1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/prog_instruction.h"
74 #include "program/program.h"
75 #include "util/mesa-sha1.h"
76 #include "util/set.h"
77 #include "string_to_uint_map.h"
78 #include "linker.h"
79 #include "linker_util.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86 #include "util/u_string.h"
87 #include "util/u_math.h"
88
89
90 #include "main/shaderobj.h"
91 #include "main/enums.h"
92 #include "main/mtypes.h"
93
94
95 namespace {
96
97 struct find_variable {
98 const char *name;
99 bool found;
100
find_variable__anon424bfc270111::find_variable101 find_variable(const char *name) : name(name), found(false) {}
102 };
103
104 /**
105 * Visitor that determines whether or not a variable is ever written.
106 *
107 * Use \ref find_assignments for convenience.
108 */
109 class find_assignment_visitor : public ir_hierarchical_visitor {
110 public:
find_assignment_visitor(unsigned num_vars,find_variable * const * vars)111 find_assignment_visitor(unsigned num_vars,
112 find_variable * const *vars)
113 : num_variables(num_vars), num_found(0), variables(vars)
114 {
115 }
116
visit_enter(ir_assignment * ir)117 virtual ir_visitor_status visit_enter(ir_assignment *ir)
118 {
119 ir_variable *const var = ir->lhs->variable_referenced();
120
121 return check_variable_name(var->name);
122 }
123
visit_enter(ir_call * ir)124 virtual ir_visitor_status visit_enter(ir_call *ir)
125 {
126 foreach_two_lists(formal_node, &ir->callee->parameters,
127 actual_node, &ir->actual_parameters) {
128 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129 ir_variable *sig_param = (ir_variable *) formal_node;
130
131 if (sig_param->data.mode == ir_var_function_out ||
132 sig_param->data.mode == ir_var_function_inout) {
133 ir_variable *var = param_rval->variable_referenced();
134 if (var && check_variable_name(var->name) == visit_stop)
135 return visit_stop;
136 }
137 }
138
139 if (ir->return_deref != NULL) {
140 ir_variable *const var = ir->return_deref->variable_referenced();
141
142 if (check_variable_name(var->name) == visit_stop)
143 return visit_stop;
144 }
145
146 return visit_continue_with_parent;
147 }
148
149 private:
check_variable_name(const char * name)150 ir_visitor_status check_variable_name(const char *name)
151 {
152 for (unsigned i = 0; i < num_variables; ++i) {
153 if (strcmp(variables[i]->name, name) == 0) {
154 if (!variables[i]->found) {
155 variables[i]->found = true;
156
157 assert(num_found < num_variables);
158 if (++num_found == num_variables)
159 return visit_stop;
160 }
161 break;
162 }
163 }
164
165 return visit_continue_with_parent;
166 }
167
168 private:
169 unsigned num_variables; /**< Number of variables to find */
170 unsigned num_found; /**< Number of variables already found */
171 find_variable * const *variables; /**< Variables to find */
172 };
173
174 /**
175 * Determine whether or not any of NULL-terminated list of variables is ever
176 * written to.
177 */
178 static void
find_assignments(exec_list * ir,find_variable * const * vars)179 find_assignments(exec_list *ir, find_variable * const *vars)
180 {
181 unsigned num_variables = 0;
182
183 for (find_variable * const *v = vars; *v; ++v)
184 num_variables++;
185
186 find_assignment_visitor visitor(num_variables, vars);
187 visitor.run(ir);
188 }
189
190 /**
191 * Determine whether or not the given variable is ever written to.
192 */
193 static void
find_assignments(exec_list * ir,find_variable * var)194 find_assignments(exec_list *ir, find_variable *var)
195 {
196 find_assignment_visitor visitor(1, &var);
197 visitor.run(ir);
198 }
199
200 /**
201 * Visitor that determines whether or not a variable is ever read.
202 */
203 class find_deref_visitor : public ir_hierarchical_visitor {
204 public:
find_deref_visitor(const char * name)205 find_deref_visitor(const char *name)
206 : name(name), found(false)
207 {
208 /* empty */
209 }
210
visit(ir_dereference_variable * ir)211 virtual ir_visitor_status visit(ir_dereference_variable *ir)
212 {
213 if (strcmp(this->name, ir->var->name) == 0) {
214 this->found = true;
215 return visit_stop;
216 }
217
218 return visit_continue;
219 }
220
variable_found() const221 bool variable_found() const
222 {
223 return this->found;
224 }
225
226 private:
227 const char *name; /**< Find writes to a variable with this name. */
228 bool found; /**< Was a write to the variable found? */
229 };
230
231
232 /**
233 * A visitor helper that provides methods for updating the types of
234 * ir_dereferences. Classes that update variable types (say, updating
235 * array sizes) will want to use this so that dereference types stay in sync.
236 */
237 class deref_type_updater : public ir_hierarchical_visitor {
238 public:
visit(ir_dereference_variable * ir)239 virtual ir_visitor_status visit(ir_dereference_variable *ir)
240 {
241 ir->type = ir->var->type;
242 return visit_continue;
243 }
244
visit_leave(ir_dereference_array * ir)245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252
visit_leave(ir_dereference_record * ir)253 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254 {
255 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256 return visit_continue;
257 }
258 };
259
260
261 class array_resize_visitor : public deref_type_updater {
262 public:
263 using deref_type_updater::visit;
264
265 unsigned num_vertices;
266 gl_shader_program *prog;
267 gl_shader_stage stage;
268
array_resize_visitor(unsigned num_vertices,gl_shader_program * prog,gl_shader_stage stage)269 array_resize_visitor(unsigned num_vertices,
270 gl_shader_program *prog,
271 gl_shader_stage stage)
272 {
273 this->num_vertices = num_vertices;
274 this->prog = prog;
275 this->stage = stage;
276 }
277
~array_resize_visitor()278 virtual ~array_resize_visitor()
279 {
280 /* empty */
281 }
282
visit(ir_variable * var)283 virtual ir_visitor_status visit(ir_variable *var)
284 {
285 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
286 var->data.patch)
287 return visit_continue;
288
289 unsigned size = var->type->length;
290
291 if (stage == MESA_SHADER_GEOMETRY) {
292 /* Generate a link error if the shader has declared this array with
293 * an incorrect size.
294 */
295 if (!var->data.implicit_sized_array &&
296 size && size != this->num_vertices) {
297 linker_error(this->prog, "size of array %s declared as %u, "
298 "but number of input vertices is %u\n",
299 var->name, size, this->num_vertices);
300 return visit_continue;
301 }
302
303 /* Generate a link error if the shader attempts to access an input
304 * array using an index too large for its actual size assigned at
305 * link time.
306 */
307 if (var->data.max_array_access >= (int)this->num_vertices) {
308 linker_error(this->prog, "%s shader accesses element %i of "
309 "%s, but only %i input vertices\n",
310 _mesa_shader_stage_to_string(this->stage),
311 var->data.max_array_access, var->name, this->num_vertices);
312 return visit_continue;
313 }
314 }
315
316 var->type = glsl_type::get_array_instance(var->type->fields.array,
317 this->num_vertices);
318 var->data.max_array_access = this->num_vertices - 1;
319
320 return visit_continue;
321 }
322 };
323
324 class array_length_to_const_visitor : public ir_rvalue_visitor {
325 public:
array_length_to_const_visitor()326 array_length_to_const_visitor()
327 {
328 this->progress = false;
329 }
330
~array_length_to_const_visitor()331 virtual ~array_length_to_const_visitor()
332 {
333 /* empty */
334 }
335
336 bool progress;
337
handle_rvalue(ir_rvalue ** rvalue)338 virtual void handle_rvalue(ir_rvalue **rvalue)
339 {
340 if (*rvalue == NULL || (*rvalue)->ir_type != ir_type_expression)
341 return;
342
343 ir_expression *expr = (*rvalue)->as_expression();
344 if (expr) {
345 if (expr->operation == ir_unop_implicitly_sized_array_length) {
346 assert(!expr->operands[0]->type->is_unsized_array());
347 ir_constant *constant = new(expr)
348 ir_constant(expr->operands[0]->type->array_size());
349 if (constant) {
350 *rvalue = constant;
351 }
352 }
353 }
354 }
355 };
356
357 /**
358 * Visitor that determines the highest stream id to which a (geometry) shader
359 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
360 */
361 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
362 public:
find_emit_vertex_visitor(int max_allowed)363 find_emit_vertex_visitor(int max_allowed)
364 : max_stream_allowed(max_allowed),
365 invalid_stream_id(0),
366 invalid_stream_id_from_emit_vertex(false),
367 end_primitive_found(false),
368 used_streams(0)
369 {
370 /* empty */
371 }
372
visit_leave(ir_emit_vertex * ir)373 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
374 {
375 int stream_id = ir->stream_id();
376
377 if (stream_id < 0) {
378 invalid_stream_id = stream_id;
379 invalid_stream_id_from_emit_vertex = true;
380 return visit_stop;
381 }
382
383 if (stream_id > max_stream_allowed) {
384 invalid_stream_id = stream_id;
385 invalid_stream_id_from_emit_vertex = true;
386 return visit_stop;
387 }
388
389 used_streams |= 1 << stream_id;
390
391 return visit_continue;
392 }
393
visit_leave(ir_end_primitive * ir)394 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
395 {
396 end_primitive_found = true;
397
398 int stream_id = ir->stream_id();
399
400 if (stream_id < 0) {
401 invalid_stream_id = stream_id;
402 invalid_stream_id_from_emit_vertex = false;
403 return visit_stop;
404 }
405
406 if (stream_id > max_stream_allowed) {
407 invalid_stream_id = stream_id;
408 invalid_stream_id_from_emit_vertex = false;
409 return visit_stop;
410 }
411
412 used_streams |= 1 << stream_id;
413
414 return visit_continue;
415 }
416
error()417 bool error()
418 {
419 return invalid_stream_id != 0;
420 }
421
error_func()422 const char *error_func()
423 {
424 return invalid_stream_id_from_emit_vertex ?
