• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * gauss_packet.cpp
3  *
4  * Schroedinger equation with potential barrier and periodic boundary conditions
5  * Initial Gauss packet moving to the right
6  *
7  * pipe output into gnuplot to see animation
8  *
9  * Implementation of Hamilton operator via MTL library
10  *
11  * Copyright 2011-2013 Mario Mulansky
12  * Copyright 2011-2012 Karsten Ahnert
13  *
14  * Distributed under the Boost Software License, Version 1.0.
15  * (See accompanying file LICENSE_1_0.txt or
16  * copy at http://www.boost.org/LICENSE_1_0.txt)
17  */
18 
19 
20 #include <iostream>
21 #include <complex>
22 
23 #include <boost/numeric/odeint.hpp>
24 #include <boost/numeric/odeint/external/mtl4/mtl4.hpp>
25 
26 #include <boost/numeric/mtl/mtl.hpp>
27 
28 
29 using namespace std;
30 using namespace boost::numeric::odeint;
31 
32 typedef mtl::dense_vector< complex< double > > state_type;
33 
34 struct hamiltonian {
35 
36     typedef mtl::compressed2D< complex< double > > matrix_type;
37     matrix_type m_H;
38 
hamiltonianhamiltonian39     hamiltonian( const int N ) : m_H( N , N )
40     {
41         // constructor with zero potential
42         m_H = 0.0;
43         initialize_kinetic_term();
44     }
45 
46     //template< mtl::compressed2D< double > >
hamiltonianhamiltonian47     hamiltonian( mtl::compressed2D< double > &V ) : m_H( num_rows( V ) , num_cols( V ) )
48     {
49         // use potential V in hamiltonian
50         m_H = complex<double>( 0.0 , -1.0 ) * V;
51         initialize_kinetic_term();
52     }
53 
initialize_kinetic_termhamiltonian54     void initialize_kinetic_term( )
55     {
56         const int N = num_rows( m_H );
57         mtl::matrix::inserter< matrix_type , mtl::update_plus< complex<double> > > ins( m_H );
58         const double z = 1.0;
59         // fill diagonal and upper and lower diagonal
60         for( int i = 0 ; i<N ; ++i )
61         {
62             ins[ i ][ (i+1) % N ] << complex< double >( 0.0 , -z );
63             ins[ i ][ i ] << complex< double >( 0.0 , z );
64             ins[ (i+1) % N ][ i ] << complex< double >( 0.0 , -z );
65         }
66     }
67 
operator ()hamiltonian68     void operator()( const state_type &psi , state_type &dpsidt , const double t )
69     {
70         dpsidt = m_H * psi;
71     }
72 
73 };
74 
75 struct write_for_gnuplot
76 {
77     size_t m_every , m_count;
78 
write_for_gnuplotwrite_for_gnuplot79     write_for_gnuplot( size_t every = 10 )
80     : m_every( every ) , m_count( 0 ) { }
81 
operator ()write_for_gnuplot82     void operator()( const state_type &x , double t )
83     {
84         if( ( m_count % m_every ) == 0 )
85         {
86             //clog << t << endl;
87             cout << "p [0:" << mtl::size(x) << "][0:0.02] '-'" << endl;
88             for( size_t i=0 ; i<mtl::size(x) ; ++i )
89             {
90                 cout << i << "\t" << norm(x[i]) << "\n";
91             }
92             cout << "e" << endl;
93         }
94 
95         ++m_count;
96     }
97 };
98 
99 static const int N = 1024;
100 static const int N0 = 256;
101 static const double sigma0 = 20;
102 static const double k0 = -1.0;
103 
main(int argc,char ** argv)104 int main( int argc , char** argv )
105 {
106     state_type x( N , 0.0 );
107 
108     // initialize gauss packet with nonzero velocity
109     for( int i=0 ; i<N ; ++i )
110     {
111         x[i] = exp( -(i-N0)*(i-N0) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , k0*i ) );
112         //x[i] += 2.0*exp( -(i+N0-N)*(i+N0-N) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , -k0*i ) );
113     }
114     x /= mtl::two_norm( x );
115 
116     typedef runge_kutta4< state_type > stepper;
117 
118     // create potential barrier
119     mtl::compressed2D< double > V( N , N );
120     V = 0.0;
121     {
122         mtl::matrix::inserter< mtl::compressed2D< double > > ins( V );
123         for( int i=0 ; i<N ; ++i )
124         {
125             //ins[i][i] << 1E-4*(i-N/2)*(i-N/2);
126 
127             if( i < N/2 )
128                 ins[ i ][ i ] << 0.0 ;
129             else
130                 ins[ i ][ i ] << 1.0 ;
131 
132         }
133     }
134 
135     // perform integration, output can be piped to gnuplot
136     integrate_const( stepper() , hamiltonian( V ) , x , 0.0 , 1000.0 , 0.1 , write_for_gnuplot( 10 ) );
137 
138     clog << "Norm: " << mtl::two_norm( x ) << endl;
139 
140     return 0;
141 }
142