (LaterOffset - EarlierOffset);
962 Value *Indices[1] = {
963 ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
964 GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
965 EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
966 EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
967 NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
968 EarlierIntrinsic->setDest(NewDestGEP);
969 EarlierOffset = EarlierOffset + OffsetMoved;
970 }
971 return true;
972 }
973
tryToShortenEnd(Instruction * EarlierWrite,OverlapIntervalsTy & IntervalMap,int64_t & EarlierStart,int64_t & EarlierSize)974 static bool tryToShortenEnd(Instruction *EarlierWrite,
975 OverlapIntervalsTy &IntervalMap,
976 int64_t &EarlierStart, int64_t &EarlierSize) {
977 if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
978 return false;
979
980 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
981 int64_t LaterStart = OII->second;
982 int64_t LaterSize = OII->first - LaterStart;
983
984 if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
985 LaterStart + LaterSize >= EarlierStart + EarlierSize) {
986 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
987 LaterSize, true)) {
988 IntervalMap.erase(OII);
989 return true;
990 }
991 }
992 return false;
993 }
994
tryToShortenBegin(Instruction * EarlierWrite,OverlapIntervalsTy & IntervalMap,int64_t & EarlierStart,int64_t & EarlierSize)995 static bool tryToShortenBegin(Instruction *EarlierWrite,
996 OverlapIntervalsTy &IntervalMap,
997 int64_t &EarlierStart, int64_t &EarlierSize) {
998 if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
999 return false;
1000
1001 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
1002 int64_t LaterStart = OII->second;
1003 int64_t LaterSize = OII->first - LaterStart;
1004
1005 if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
1006 assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
1007 "Should have been handled as OW_Complete");
1008 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
1009 LaterSize, false)) {
1010 IntervalMap.erase(OII);
1011 return true;
1012 }
1013 }
1014 return false;
1015 }
1016
removePartiallyOverlappedStores(AliasAnalysis * AA,const DataLayout & DL,InstOverlapIntervalsTy & IOL)1017 static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
1018 const DataLayout &DL,
1019 InstOverlapIntervalsTy &IOL) {
1020 bool Changed = false;
1021 for (auto OI : IOL) {
1022 Instruction *EarlierWrite = OI.first;
1023 MemoryLocation Loc = getLocForWrite(EarlierWrite);
1024 assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
1025
1026 const Value *Ptr = Loc.Ptr->stripPointerCasts();
1027 int64_t EarlierStart = 0;
1028 int64_t EarlierSize = int64_t(Loc.Size.getValue());
1029 GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
1030 OverlapIntervalsTy &IntervalMap = OI.second;
1031 Changed |=
1032 tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1033 if (IntervalMap.empty())
1034 continue;
1035 Changed |=
1036 tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1037 }
1038 return Changed;
1039 }
1040
eliminateNoopStore(Instruction * Inst,BasicBlock::iterator & BBI,AliasAnalysis * AA,MemoryDependenceResults * MD,const DataLayout & DL,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,OrderedBasicBlock & OBB,MapVector<Instruction *,bool> & ThrowableInst)1041 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
1042 AliasAnalysis *AA, MemoryDependenceResults *MD,
1043 const DataLayout &DL,
1044 const TargetLibraryInfo *TLI,
1045 InstOverlapIntervalsTy &IOL,
1046 OrderedBasicBlock &OBB,
1047 MapVector<Instruction *, bool> &ThrowableInst) {
1048 // Must be a store instruction.
1049 StoreInst *SI = dyn_cast<StoreInst>(Inst);
1050 if (!SI)
1051 return false;
1052
1053 // If we're storing the same value back to a pointer that we just loaded from,
1054 // then the store can be removed.
1055 if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
1056 if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
1057 isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
1058
1059 LLVM_DEBUG(
1060 dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
1061 << *DepLoad << "\n STORE: " << *SI << '\n');
1062
1063 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst);
1064 ++NumRedundantStores;
1065 return true;
1066 }
1067 }
1068
1069 // Remove null stores into the calloc'ed objects
1070 Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
1071 if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
1072 Instruction *UnderlyingPointer =
1073 dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
1074
1075 if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
1076 memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
1077 LLVM_DEBUG(
1078 dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
1079 << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
1080
1081 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB, ThrowableInst);
1082 ++NumRedundantStores;
1083 return true;
1084 }
1085 }
1086 return false;
1087 }
1088
eliminateDeadStores(BasicBlock & BB,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI)1089 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
1090 MemoryDependenceResults *MD, DominatorTree *DT,
1091 const TargetLibraryInfo *TLI) {
1092 const DataLayout &DL = BB.getModule()->getDataLayout();
1093 bool MadeChange = false;
1094
1095 OrderedBasicBlock OBB(&BB);
1096 MapVector<Instruction *, bool> ThrowableInst;
1097
1098 // A map of interval maps representing partially-overwritten value parts.