425 "EmitStreamVertex" : "EndStreamPrimitive";
426 }
427
error_stream()428 int error_stream()
429 {
430 return invalid_stream_id;
431 }
432
active_stream_mask()433 unsigned active_stream_mask()
434 {
435 return used_streams;
436 }
437
uses_end_primitive()438 bool uses_end_primitive()
439 {
440 return end_primitive_found;
441 }
442
443 private:
444 int max_stream_allowed;
445 int invalid_stream_id;
446 bool invalid_stream_id_from_emit_vertex;
447 bool end_primitive_found;
448 unsigned used_streams;
449 };
450
451 /* Class that finds array derefs and check if indexes are dynamic. */
452 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
453 {
454 public:
dynamic_sampler_array_indexing_visitor()455 dynamic_sampler_array_indexing_visitor() :
456 dynamic_sampler_array_indexing(false)
457 {
458 }
459
visit_enter(ir_dereference_array * ir)460 ir_visitor_status visit_enter(ir_dereference_array *ir)
461 {
462 if (!ir->variable_referenced())
463 return visit_continue;
464
465 if (!ir->variable_referenced()->type->contains_sampler())
466 return visit_continue;
467
468 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
469 dynamic_sampler_array_indexing = true;
470 return visit_stop;
471 }
472 return visit_continue;
473 }
474
uses_dynamic_sampler_array_indexing()475 bool uses_dynamic_sampler_array_indexing()
476 {
477 return dynamic_sampler_array_indexing;
478 }
479
480 private:
481 bool dynamic_sampler_array_indexing;
482 };
483
484 } /* anonymous namespace */
485
486 void
linker_error(gl_shader_program * prog,const char * fmt,...)487 linker_error(gl_shader_program *prog, const char *fmt, ...)
488 {
489 va_list ap;
490
491 ralloc_strcat(&prog->data->InfoLog, "error: ");
492 va_start(ap, fmt);
493 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
494 va_end(ap);
495
496 prog->data->LinkStatus = LINKING_FAILURE;
497 }
498
499
500 void
linker_warning(gl_shader_program * prog,const char * fmt,...)501 linker_warning(gl_shader_program *prog, const char *fmt, ...)
502 {
503 va_list ap;
504
505 ralloc_strcat(&prog->data->InfoLog, "warning: ");
506 va_start(ap, fmt);
507 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
508 va_end(ap);
509
510 }
511
512
513 /**
514 * Given a string identifying a program resource, break it into a base name
515 * and an optional array index in square brackets.
516 *
517 * If an array index is present, \c out_base_name_end is set to point to the
518 * "[" that precedes the array index, and the array index itself is returned
519 * as a long.
520 *
521 * If no array index is present (or if the array index is negative or
522 * mal-formed), \c out_base_name_end, is set to point to the null terminator
523 * at the end of the input string, and -1 is returned.
524 *
525 * Only the final array index is parsed; if the string contains other array
526 * indices (or structure field accesses), they are left in the base name.
527 *
528 * No attempt is made to check that the base name is properly formed;
529 * typically the caller will look up the base name in a hash table, so
530 * ill-formed base names simply turn into hash table lookup failures.
531 */
532 long
parse_program_resource_name(const GLchar * name,const size_t len,const GLchar ** out_base_name_end)533 parse_program_resource_name(const GLchar *name,
534 const size_t len,
535 const GLchar **out_base_name_end)
536 {
537 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
538 *
539 * "When an integer array element or block instance number is part of
540 * the name string, it will be specified in decimal form without a "+"
541 * or "-" sign or any extra leading zeroes. Additionally, the name
542 * string will not include white space anywhere in the string."
543 */
544
545 *out_base_name_end = name + len;
546
547 if (len == 0 || name[len-1] != ']')
548 return -1;
549
550 /* Walk backwards over the string looking for a non-digit character. This
551 * had better be the opening bracket for an array index.
552 *
553 * Initially, i specifies the location of the ']'. Since the string may
554 * contain only the ']' charcater, walk backwards very carefully.
555 */
556 unsigned i;
557 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
558 /* empty */ ;
559
560 if ((i == 0) || name[i-1] != '[')
561 return -1;
562
563 long array_index = strtol(&name[i], NULL, 10);
564 if (array_index < 0)
565 return -1;
566
567 /* Check for leading zero */
568 if (name[i] == '0' && name[i+1] != ']')
569 return -1;
570
571 *out_base_name_end = name + (i - 1);
572 return array_index;
573 }
574
575
576 void
link_invalidate_variable_locations(exec_list * ir)577 link_invalidate_variable_locations(exec_list *ir)
578 {
579 foreach_in_list(ir_instruction, node, ir) {
580 ir_variable *const var = node->as_variable();
581
582 if (var == NULL)
583 continue;
584
585 /* Only assign locations for variables that lack an explicit location.
586 * Explicit locations are set for all built-in variables, generic vertex
587 * shader inputs (via layout(location=...)), and generic fragment shader
588 * outputs (also via layout(location=...)).
589 */
590 if (!var->data.explicit_location) {
591 var->data.location = -1;
592 var->data.location_frac = 0;
593 }
594
595 /* ir_variable::is_unmatched_generic_inout is used by the linker while
596 * connecting outputs from one stage to inputs of the next stage.
597 */
598 if (var->data.explicit_location &&
599 var->data.location < VARYING_SLOT_VAR0) {
600 var->data.is_unmatched_generic_inout = 0;
601 } else {
602 var->data.is_unmatched_generic_inout = 1;
603 }
604 }
605 }
606
607
608 /**
609 * Set clip_distance_array_size based and cull_distance_array_size on the given
610 * shader.
611 *
612 * Also check for errors based on incorrect usage of gl_ClipVertex and
613 * gl_ClipDistance and gl_CullDistance.
614 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
615 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
616 *
617 * Return false if an error was reported.
618 */
619 static void
analyze_clip_cull_usage(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx,struct shader_info * info)620 analyze_clip_cull_usage(struct gl_shader_program *prog,
621 struct gl_linked_shader *shader,
622 struct gl_context *ctx,
623 struct shader_info *info)
624 {
625 info->clip_distance_array_size = 0;
626 info->cull_distance_array_size = 0;
627
628 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
629 /* From section 7.1 (Vertex Shader Special Variables) of the
630 * GLSL 1.30 spec:
631 *
632 * "It is an error for a shader to statically write both
633 * gl_ClipVertex and gl_ClipDistance."
634 *
635 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
636 * gl_ClipVertex nor gl_ClipDistance. However with
637 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
638 */
639 find_variable gl_ClipDistance("gl_ClipDistance");
640 find_variable gl_CullDistance("gl_CullDistance");
641 find_variable gl_ClipVertex("gl_ClipVertex");
642 find_variable * const variables[] = {
643 &gl_ClipDistance,
644 &gl_CullDistance,
645 !prog->IsES ? &gl_ClipVertex : NULL,
646 NULL
647 };
648 find_assignments(shader->ir, variables);
649
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to statically read or write both gl_ClipVertex and either
654 * gl_ClipDistance or gl_CullDistance.
