• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  [auto_generated]
3  boost/numeric/odeint/stepper/implicit_euler.hpp
4 
5  [begin_description]
6  Impementation of the implicit Euler method. Works with ublas::vector as state type.
7  [end_description]
8 
9  Copyright 2010-2012 Mario Mulansky
10  Copyright 2010-2012 Karsten Ahnert
11  Copyright 2012 Christoph Koke
12 
13  Distributed under the Boost Software License, Version 1.0.
14  (See accompanying file LICENSE_1_0.txt or
15  copy at http://www.boost.org/LICENSE_1_0.txt)
16  */
17 
18 
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_IMPLICIT_EULER_HPP_INCLUDED
20 #define BOOST_NUMERIC_ODEINT_STEPPER_IMPLICIT_EULER_HPP_INCLUDED
21 
22 
23 #include <utility>
24 
25 #include <boost/numeric/odeint/util/bind.hpp>
26 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
27 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
28 
29 #include <boost/numeric/odeint/util/ublas_wrapper.hpp>
30 #include <boost/numeric/odeint/util/is_resizeable.hpp>
31 #include <boost/numeric/odeint/util/resizer.hpp>
32 
33 #include <boost/numeric/ublas/vector.hpp>
34 #include <boost/numeric/ublas/matrix.hpp>
35 #include <boost/numeric/ublas/lu.hpp>
36 
37 namespace boost {
38 namespace numeric {
39 namespace odeint {
40 
41 
42 
43 
44 
45 
46 
47 
48 template< class ValueType , class Resizer = initially_resizer >
49 class implicit_euler
50 {
51 
52 public:
53 
54     typedef ValueType value_type;
55     typedef value_type time_type;
56     typedef boost::numeric::ublas::vector< value_type > state_type;
57     typedef state_wrapper< state_type > wrapped_state_type;
58     typedef state_type deriv_type;
59     typedef state_wrapper< deriv_type > wrapped_deriv_type;
60     typedef boost::numeric::ublas::matrix< value_type > matrix_type;
61     typedef state_wrapper< matrix_type > wrapped_matrix_type;
62     typedef boost::numeric::ublas::permutation_matrix< size_t > pmatrix_type;
63     typedef state_wrapper< pmatrix_type > wrapped_pmatrix_type;
64     typedef Resizer resizer_type;
65     typedef stepper_tag stepper_category;
66     typedef implicit_euler< ValueType , Resizer > stepper_type;
67 
implicit_euler(value_type epsilon=1E-6)68     implicit_euler( value_type epsilon = 1E-6 )
69     : m_epsilon( epsilon )
70     { }
71 
72 
73     template< class System >
do_step(System system,state_type & x,time_type t,time_type dt)74     void do_step( System system , state_type &x , time_type t , time_type dt )
75     {
76         typedef typename odeint::unwrap_reference< System >::type system_type;
77         typedef typename odeint::unwrap_reference< typename system_type::first_type >::type deriv_func_type;
78         typedef typename odeint::unwrap_reference< typename system_type::second_type >::type jacobi_func_type;
79         system_type &sys = system;
80         deriv_func_type &deriv_func = sys.first;
81         jacobi_func_type &jacobi_func = sys.second;
82 
83         m_resizer.adjust_size( x , detail::bind( &stepper_type::template resize_impl<state_type> , detail::ref( *this ) , detail::_1 ) );
84 
85         for( size_t i=0 ; i<x.size() ; ++i )
86             m_pm.m_v[i] = i;
87 
88         t += dt;
89 
90         // apply first Newton step
91         deriv_func( x , m_dxdt.m_v , t );
92 
93         m_b.m_v = dt * m_dxdt.m_v;
94 
95         jacobi_func( x , m_jacobi.m_v  , t );
96         m_jacobi.m_v *= dt;
97         m_jacobi.m_v -= boost::numeric::ublas::identity_matrix< value_type >( x.size() );
98 
99         solve( m_b.m_v , m_jacobi.m_v );
100 
101         m_x.m_v = x - m_b.m_v;
102 
103         // iterate Newton until some precision is reached
104         // ToDo: maybe we should apply only one Newton step -> linear implicit one-step scheme
105         while( boost::numeric::ublas::norm_2( m_b.m_v ) > m_epsilon )
106         {
107             deriv_func( m_x.m_v , m_dxdt.m_v , t );
108             m_b.m_v = x - m_x.m_v + dt*m_dxdt.m_v;
109 
110             // simplified version, only the first Jacobian is used
111             //            jacobi( m_x , m_jacobi , t );
112             //            m_jacobi *= dt;
113             //            m_jacobi -= boost::numeric::ublas::identity_matrix< value_type >( x.size() );
114 
115             solve( m_b.m_v , m_jacobi.m_v );
116 
117             m_x.m_v -= m_b.m_v;
118         }
119         x = m_x.m_v;
120     }
121 
122     template< class StateType >
adjust_size(const StateType & x)123     void adjust_size( const StateType &x )
124     {
125         resize_impl( x );
126     }
127 
128 
129 private:
130 
131     template< class StateIn >
resize_impl(const StateIn & x)132     bool resize_impl( const StateIn &x )
133     {
134         bool resized = false;
135         resized |= adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
136         resized |= adjust_size_by_resizeability( m_x , x , typename is_resizeable<state_type>::type() );
137         resized |= adjust_size_by_resizeability( m_b , x , typename is_resizeable<deriv_type>::type() );
138         resized |= adjust_size_by_resizeability( m_jacobi , x , typename is_resizeable<matrix_type>::type() );
139         resized |= adjust_size_by_resizeability( m_pm , x , typename is_resizeable<pmatrix_type>::type() );
140         return resized;
141     }
142 
143 
solve(state_type & x,matrix_type & m)144     void solve( state_type &x , matrix_type &m )
145     {
146         int res = boost::numeric::ublas::lu_factorize( m , m_pm.m_v );
147         if( res != 0 ) std::exit(0);
148         boost::numeric::ublas::lu_substitute( m , m_pm.m_v , x );
149     }
150 
151 private:
152 
153     value_type m_epsilon;
154     resizer_type m_resizer;
155     wrapped_deriv_type m_dxdt;
156     wrapped_state_type m_x;
157     wrapped_deriv_type m_b;
158     wrapped_matrix_type m_jacobi;
159     wrapped_pmatrix_type m_pm;
160 
161 
162 };
163 
164 
165 } // odeint
166 } // numeric
167 } // boost
168 
169 
170 #endif // BOOST_NUMERIC_ODEINT_STEPPER_IMPLICIT_EULER_HPP_INCLUDED
171