1099 InstOverlapIntervalsTy IOL;
1100
1101 // Do a top-down walk on the BB.
1102 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
1103 // Handle 'free' calls specially.
1104 if (CallInst *F = isFreeCall(&*BBI, TLI)) {
1105 MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB, ThrowableInst);
1106 // Increment BBI after handleFree has potentially deleted instructions.
1107 // This ensures we maintain a valid iterator.
1108 ++BBI;
1109 continue;
1110 }
1111
1112 Instruction *Inst = &*BBI++;
1113
1114 if (Inst->mayThrow()) {
1115 ThrowableInst[Inst] = true;
1116 continue;
1117 }
1118
1119 // Check to see if Inst writes to memory. If not, continue.
1120 if (!hasAnalyzableMemoryWrite(Inst, *TLI))
1121 continue;
1122
1123 // eliminateNoopStore will update in iterator, if necessary.
1124 if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB,
1125 ThrowableInst)) {
1126 MadeChange = true;
1127 continue;
1128 }
1129
1130 // If we find something that writes memory, get its memory dependence.
1131 MemDepResult InstDep = MD->getDependency(Inst, &OBB);
1132
1133 // Ignore any store where we can't find a local dependence.
1134 // FIXME: cross-block DSE would be fun. :)
1135 if (!InstDep.isDef() && !InstDep.isClobber())
1136 continue;
1137
1138 // Figure out what location is being stored to.
1139 MemoryLocation Loc = getLocForWrite(Inst);
1140
1141 // If we didn't get a useful location, fail.
1142 if (!Loc.Ptr)
1143 continue;
1144
1145 // Loop until we find a store we can eliminate or a load that
1146 // invalidates the analysis. Without an upper bound on the number of
1147 // instructions examined, this analysis can become very time-consuming.
1148 // However, the potential gain diminishes as we process more instructions
1149 // without eliminating any of them. Therefore, we limit the number of
1150 // instructions we look at.
1151 auto Limit = MD->getDefaultBlockScanLimit();
1152 while (InstDep.isDef() || InstDep.isClobber()) {
1153 // Get the memory clobbered by the instruction we depend on. MemDep will
1154 // skip any instructions that 'Loc' clearly doesn't interact with. If we
1155 // end up depending on a may- or must-aliased load, then we can't optimize
1156 // away the store and we bail out. However, if we depend on something
1157 // that overwrites the memory location we *can* potentially optimize it.
1158 //
1159 // Find out what memory location the dependent instruction stores.
1160 Instruction *DepWrite = InstDep.getInst();
1161 if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
1162 break;
1163 MemoryLocation DepLoc = getLocForWrite(DepWrite);
1164 // If we didn't get a useful location, or if it isn't a size, bail out.
1165 if (!DepLoc.Ptr)
1166 break;
1167
1168 // Find the last throwable instruction not removed by call to
1169 // deleteDeadInstruction.
1170 Instruction *LastThrowing = nullptr;
1171 if (!ThrowableInst.empty())
1172 LastThrowing = ThrowableInst.back().first;
1173
1174 // Make sure we don't look past a call which might throw. This is an
1175 // issue because MemoryDependenceAnalysis works in the wrong direction:
1176 // it finds instructions which dominate the current instruction, rather than
1177 // instructions which are post-dominated by the current instruction.
1178 //
1179 // If the underlying object is a non-escaping memory allocation, any store
1180 // to it is dead along the unwind edge. Otherwise, we need to preserve
1181 // the store.
1182 if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) {
1183 const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
1184 bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
1185 if (!IsStoreDeadOnUnwind) {
1186 // We're looking for a call to an allocation function
1187 // where the allocation doesn't escape before the last
1188 // throwing instruction; PointerMayBeCaptured
1189 // reasonably fast approximation.