655 *
656 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
657 * gl_ClipVertex.
658 */
659 if (!prog->IsES) {
660 if (gl_ClipVertex.found && gl_ClipDistance.found) {
661 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
662 "and `gl_ClipDistance'\n",
663 _mesa_shader_stage_to_string(shader->Stage));
664 return;
665 }
666 if (gl_ClipVertex.found && gl_CullDistance.found) {
667 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
668 "and `gl_CullDistance'\n",
669 _mesa_shader_stage_to_string(shader->Stage));
670 return;
671 }
672 }
673
674 if (gl_ClipDistance.found) {
675 ir_variable *clip_distance_var =
676 shader->symbols->get_variable("gl_ClipDistance");
677 assert(clip_distance_var);
678 info->clip_distance_array_size = clip_distance_var->type->length;
679 }
680 if (gl_CullDistance.found) {
681 ir_variable *cull_distance_var =
682 shader->symbols->get_variable("gl_CullDistance");
683 assert(cull_distance_var);
684 info->cull_distance_array_size = cull_distance_var->type->length;
685 }
686 /* From the ARB_cull_distance spec:
687 *
688 * It is a compile-time or link-time error for the set of shaders forming
689 * a program to have the sum of the sizes of the gl_ClipDistance and
690 * gl_CullDistance arrays to be larger than
691 * gl_MaxCombinedClipAndCullDistances.
692 */
693 if ((uint32_t)(info->clip_distance_array_size + info->cull_distance_array_size) >
694 ctx->Const.MaxClipPlanes) {
695 linker_error(prog, "%s shader: the combined size of "
696 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
697 "be larger than "
698 "gl_MaxCombinedClipAndCullDistances (%u)",
699 _mesa_shader_stage_to_string(shader->Stage),
700 ctx->Const.MaxClipPlanes);
701 }
702 }
703 }
704
705
706 /**
707 * Verify that a vertex shader executable meets all semantic requirements.
708 *
709 * Also sets info.clip_distance_array_size and
710 * info.cull_distance_array_size as a side effect.
711 *
712 * \param shader Vertex shader executable to be verified
713 */
714 static void
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)715 validate_vertex_shader_executable(struct gl_shader_program *prog,
716 struct gl_linked_shader *shader,
717 struct gl_context *ctx)
718 {
719 if (shader == NULL)
720 return;
721
722 /* From the GLSL 1.10 spec, page 48:
723 *
724 * "The variable gl_Position is available only in the vertex
725 * language and is intended for writing the homogeneous vertex
726 * position. All executions of a well-formed vertex shader
727 * executable must write a value into this variable. [...] The
728 * variable gl_Position is available only in the vertex
729 * language and is intended for writing the homogeneous vertex
730 * position. All executions of a well-formed vertex shader
731 * executable must write a value into this variable."
732 *
733 * while in GLSL 1.40 this text is changed to:
734 *
735 * "The variable gl_Position is available only in the vertex
736 * language and is intended for writing the homogeneous vertex
737 * position. It can be written at any time during shader
738 * execution. It may also be read back by a vertex shader
739 * after being written. This value will be used by primitive
740 * assembly, clipping, culling, and other fixed functionality
741 * operations, if present, that operate on primitives after
742 * vertex processing has occurred. Its value is undefined if
743 * the vertex shader executable does not write gl_Position."
744 *
745 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
746 * gl_Position is not an error.
747 */
748 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
749 find_variable gl_Position("gl_Position");
750 find_assignments(shader->ir, &gl_Position);
751 if (!gl_Position.found) {
752 if (prog->IsES) {
753 linker_warning(prog,
754 "vertex shader does not write to `gl_Position'. "
755 "Its value is undefined. \n");
756 } else {
757 linker_error(prog,
758 "vertex shader does not write to `gl_Position'. \n");
759 }
760 return;
761 }
762 }
763
764 analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
765 }
766
767 static void
validate_tess_eval_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)768 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
769 struct gl_linked_shader *shader,
770 struct gl_context *ctx)
771 {
772 if (shader == NULL)
773 return;
774
775 analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
776 }
777
778
779 /**
780 * Verify that a fragment shader executable meets all semantic requirements
781 *
782 * \param shader Fragment shader executable to be verified
783 */
784 static void
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader)785 validate_fragment_shader_executable(struct gl_shader_program *prog,
786 struct gl_linked_shader *shader)
787 {
788 if (shader == NULL)
789 return;
790
791 find_variable gl_FragColor("gl_FragColor");
792 find_variable gl_FragData("gl_FragData");
793 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
794 find_assignments(shader->ir, variables);
795
796 if (gl_FragColor.found && gl_FragData.found) {
797 linker_error(prog, "fragment shader writes to both "
798 "`gl_FragColor' and `gl_FragData'\n");
799 }
800 }
801
802 /**
803 * Verify that a geometry shader executable meets all semantic requirements
804 *
805 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
806 * info.cull_distance_array_size as a side effect.
807 *
808 * \param shader Geometry shader executable to be verified
809 */
810 static void
validate_geometry_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)811 validate_geometry_shader_executable(struct gl_shader_program *prog,
812 struct gl_linked_shader *shader,
813 struct gl_context *ctx)
814 {
815 if (shader == NULL)
816 return;
817
818 unsigned num_vertices =
819 vertices_per_prim(shader->Program->info.gs.input_primitive);
820 prog->Geom.VerticesIn = num_vertices;
821
822 analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
823 }
824
825 /**
826 * Check if geometry shaders emit to non-zero streams and do corresponding
827 * validations.
828 */
829 static void
validate_geometry_shader_emissions(struct gl_context * ctx,struct gl_shader_program * prog)830 validate_geometry_shader_emissions(struct gl_context *ctx,
831 struct gl_shader_program *prog)
832 {
833 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
834
835 if (sh != NULL) {
836 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
837 emit_vertex.run(sh->ir);
838 if (emit_vertex.error()) {
839 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
840 "stream parameter are in the range [0, %d].\n",
841 emit_vertex.error_func(),
842 emit_vertex.error_stream(),
843 ctx->Const.MaxVertexStreams - 1);
844 }
845 prog->Geom.ActiveStreamMask = emit_vertex.active_stream_mask();
846 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
847
848 /* From the ARB_gpu_shader5 spec:
849 *
850 * "Multiple vertex streams are supported only if the output primitive
851 * type is declared to be "points". A program will fail to link if it
852 * contains a geometry shader calling EmitStreamVertex() or
853 * EndStreamPrimitive() if its output primitive type is not "points".
854 *
855 * However, in the same spec:
856 *
857 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
858 * with <stream> set to zero."
859 *
860 * And:
861 *
862 * "The function EndPrimitive() is equivalent to calling
863 * EndStreamPrimitive() with <stream> set to zero."
864 *
865 * Since we can call EmitVertex() and EndPrimitive() when we output
866 * primitives other than points, calling EmitStreamVertex(0) or
867 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
868 * does. We can use prog->Geom.ActiveStreamMask to check whether only the
869 * first (zero) stream is active.
870 * stream.
871 */
872 if (prog->Geom.ActiveStreamMask & ~(1 << 0) &&
873 sh->Program->info.gs.output_primitive != GL_POINTS) {
874 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
875 "with n>0 requires point output\n");
876 }
877 }
878 }
879
880 bool
validate_intrastage_arrays(struct gl_shader_program * prog,ir_variable * const var,ir_variable * const existing,bool match_precision)881 validate_intrastage_arrays(struct gl_shader_program *prog,
882 ir_variable *const var,
883 ir_variable *const existing,
884 bool match_precision)
885 {
886 /* Consider the types to be "the same" if both types are arrays
887 * of the same type and one of the arrays is implicitly sized.
888 * In addition, set the type of the linked variable to the
889 * explicitly sized array.
890 */
891 if (var->type->is_array() && existing->type->is_array()) {
892 const glsl_type *no_array_var = var->type->fields.array;
893 const glsl_type *no_array_existing = existing->type->fields.array;
894 bool type_matches;
895
896 type_matches = (match_precision ?
897 no_array_var == no_array_existing :
898 no_array_var->compare_no_precision(no_array_existing));
899
900 if (type_matches &&
901 ((var->type->length == 0)|| (existing->type->length == 0))) {
902 if (var->type->length != 0) {
903 if ((int)var->type->length <= existing->data.max_array_access) {
904 linker_error(prog, "%s `%s' declared as type "
905 "`%s' but outermost dimension has an index"
906 " of `%i'\n",
907 mode_string(var),
908 var->name, var->type->name,
909 existing->data.max_array_access);
910 }
911 existing->type = var->type;
912 return true;
913 } else if (existing->type->length != 0) {
914 if((int)existing->type->length <= var->data.max_array_access &&
915 !existing->data.from_ssbo_unsized_array) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' but outermost dimension has an index"
918 " of `%i'\n",
919 mode_string(var),
920 var->name, existing->type->name,
921 var->data.max_array_access);
922 }
923 return true;
924 }
925 }
926 }
927 return false;
928 }
929
930
931 /**
932 * Perform validation of global variables used across multiple shaders
933 */
934 static void
cross_validate_globals(struct gl_context * ctx,struct gl_shader_program * prog,struct exec_list * ir,glsl_symbol_table * variables,bool uniforms_only)935 cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
936 struct exec_list *ir, glsl_symbol_table *variables,
937 bool uniforms_only)
938 {
939 foreach_in_list(ir_instruction, node, ir) {
940 ir_variable *const var = node->as_variable();
941
942 if (var == NULL)
943 continue;
944
945 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
946 continue;
947
948 /* don't cross validate subroutine uniforms */
949 if (var->type->contains_subroutine())
950 continue;
951
952 /* Don't cross validate interface instances. These are only relevant
953 * inside a shader. The cross validation is done at the Interface Block
954 * name level.
955 */
956 if (var->is_interface_instance())
957 continue;
958
959 /* Don't cross validate temporaries that are at global scope. These
960 * will eventually get pulled into the shaders 'main'.
961 */
962 if (var->data.mode == ir_var_temporary)
963 continue;
964
965 /* If a global with this name has already been seen, verify that the
966 * new instance has the same type. In addition, if the globals have
967 * initializers, the values of the initializers must be the same.
968 */
969 ir_variable *const existing = variables->get_variable(var->name);
970 if (existing != NULL) {
971 /* Check if types match. */
972 if (var->type != existing->type) {
973 if (!validate_intrastage_arrays(prog, var, existing)) {
974 /* If it is an unsized array in a Shader Storage Block,
975 * two different shaders can access to different elements.
976 * Because of that, they might be converted to different
977 * sized arrays, then check that they are compatible but
978 * ignore the array size.
979 */
980 if (!(var->data.mode == ir_var_shader_storage &&
981 var->data.from_ssbo_unsized_array &&
982 existing->data.mode == ir_var_shader_storage &&
983 existing->data.from_ssbo_unsized_array &&
984 var->type->gl_type == existing->type->gl_type)) {
985 linker_error(prog, "%s `%s' declared as type "
986 "`%s' and type `%s'\n",
987 mode_string(var),
988 var->name, var->type->name,
989 existing->type->name);
990 return;
991 }
992 }
993 }
994
995 if (var->data.explicit_location) {
996 if (existing->data.explicit_location
997 && (var->data.location != existing->data.location)) {
998 linker_error(prog, "explicit locations for %s "
999 "`%s' have differing values\n",
1000 mode_string(var), var->name);
1001 return;
1002 }
1003
1004 if (var->data.location_frac != existing->data.location_frac) {
1005 linker_error(prog, "explicit components for %s `%s' have "
1006 "differing values\n", mode_string(var), var->name);
1007 return;
1008 }
1009
1010 existing->data.location = var->data.location;
1011 existing->data.explicit_location = true;
1012 } else {
1013 /* Check if uniform with implicit location was marked explicit
1014 * by earlier shader stage. If so, mark it explicit in this stage
1015 * too to make sure later processing does not treat it as
1016 * implicit one.
1017 */
1018 if (existing->data.explicit_location) {
1019 var->data.location = existing->data.location;
1020 var->data.explicit_location = true;
1021 }
1022 }
1023
1024 /* From the GLSL 4.20 specification:
1025 * "A link error will result if two compilation units in a program
1026 * specify different integer-constant bindings for the same
1027 * opaque-uniform name. However, it is not an error to specify a
1028 * binding on some but not all declarations for the same name"
1029 */
1030 if (var->data.explicit_binding) {
1031 if (existing->data.explicit_binding &&
1032 var->data.binding != existing->data.binding) {
1033 linker_error(prog, "explicit bindings for %s "
1034 "`%s' have differing values\n",
1035 mode_string(var), var->name);
1036 return;
1037 }
1038
1039 existing->data.binding = var->data.binding;
1040 existing->data.explicit_binding = true;
1041 }
1042
1043 if (var->type->contains_atomic() &&
1044 var->data.offset != existing->data.offset) {
1045 linker_error(prog, "offset specifications for %s "
1046 "`%s' have differing values\n",
1047 mode_string(var), var->name);
1048 return;
1049 }
1050
1051 /* Validate layout qualifiers for gl_FragDepth.
1052 *
1053 * From the AMD/ARB_conservative_depth specs:
1054 *
1055 * "If gl_FragDepth is redeclared in any fragment shader in a
1056 * program, it must be redeclared in all fragment shaders in
1057 * that program that have static assignments to
1058 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1059 * fragment shaders in a single program must have the same set
1060 * of qualifiers."
1061 */
1062 if (strcmp(var->name, "gl_FragDepth") == 0) {
1063 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1064 bool layout_differs =
1065 var->data.depth_layout != existing->data.depth_layout;
1066
1067 if (layout_declared && layout_differs) {
1068 linker_error(prog,
1069 "All redeclarations of gl_FragDepth in all "
1070 "fragment shaders in a single program must have "
1071 "the same set of qualifiers.\n");
1072 }
1073
1074 if (var->data.used && layout_differs) {
1075 linker_error(prog,
1076 "If gl_FragDepth is redeclared with a layout "
1077 "qualifier in any fragment shader, it must be "
1078 "redeclared with the same layout qualifier in "
1079 "all fragment shaders that have assignments to "
1080 "gl_FragDepth\n");
1081 }
1082 }
1083
1084 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1085 *
1086 * "If a shared global has multiple initializers, the
1087 * initializers must all be constant expressions, and they
1088 * must all have the same value. Otherwise, a link error will
1089 * result. (A shared global having only one initializer does
1090 * not require that initializer to be a constant expression.)"
1091 *
1092 * Previous to 4.20 the GLSL spec simply said that initializers
1093 * must have the same value. In this case of non-constant
1094 * initializers, this was impossible to determine. As a result,
1095 * no vendor actually implemented that behavior. The 4.20
1096 * behavior matches the implemented behavior of at least one other
1097 * vendor, so we'll implement that for all GLSL versions.
1098 * If (at least) one of these constant expressions is implicit,
1099 * because it was added by glsl_zero_init, we skip the verification.
1100 */
1101 if (var->constant_initializer != NULL) {
1102 if (existing->constant_initializer != NULL &&
1103 !existing->data.is_implicit_initializer &&
1104 !var->data.is_implicit_initializer) {
1105 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1106 linker_error(prog, "initializers for %s "
1107 "`%s' have differing values\n",
1108 mode_string(var), var->name);
1109 return;
1110 }
1111 } else {
1112 /* If the first-seen instance of a particular uniform did
1113 * not have an initializer but a later instance does,
1114 * replace the former with the later.
1115 */
1116 if (!var->data.is_implicit_initializer)
1117 variables->replace_variable(existing->name, var);
1118 }
1119 }
1120
1121 if (var->data.has_initializer) {
1122 if (existing->data.has_initializer
1123 && (var->constant_initializer == NULL
1124 || existing->constant_initializer == NULL)) {
1125 linker_error(prog,
1126 "shared global variable `%s' has multiple "
1127 "non-constant initializers.\n",
1128 var->name);
1129 return;
1130 }
1131 }
1132
1133 if (existing->data.explicit_invariant != var->data.explicit_invariant) {
1134 linker_error(prog, "declarations for %s `%s' have "
1135 "mismatching invariant qualifiers\n",
1136 mode_string(var), var->name);
1137 return;
1138 }
1139 if (existing->data.centroid != var->data.centroid) {
1140 linker_error(prog, "declarations for %s `%s' have "
1141 "mismatching centroid qualifiers\n",
1142 mode_string(var), var->name);
1143 return;
1144 }
1145 if (existing->data.sample != var->data.sample) {
1146 linker_error(prog, "declarations for %s `%s` have "
1147 "mismatching sample qualifiers\n",
1148 mode_string(var), var->name);
1149 return;
1150 }
1151 if (existing->data.image_format != var->data.image_format) {
1152 linker_error(prog, "declarations for %s `%s` have "
1153 "mismatching image format qualifiers\n",
1154 mode_string(var), var->name);
1155 return;
1156 }
1157
1158 /* Check the precision qualifier matches for uniform variables on
1159 * GLSL ES.