1190 IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
1191 !PointerMayBeCaptured(Underlying, false, true);
1192 }
1193 if (!IsStoreDeadOnUnwind)
1194 break;
1195 }
1196
1197 // If we find a write that is a) removable (i.e., non-volatile), b) is
1198 // completely obliterated by the store to 'Loc', and c) which we know that
1199 // 'Inst' doesn't load from, then we can remove it.
1200 // Also try to merge two stores if a later one only touches memory written
1201 // to by the earlier one.
1202 if (isRemovable(DepWrite) &&
1203 !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
1204 int64_t InstWriteOffset, DepWriteOffset;
1205 OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
1206 InstWriteOffset, DepWrite, IOL, *AA,
1207 BB.getParent());
1208 if (OR == OW_Complete) {
1209 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite
1210 << "\n KILLER: " << *Inst << '\n');
1211
1212 // Delete the store and now-dead instructions that feed it.
1213 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB,
1214 ThrowableInst);
1215 ++NumFastStores;
1216 MadeChange = true;
1217
1218 // We erased DepWrite; start over.
1219 InstDep = MD->getDependency(Inst, &OBB);
1220 continue;
1221 } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
1222 ((OR == OW_Begin &&
1223 isShortenableAtTheBeginning(DepWrite)))) {
1224 assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
1225 "when partial-overwrite "
1226 "tracking is enabled");
1227 // The overwrite result is known, so these must be known, too.
1228 int64_t EarlierSize = DepLoc.Size.getValue();
1229 int64_t LaterSize = Loc.Size.getValue();
1230 bool IsOverwriteEnd = (OR == OW_End);
1231 MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
1232 InstWriteOffset, LaterSize, IsOverwriteEnd);
1233 } else if (EnablePartialStoreMerging &&
1234 OR == OW_PartialEarlierWithFullLater) {
1235 auto *Earlier = dyn_cast<StoreInst>(DepWrite);
1236 auto *Later = dyn_cast<StoreInst>(Inst);
1237 if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
1238 DL.typeSizeEqualsStoreSize(
1239 Earlier->getValueOperand()->getType()) &&
1240 Later && isa<ConstantInt>(Later->getValueOperand()) &&
1241 DL.typeSizeEqualsStoreSize(
1242 Later->getValueOperand()->getType()) &&
1243 memoryIsNotModifiedBetween(Earlier, Later, AA)) {
1244 // If the store we find is:
1245 // a) partially overwritten by the store to 'Loc'
1246 // b) the later store is fully contained in the earlier one and
1247 // c) they both have a constant value
1248 // d) none of the two stores need padding
1249 // Merge the two stores, replacing the earlier store's value with a
1250 // merge of both values.
1251 // TODO: Deal with other constant types (vectors, etc), and probably
1252 // some mem intrinsics (if needed)
1253
1254 APInt EarlierValue =
1255 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
1256 APInt LaterValue =
1257 cast<ConstantInt>(Later->getValueOperand())->getValue();
1258 unsigned LaterBits = LaterValue.getBitWidth();
1259 assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
1260 LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
1261
1262 // Offset of the smaller store inside the larger store
1263 unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
1264 unsigned LShiftAmount =
1265 DL.isBigEndian()
1266 ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
1267 : BitOffsetDiff;
1268 APInt Mask =
1269 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
1270 LShiftAmount + LaterBits);
1271 // Clear the bits we'll be replacing, then OR with the smaller
1272 // store, shifted appropriately.
1273 APInt Merged =
1274 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
1275 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite
1276 << "\n Later: " << *Inst
1277 << "\n Merged Value: " << Merged << '\n');
1278
1279 auto *SI = new StoreInst(
1280 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
1281 Earlier->getPointerOperand(), false,
1282 MaybeAlign(Earlier->getAlignment()), Earlier->getOrdering(),
1283 Earlier->getSyncScopeID(), DepWrite);
1284
1285 unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
1286 LLVMContext::MD_alias_scope,
1287 LLVMContext::MD_noalias,
1288 LLVMContext::MD_nontemporal};
1289 SI->copyMetadata(*DepWrite, MDToKeep);
1290 ++NumModifiedStores;
1291
1292 // Remove earlier, wider, store
1293 OBB.replaceInstruction(DepWrite, SI);
1294
1295 // Delete the old stores and now-dead instructions that feed them.