1160 */
1161 if (!ctx->Const.AllowGLSLRelaxedES &&
1162 prog->IsES && !var->get_interface_type() &&
1163 existing->data.precision != var->data.precision) {
1164 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1165 linker_error(prog, "declarations for %s `%s` have "
1166 "mismatching precision qualifiers\n",
1167 mode_string(var), var->name);
1168 return;
1169 } else {
1170 linker_warning(prog, "declarations for %s `%s` have "
1171 "mismatching precision qualifiers\n",
1172 mode_string(var), var->name);
1173 }
1174 }
1175
1176 /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1177 *
1178 * "It is a link-time error if any particular shader interface
1179 * contains:
1180 *
1181 * - two different blocks, each having no instance name, and each
1182 * having a member of the same name, or
1183 *
1184 * - a variable outside a block, and a block with no instance name,
1185 * where the variable has the same name as a member in the block."
1186 */
1187 const glsl_type *var_itype = var->get_interface_type();
1188 const glsl_type *existing_itype = existing->get_interface_type();
1189 if (var_itype != existing_itype) {
1190 if (!var_itype || !existing_itype) {
1191 linker_error(prog, "declarations for %s `%s` are inside block "
1192 "`%s` and outside a block",
1193 mode_string(var), var->name,
1194 var_itype ? var_itype->name : existing_itype->name);
1195 return;
1196 } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1197 linker_error(prog, "declarations for %s `%s` are inside blocks "
1198 "`%s` and `%s`",
1199 mode_string(var), var->name,
1200 existing_itype->name,
1201 var_itype->name);
1202 return;
1203 }
1204 }
1205 } else
1206 variables->add_variable(var);
1207 }
1208 }
1209
1210
1211 /**
1212 * Perform validation of uniforms used across multiple shader stages
1213 */
1214 static void
cross_validate_uniforms(struct gl_context * ctx,struct gl_shader_program * prog)1215 cross_validate_uniforms(struct gl_context *ctx,
1216 struct gl_shader_program *prog)
1217 {
1218 glsl_symbol_table variables;
1219 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1220 if (prog->_LinkedShaders[i] == NULL)
1221 continue;
1222
1223 cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1224 &variables, true);
1225 }
1226 }
1227
1228 /**
1229 * Accumulates the array of buffer blocks and checks that all definitions of
1230 * blocks agree on their contents.
1231 */
1232 static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program * prog,bool validate_ssbo)1233 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1234 bool validate_ssbo)
1235 {
1236 int *ifc_blk_stage_idx[MESA_SHADER_STAGES];
1237 struct gl_uniform_block *blks = NULL;
1238 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1239 &prog->data->NumUniformBlocks;
1240
1241 unsigned max_num_buffer_blocks = 0;
1242 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1243 if (prog->_LinkedShaders[i]) {
1244 if (validate_ssbo) {
1245 max_num_buffer_blocks +=
1246 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1247 } else {
1248 max_num_buffer_blocks +=
1249 prog->_LinkedShaders[i]->Program->info.num_ubos;
1250 }
1251 }
1252 }
1253
1254 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1255 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1256
1257 ifc_blk_stage_idx[i] =
1258 (int *) malloc(sizeof(int) * max_num_buffer_blocks);
1259 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1260 ifc_blk_stage_idx[i][j] = -1;
1261
1262 if (sh == NULL)
1263 continue;
1264
1265 unsigned sh_num_blocks;
1266 struct gl_uniform_block **sh_blks;
1267 if (validate_ssbo) {
1268 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1269 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1270 } else {
1271 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1272 sh_blks = sh->Program->sh.UniformBlocks;
1273 }
1274
1275 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1276 int index = link_cross_validate_uniform_block(prog->data, &blks,
1277 num_blks, sh_blks[j]);
1278
1279 if (index == -1) {
1280 linker_error(prog, "buffer block `%s' has mismatching "
1281 "definitions\n", sh_blks[j]->Name);
1282
1283 for (unsigned k = 0; k <= i; k++) {
1284 free(ifc_blk_stage_idx[k]);
1285 }
1286
1287 /* Reset the block count. This will help avoid various segfaults
1288 * from api calls that assume the array exists due to the count
1289 * being non-zero.
1290 */
1291 *num_blks = 0;
1292 return false;
1293 }
1294
1295 ifc_blk_stage_idx[i][index] = j;
1296 }
1297 }
1298
1299 /* Update per stage block pointers to point to the program list.
1300 * FIXME: We should be able to free the per stage blocks here.
1301 */
1302 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1303 for (unsigned j = 0; j < *num_blks; j++) {
1304 int stage_index = ifc_blk_stage_idx[i][j];
1305
1306 if (stage_index != -1) {
1307 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1308
1309 struct gl_uniform_block **sh_blks = validate_ssbo ?
1310 sh->Program->sh.ShaderStorageBlocks :
1311 sh->Program->sh.UniformBlocks;
1312
1313 blks[j].stageref |= sh_blks[stage_index]->stageref;
1314 sh_blks[stage_index] = &blks[j];
1315 }
1316 }
1317 }
1318
1319 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1320 free(ifc_blk_stage_idx[i]);
1321 }
1322
1323 if (validate_ssbo)
1324 prog->data->ShaderStorageBlocks = blks;
1325 else
1326 prog->data->UniformBlocks = blks;
1327
1328 return true;
1329 }
1330
1331 /**
1332 * Verifies the invariance of built-in special variables.
1333 */
1334 static bool
validate_invariant_builtins(struct gl_shader_program * prog,const gl_linked_shader * vert,const gl_linked_shader * frag)1335 validate_invariant_builtins(struct gl_shader_program *prog,
1336 const gl_linked_shader *vert,
1337 const gl_linked_shader *frag)
1338 {
1339 const ir_variable *var_vert;
1340 const ir_variable *var_frag;
1341
1342 if (!vert || !frag)
1343 return true;
1344
1345 /*
1346 * From OpenGL ES Shading Language 1.0 specification
1347 * (4.6.4 Invariance and Linkage):
1348 * "The invariance of varyings that are declared in both the vertex and
1349 * fragment shaders must match. For the built-in special variables,
1350 * gl_FragCoord can only be declared invariant if and only if
1351 * gl_Position is declared invariant. Similarly gl_PointCoord can only
1352 * be declared invariant if and only if gl_PointSize is declared
1353 * invariant. It is an error to declare gl_FrontFacing as invariant.
1354 * The invariance of gl_FrontFacing is the same as the invariance of
1355 * gl_Position."
1356 */
1357 var_frag = frag->symbols->get_variable("gl_FragCoord");
1358 if (var_frag && var_frag->data.invariant) {
1359 var_vert = vert->symbols->get_variable("gl_Position");
1360 if (var_vert && !var_vert->data.invariant) {
1361 linker_error(prog,
1362 "fragment shader built-in `%s' has invariant qualifier, "
1363 "but vertex shader built-in `%s' lacks invariant qualifier\n",
1364 var_frag->name, var_vert->name);
1365 return false;
1366 }
1367 }
1368
1369 var_frag = frag->symbols->get_variable("gl_PointCoord");
1370 if (var_frag && var_frag->data.invariant) {
1371 var_vert = vert->symbols->get_variable("gl_PointSize");
1372 if (var_vert && !var_vert->data.invariant) {
1373 linker_error(prog,
1374 "fragment shader built-in `%s' has invariant qualifier, "
1375 "but vertex shader built-in `%s' lacks invariant qualifier\n",
1376 var_frag->name, var_vert->name);
1377 return false;
1378 }
1379 }
1380
1381 var_frag = frag->symbols->get_variable("gl_FrontFacing");
1382 if (var_frag && var_frag->data.invariant) {
1383 linker_error(prog,
1384 "fragment shader built-in `%s' can not be declared as invariant\n",
1385 var_frag->name);
1386 return false;
1387 }
1388
1389 return true;
1390 }
1391
1392 /**
1393 * Populates a shaders symbol table with all global declarations
1394 */
1395 static void
populate_symbol_table(gl_linked_shader * sh,glsl_symbol_table * symbols)1396 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1397 {
1398 sh->symbols = new(sh) glsl_symbol_table;
1399
1400 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1401 }
1402
1403
1404 /**
1405 * Remap variables referenced in an instruction tree
1406 *
1407 * This is used when instruction trees are cloned from one shader and placed in
1408 * another. These trees will contain references to \c ir_variable nodes that
1409 * do not exist in the target shader. This function finds these \c ir_variable
1410 * references and replaces the references with matching variables in the target
1411 * shader.
1412 *
1413 * If there is no matching variable in the target shader, a clone of the
1414 * \c ir_variable is made and added to the target shader. The new variable is
1415 * added to \b both the instruction stream and the symbol table.
1416 *
1417 * \param inst IR tree that is to be processed.
1418 * \param symbols Symbol table containing global scope symbols in the
1419 * linked shader.
1420 * \param instructions Instruction stream where new variable declarations
1421 * should be added.
1422 */
1423 static void
remap_variables(ir_instruction * inst,struct gl_linked_shader * target,hash_table * temps)1424 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1425 hash_table *temps)
1426 {
1427 class remap_visitor : public ir_hierarchical_visitor {
1428 public:
1429 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1430 {
1431 this->target = target;
1432 this->symbols = target->symbols;
1433 this->instructions = target->ir;
1434 this->temps = temps;
1435 }
1436
1437 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1438 {
1439 if (ir->var->data.mode == ir_var_temporary) {
1440 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1441 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1442
1443 assert(var != NULL);
1444 ir->var = var;
1445 return visit_continue;
1446 }
1447
1448 ir_variable *const existing =
1449 this->symbols->get_variable(ir->var->name);
1450 if (existing != NULL)
1451 ir->var = existing;
1452 else {
1453 ir_variable *copy = ir->var->clone(this->target, NULL);
1454
1455 this->symbols->add_variable(copy);
1456 this->instructions->push_head(copy);
1457 ir->var = copy;
1458 }
1459
1460 return visit_continue;
1461 }
1462
1463 private:
1464 struct gl_linked_shader *target;
1465 glsl_symbol_table *symbols;
1466 exec_list *instructions;
1467 hash_table *temps;
1468 };
1469
1470 remap_visitor v(target, temps);
1471
1472 inst->accept(&v);
1473 }
1474
1475
1476 /**
1477 * Move non-declarations from one instruction stream to another
1478 *
1479 * The intended usage pattern of this function is to pass the pointer to the
1480 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1481 * pointer) for \c last and \c false for \c make_copies on the first
1482 * call. Successive calls pass the return value of the previous call for
1483 * \c last and \c true for \c make_copies.
1484 *
1485 * \param instructions Source instruction stream
1486 * \param last Instruction after which new instructions should be
1487 * inserted in the target instruction stream
1488 * \param make_copies Flag selecting whether instructions in \c instructions
1489 * should be copied (via \c ir_instruction::clone) into the
1490 * target list or moved.
1491 *
1492 * \return
1493 * The new "last" instruction in the target instruction stream. This pointer
1494 * is suitable for use as the \c last parameter of a later call to this
1495 * function.
1496 */
1497 static exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_linked_shader * target)1498 move_non_declarations(exec_list *instructions, exec_node *last,
1499 bool make_copies, gl_linked_shader *target)
1500 {
1501 hash_table *temps = NULL;
1502
1503 if (make_copies)
1504 temps = _mesa_pointer_hash_table_create(NULL);
1505
1506 foreach_in_list_safe(ir_instruction, inst, instructions) {
1507 if (inst->as_function())
1508 continue;
1509
1510 ir_variable *var = inst->as_variable();
1511 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1512 continue;
1513
1514 assert(inst->as_assignment()
1515 || inst->as_call()
1516 || inst->as_if() /* for initializers with the ?: operator */
1517 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1518
1519 if (make_copies) {
1520 inst = inst->clone(target, NULL);
1521
1522 if (var != NULL)
1523 _mesa_hash_table_insert(temps, var, inst);
1524 else
1525 remap_variables(inst, target, temps);
1526 } else {
1527 inst->remove();
1528 }
1529
1530 last->insert_after(inst);
1531 last = inst;
1532 }
1533
1534 if (make_copies)
1535 _mesa_hash_table_destroy(temps, NULL);
1536
1537 return last;
1538 }
1539
1540
1541 /**
1542 * This class is only used in link_intrastage_shaders() below but declaring
1543 * it inside that function leads to compiler warnings with some versions of
1544 * gcc.
1545 */
1546 class array_sizing_visitor : public deref_type_updater {
1547 public:
1548 using deref_type_updater::visit;
1549
array_sizing_visitor()1550 array_sizing_visitor()
1551 : mem_ctx(ralloc_context(NULL)),
1552 unnamed_interfaces(_mesa_pointer_hash_table_create(NULL))
1553 {
1554 }
1555
~array_sizing_visitor()1556 ~array_sizing_visitor()
1557 {
1558 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1559 ralloc_free(this->mem_ctx);
1560 }
1561
visit(ir_variable * var)1562 virtual ir_visitor_status visit(ir_variable *var)
1563 {
1564 const glsl_type *type_without_array;
1565 bool implicit_sized_array = var->data.implicit_sized_array;
1566 fixup_type(&var->type, var->data.max_array_access,
1567 var->data.from_ssbo_unsized_array,
1568 &implicit_sized_array);
1569 var->data.implicit_sized_array = implicit_sized_array;
1570 type_without_array = var->type->without_array();
1571 if (var->type->is_interface()) {
1572 if (interface_contains_unsized_arrays(var->type)) {
1573 const glsl_type *new_type =
1574 resize_interface_members(var->type,
1575 var->get_max_ifc_array_access(),
1576 var->is_in_shader_storage_block());
1577 var->type = new_type;
1578 var->change_interface_type(new_type);
1579 }
1580 } else if (type_without_array->is_interface()) {
1581 if (interface_contains_unsized_arrays(type_without_array)) {
1582 const glsl_type *new_type =
1583 resize_interface_members(type_without_array,
1584 var->get_max_ifc_array_access(),
1585 var->is_in_shader_storage_block());
1586 var->change_interface_type(new_type);
1587 var->type = update_interface_members_array(var->type, new_type);
1588 }
1589 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1590 /* Store a pointer to the variable in the unnamed_interfaces
1591 * hashtable.
1592 */
1593 hash_entry *entry =
1594 _mesa_hash_table_search(this->unnamed_interfaces,
1595 ifc_type);
1596
1597 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1598
1599 if (interface_vars == NULL) {
1600 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1601 ifc_type->length);
1602 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1603 interface_vars);
1604 }
1605 unsigned index = ifc_type->field_index(var->name);
1606 assert(index < ifc_type->length);
1607 assert(interface_vars[index] == NULL);
1608 interface_vars[index] = var;
1609 }
1610 return visit_continue;
1611 }
1612
1613 /**
1614 * For each unnamed interface block that was discovered while running the
1615 * visitor, adjust the interface type to reflect the newly assigned array
1616 * sizes, and fix up the ir_variable nodes to point to the new interface
1617 * type.
1618 */
fixup_unnamed_interface_types()1619 void fixup_unnamed_interface_types()
1620 {
1621 hash_table_call_foreach(this->unnamed_interfaces,
1622 fixup_unnamed_interface_type, NULL);
1623 }
1624
1625 private:
1626 /**
1627 * If the type pointed to by \c type represents an unsized array, replace
1628 * it with a sized array whose size is determined by max_array_access.
1629 */
fixup_type(const glsl_type ** type,unsigned max_array_access,bool from_ssbo_unsized_array,bool * implicit_sized)1630 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1631 bool from_ssbo_unsized_array, bool *implicit_sized)
1632 {
1633 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1634 *type = glsl_type::get_array_instance((*type)->fields.array,
1635 max_array_access + 1);
1636 *implicit_sized = true;
1637 assert(*type != NULL);
1638 }
1639 }
1640
1641 static const glsl_type *
update_interface_members_array(const glsl_type * type,const glsl_type * new_interface_type)1642 update_interface_members_array(const glsl_type *type,
1643 const glsl_type *new_interface_type)
1644 {
1645 const glsl_type *element_type = type->fields.array;
1646 if (element_type->is_array()) {
1647 const glsl_type *new_array_type =
1648 update_interface_members_array(element_type, new_interface_type);
1649 return glsl_type::get_array_instance(new_array_type, type->length);
1650 } else {
1651 return glsl_type::get_array_instance(new_interface_type,
1652 type->length);
1653 }
1654 }
1655
1656 /**
1657 * Determine whether the given interface type contains unsized arrays (if
1658 * it doesn't, array_sizing_visitor doesn't need to process it).