1296 deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB,
1297 ThrowableInst);
1298 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB,
1299 ThrowableInst);
1300 MadeChange = true;
1301
1302 // We erased DepWrite and Inst (Loc); start over.
1303 break;
1304 }
1305 }
1306 }
1307
1308 // If this is a may-aliased store that is clobbering the store value, we
1309 // can keep searching past it for another must-aliased pointer that stores
1310 // to the same location. For example, in:
1311 // store -> P
1312 // store -> Q
1313 // store -> P
1314 // we can remove the first store to P even though we don't know if P and Q
1315 // alias.
1316 if (DepWrite == &BB.front()) break;
1317
1318 // Can't look past this instruction if it might read 'Loc'.
1319 if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
1320 break;
1321
1322 InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
1323 DepWrite->getIterator(), &BB,
1324 /*QueryInst=*/ nullptr, &Limit);
1325 }
1326 }
1327
1328 if (EnablePartialOverwriteTracking)
1329 MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
1330
1331 // If this block ends in a return, unwind, or unreachable, all allocas are
1332 // dead at its end, which means stores to them are also dead.
1333 if (BB.getTerminator()->getNumSuccessors() == 0)
1334 MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB, ThrowableInst);
1335
1336 return MadeChange;
1337 }
1338
eliminateDeadStores(Function & F,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI)1339 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
1340 MemoryDependenceResults *MD, DominatorTree *DT,
1341 const TargetLibraryInfo *TLI) {
1342 bool MadeChange = false;
1343 for (BasicBlock &BB : F)
1344 // Only check non-dead blocks. Dead blocks may have strange pointer
1345 // cycles that will confuse alias analysis.
1346 if (DT->isReachableFromEntry(&BB))
1347 MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
1348
1349 return MadeChange;
1350 }
1351
1352 //===----------------------------------------------------------------------===//
1353 // DSE Pass
1354 //===----------------------------------------------------------------------===//
run(Function & F,FunctionAnalysisManager & AM)1355 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
1356 AliasAnalysis *AA = &AM.getResult<AAManager>(F);
1357 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1358 MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
1359 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1360
1361 if (!eliminateDeadStores(F, AA, MD, DT, TLI))
1362 return PreservedAnalyses::all();
1363
1364 PreservedAnalyses PA;
1365 PA.preserveSet<CFGAnalyses>();
1366 PA.preserve<GlobalsAA>();
1367 PA.preserve<MemoryDependenceAnalysis>();
1368 return PA;
1369 }
1370
1371 namespace {
1372
1373 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
1374 class DSELegacyPass : public FunctionPass {
1375 public:
1376 static char ID; // Pass identification, replacement for typeid
1377
DSELegacyPass()1378 DSELegacyPass() : FunctionPass(ID) {
1379 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
1380 }
1381
runOnFunction(Function & F)1382 bool runOnFunction(Function &F) override {
1383 if (skipFunction(F))
1384 return false;
1385
1386 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1387 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1388 MemoryDependenceResults *MD =
1389 &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1390 const TargetLibraryInfo *TLI =
1391 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1392
1393 return eliminateDeadStores(F, AA, MD, DT, TLI);
1394 }
1395
getAnalysisUsage(AnalysisUsage & AU) const1396 void getAnalysisUsage(AnalysisUsage &AU) const override {
1397 AU.setPreservesCFG();
1398 AU.addRequired<DominatorTreeWrapperPass>();
1399 AU.addRequired<AAResultsWrapperPass>();
1400 AU.addRequired<MemoryDependenceWrapperPass>();
1401 AU.addRequired<TargetLibraryInfoWrapperPass>();
1402 AU.addPreserved<DominatorTreeWrapperPass>();
1403 AU.addPreserved<GlobalsAAWrapperPass>();
1404 AU.addPreserved<MemoryDependenceWrapperPass>();
1405 }
1406 };
1407
1408 } // end anonymous namespace
1409
1410 char DSELegacyPass::ID = 0;
1411
1412 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
1413 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1414 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1415 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1416 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1417 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1418 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1419 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
1420 false)
1421
1422 FunctionPass *llvm::createDeadStoreEliminationPass() {
1423 return new DSELegacyPass();
1424 }
1425