1659 */
interface_contains_unsized_arrays(const glsl_type * type)1660 static bool interface_contains_unsized_arrays(const glsl_type *type)
1661 {
1662 for (unsigned i = 0; i < type->length; i++) {
1663 const glsl_type *elem_type = type->fields.structure[i].type;
1664 if (elem_type->is_unsized_array())
1665 return true;
1666 }
1667 return false;
1668 }
1669
1670 /**
1671 * Create a new interface type based on the given type, with unsized arrays
1672 * replaced by sized arrays whose size is determined by
1673 * max_ifc_array_access.
1674 */
1675 static const glsl_type *
resize_interface_members(const glsl_type * type,const int * max_ifc_array_access,bool is_ssbo)1676 resize_interface_members(const glsl_type *type,
1677 const int *max_ifc_array_access,
1678 bool is_ssbo)
1679 {
1680 unsigned num_fields = type->length;
1681 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1682 memcpy(fields, type->fields.structure,
1683 num_fields * sizeof(*fields));
1684 for (unsigned i = 0; i < num_fields; i++) {
1685 bool implicit_sized_array = fields[i].implicit_sized_array;
1686 /* If SSBO last member is unsized array, we don't replace it by a sized
1687 * array.
1688 */
1689 if (is_ssbo && i == (num_fields - 1))
1690 fixup_type(&fields[i].type, max_ifc_array_access[i],
1691 true, &implicit_sized_array);
1692 else
1693 fixup_type(&fields[i].type, max_ifc_array_access[i],
1694 false, &implicit_sized_array);
1695 fields[i].implicit_sized_array = implicit_sized_array;
1696 }
1697 glsl_interface_packing packing =
1698 (glsl_interface_packing) type->interface_packing;
1699 bool row_major = (bool) type->interface_row_major;
1700 const glsl_type *new_ifc_type =
1701 glsl_type::get_interface_instance(fields, num_fields,
1702 packing, row_major, type->name);
1703 delete [] fields;
1704 return new_ifc_type;
1705 }
1706
fixup_unnamed_interface_type(const void * key,void * data,void *)1707 static void fixup_unnamed_interface_type(const void *key, void *data,
1708 void *)
1709 {
1710 const glsl_type *ifc_type = (const glsl_type *) key;
1711 ir_variable **interface_vars = (ir_variable **) data;
1712 unsigned num_fields = ifc_type->length;
1713 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1714 memcpy(fields, ifc_type->fields.structure,
1715 num_fields * sizeof(*fields));
1716 bool interface_type_changed = false;
1717 for (unsigned i = 0; i < num_fields; i++) {
1718 if (interface_vars[i] != NULL &&
1719 fields[i].type != interface_vars[i]->type) {
1720 fields[i].type = interface_vars[i]->type;
1721 interface_type_changed = true;
1722 }
1723 }
1724 if (!interface_type_changed) {
1725 delete [] fields;
1726 return;
1727 }
1728 glsl_interface_packing packing =
1729 (glsl_interface_packing) ifc_type->interface_packing;
1730 bool row_major = (bool) ifc_type->interface_row_major;
1731 const glsl_type *new_ifc_type =
1732 glsl_type::get_interface_instance(fields, num_fields, packing,
1733 row_major, ifc_type->name);
1734 delete [] fields;
1735 for (unsigned i = 0; i < num_fields; i++) {
1736 if (interface_vars[i] != NULL)
1737 interface_vars[i]->change_interface_type(new_ifc_type);
1738 }
1739 }
1740
1741 /**
1742 * Memory context used to allocate the data in \c unnamed_interfaces.
1743 */
1744 void *mem_ctx;
1745
1746 /**
1747 * Hash table from const glsl_type * to an array of ir_variable *'s
1748 * pointing to the ir_variables constituting each unnamed interface block.
1749 */
1750 hash_table *unnamed_interfaces;
1751 };
1752
1753 static bool
validate_xfb_buffer_stride(struct gl_context * ctx,unsigned idx,struct gl_shader_program * prog)1754 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1755 struct gl_shader_program *prog)
1756 {
1757 /* We will validate doubles at a later stage */
1758 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1759 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1760 "multiple of 4 or if its applied to a type that is "
1761 "or contains a double a multiple of 8.",
1762 prog->TransformFeedback.BufferStride[idx]);
1763 return false;
1764 }
1765
1766 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1767 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1768 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1769 "limit has been exceeded.");
1770 return false;
1771 }
1772
1773 return true;
1774 }
1775
1776 /**
1777 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1778 * for later use.
1779 */
1780 static void
link_xfb_stride_layout_qualifiers(struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1781 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1782 struct gl_shader_program *prog,
1783 struct gl_shader **shader_list,
1784 unsigned num_shaders)
1785 {
1786 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1787 prog->TransformFeedback.BufferStride[i] = 0;
1788 }
1789
1790 for (unsigned i = 0; i < num_shaders; i++) {
1791 struct gl_shader *shader = shader_list[i];
1792
1793 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1794 if (shader->TransformFeedbackBufferStride[j]) {
1795 if (prog->TransformFeedback.BufferStride[j] == 0) {
1796 prog->TransformFeedback.BufferStride[j] =
1797 shader->TransformFeedbackBufferStride[j];
1798 if (!validate_xfb_buffer_stride(ctx, j, prog))
1799 return;
1800 } else if (prog->TransformFeedback.BufferStride[j] !=
1801 shader->TransformFeedbackBufferStride[j]){
1802 linker_error(prog,
1803 "intrastage shaders defined with conflicting "
1804 "xfb_stride for buffer %d (%d and %d)\n", j,
1805 prog->TransformFeedback.BufferStride[j],
1806 shader->TransformFeedbackBufferStride[j]);
1807 return;
1808 }
1809 }
1810 }
1811 }
1812 }
1813
1814 /**
1815 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1816 * global scope.
1817 */
1818 static void
link_bindless_layout_qualifiers(struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1819 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1820 struct gl_shader **shader_list,
1821 unsigned num_shaders)
1822 {
1823 bool bindless_sampler, bindless_image;
1824 bool bound_sampler, bound_image;
1825
1826 bindless_sampler = bindless_image = false;
1827 bound_sampler = bound_image = false;
1828
1829 for (unsigned i = 0; i < num_shaders; i++) {
1830 struct gl_shader *shader = shader_list[i];
1831
1832 if (shader->bindless_sampler)
1833 bindless_sampler = true;
1834 if (shader->bindless_image)
1835 bindless_image = true;
1836 if (shader->bound_sampler)
1837 bound_sampler = true;
1838 if (shader->bound_image)
1839 bound_image = true;
1840
1841 if ((bindless_sampler && bound_sampler) ||
1842 (bindless_image && bound_image)) {
1843 /* From section 4.4.6 of the ARB_bindless_texture spec:
1844 *
1845 * "If both bindless_sampler and bound_sampler, or bindless_image
1846 * and bound_image, are declared at global scope in any
1847 * compilation unit, a link- time error will be generated."
1848 */
1849 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1850 "bindless_image and bound_image, can't be declared at "
1851 "global scope");
1852 }
1853 }
1854 }
1855
1856 /**
1857 * Check for conflicting viewport_relative settings across shaders, and sets
1858 * the value for the linked shader.
1859 */
1860 static void
link_layer_viewport_relative_qualifier(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1861 link_layer_viewport_relative_qualifier(struct gl_shader_program *prog,
1862 struct gl_program *gl_prog,
1863 struct gl_shader **shader_list,
1864 unsigned num_shaders)
1865 {
1866 unsigned i;
1867
1868 /* Find first shader with explicit layer declaration */
1869 for (i = 0; i < num_shaders; i++) {
1870 if (shader_list[i]->redeclares_gl_layer) {
1871 gl_prog->info.layer_viewport_relative =
1872 shader_list[i]->layer_viewport_relative;
1873 break;
1874 }
1875 }
1876
1877 /* Now make sure that each subsequent shader's explicit layer declaration
1878 * matches the first one's.
1879 */
1880 for (; i < num_shaders; i++) {
1881 if (shader_list[i]->redeclares_gl_layer &&
1882 shader_list[i]->layer_viewport_relative !=
1883 gl_prog->info.layer_viewport_relative) {
1884 linker_error(prog, "all gl_Layer redeclarations must have identical "
1885 "viewport_relative settings");
1886 }
1887 }
1888 }
1889
1890 /**
1891 * Performs the cross-validation of tessellation control shader vertices and
1892 * layout qualifiers for the attached tessellation control shaders,
1893 * and propagates them to the linked TCS and linked shader program.
1894 */
1895 static void
link_tcs_out_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1896 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1897 struct gl_program *gl_prog,
1898 struct gl_shader **shader_list,
1899 unsigned num_shaders)
1900 {
1901 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1902 return;
1903
1904 gl_prog->info.tess.tcs_vertices_out = 0;
1905
1906 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1907 *
1908 * "All tessellation control shader layout declarations in a program
1909 * must specify the same output patch vertex count. There must be at
1910 * least one layout qualifier specifying an output patch vertex count
1911 * in any program containing tessellation control shaders; however,
1912 * such a declaration is not required in all tessellation control
1913 * shaders."
1914 */
1915
1916 for (unsigned i = 0; i < num_shaders; i++) {
1917 struct gl_shader *shader = shader_list[i];
1918
1919 if (shader->info.TessCtrl.VerticesOut != 0) {
1920 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1921 gl_prog->info.tess.tcs_vertices_out !=
1922 (unsigned) shader->info.TessCtrl.VerticesOut) {
1923 linker_error(prog, "tessellation control shader defined with "
1924 "conflicting output vertex count (%d and %d)\n",
1925 gl_prog->info.tess.tcs_vertices_out,
1926 shader->info.TessCtrl.VerticesOut);
1927 return;
1928 }
1929 gl_prog->info.tess.tcs_vertices_out =
1930 shader->info.TessCtrl.VerticesOut;
1931 }
1932 }
1933
1934 /* Just do the intrastage -> interstage propagation right now,
1935 * since we already know we're in the right type of shader program
1936 * for doing it.
1937 */
1938 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1939 linker_error(prog, "tessellation control shader didn't declare "
1940 "vertices out layout qualifier\n");
1941 return;
1942 }
1943 }
1944
1945
1946 /**
1947 * Performs the cross-validation of tessellation evaluation shader
1948 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1949 * for the attached tessellation evaluation shaders, and propagates them
1950 * to the linked TES and linked shader program.
1951 */
1952 static void
link_tes_in_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1953 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1954 struct gl_program *gl_prog,
1955 struct gl_shader **shader_list,
1956 unsigned num_shaders)
1957 {
1958 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1959 return;
1960
1961 int point_mode = -1;
1962 unsigned vertex_order = 0;
1963
1964 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1965 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1966
1967 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1968 *
1969 * "At least one tessellation evaluation shader (compilation unit) in
1970 * a program must declare a primitive mode in its input layout.
1971 * Declaration vertex spacing, ordering, and point mode identifiers is
1972 * optional. It is not required that all tessellation evaluation
1973 * shaders in a program declare a primitive mode. If spacing or
1974 * vertex ordering declarations are omitted, the tessellation
1975 * primitive generator will use equal spacing or counter-clockwise
1976 * vertex ordering, respectively. If a point mode declaration is
1977 * omitted, the tessellation primitive generator will produce lines or
1978 * triangles according to the primitive mode."
1979 */
1980
1981 for (unsigned i = 0; i < num_shaders; i++) {
1982 struct gl_shader *shader = shader_list[i];
1983
1984 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1985 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1986 gl_prog->info.tess.primitive_mode !=
1987 shader->info.TessEval.PrimitiveMode) {
1988 linker_error(prog, "tessellation evaluation shader defined with "
1989 "conflicting input primitive modes.\n");
1990 return;
1991 }
1992 gl_prog->info.tess.primitive_mode =
1993 shader->info.TessEval.PrimitiveMode;
1994 }
1995
1996 if (shader->info.TessEval.Spacing != 0) {
1997 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1998 shader->info.TessEval.Spacing) {
1999 linker_error(prog, "tessellation evaluation shader defined with "
2000 "conflicting vertex spacing.\n");
2001 return;
2002 }
2003 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
2004 }
2005
2006 if (shader->info.TessEval.VertexOrder != 0) {
2007 if (vertex_order != 0 &&
2008 vertex_order != shader->info.TessEval.VertexOrder) {
2009 linker_error(prog, "tessellation evaluation shader defined with "
2010 "conflicting ordering.\n");
2011 return;
2012 }
2013 vertex_order = shader->info.TessEval.VertexOrder;
2014 }
2015
2016 if (shader->info.TessEval.PointMode != -1) {
2017 if (point_mode != -1 &&
2018 point_mode != shader->info.TessEval.PointMode) {
2019 linker_error(prog, "tessellation evaluation shader defined with "
2020 "conflicting point modes.\n");
2021 return;
2022 }
2023 point_mode = shader->info.TessEval.PointMode;
2024 }
2025
2026 }
2027
2028 /* Just do the intrastage -> interstage propagation right now,
2029 * since we already know we're in the right type of shader program
2030 * for doing it.
2031 */
2032 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
2033 linker_error(prog,
2034 "tessellation evaluation shader didn't declare input "
2035 "primitive modes.\n");
2036 return;
2037 }
2038
2039 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
2040 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
2041
2042 if (vertex_order == 0 || vertex_order == GL_CCW)
2043 gl_prog->info.tess.ccw = true;
2044 else
2045 gl_prog->info.tess.ccw = false;
2046
2047
2048 if (point_mode == -1 || point_mode == GL_FALSE)
2049 gl_prog->info.tess.point_mode = false;
2050 else
2051 gl_prog->info.tess.point_mode = true;
2052 }
2053
2054
2055 /**
2056 * Performs the cross-validation of layout qualifiers specified in
2057 * redeclaration of gl_FragCoord for the attached fragment shaders,
2058 * and propagates them to the linked FS and linked shader program.
2059 */
2060 static void
link_fs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2061 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
2062 struct gl_linked_shader *linked_shader,
2063 struct gl_shader **shader_list,
2064 unsigned num_shaders)
2065 {
2066 bool redeclares_gl_fragcoord = false;
2067 bool uses_gl_fragcoord = false;
2068 bool origin_upper_left = false;
2069 bool pixel_center_integer = false;
2070
2071 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
2072 (prog->data->Version < 150 &&
2073 !prog->ARB_fragment_coord_conventions_enable))
2074 return;
2075
2076 for (unsigned i = 0; i < num_shaders; i++) {
2077 struct gl_shader *shader = shader_list[i];
2078 /* From the GLSL 1.50 spec, page 39:
2079 *
2080 * "If gl_FragCoord is redeclared in any fragment shader in a program,
2081 * it must be redeclared in all the fragment shaders in that program
2082 * that have a static use gl_FragCoord."
2083 */
2084 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2085 shader->uses_gl_fragcoord)
2086 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2087 uses_gl_fragcoord)) {
2088 linker_error(prog, "fragment shader defined with conflicting "
2089 "layout qualifiers for gl_FragCoord\n");
2090 }
2091
2092 /* From the GLSL 1.50 spec, page 39:
2093 *
2094 * "All redeclarations of gl_FragCoord in all fragment shaders in a
2095 * single program must have the same set of qualifiers."
2096 */
2097 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2098 (shader->origin_upper_left != origin_upper_left ||
2099 shader->pixel_center_integer != pixel_center_integer)) {
2100 linker_error(prog, "fragment shader defined with conflicting "
2101 "layout qualifiers for gl_FragCoord\n");
2102 }
2103
2104 /* Update the linked shader state. Note that uses_gl_fragcoord should
2105 * accumulate the results. The other values should replace. If there
2106 * are multiple redeclarations, all the fields except uses_gl_fragcoord
2107 * are already known to be the same.
2108 */
2109 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2110 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2111 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2112 origin_upper_left = shader->origin_upper_left;
2113 pixel_center_integer = shader->pixel_center_integer;
2114 }
2115
2116 linked_shader->Program->info.fs.early_fragment_tests |=
2117 shader->EarlyFragmentTests || shader->PostDepthCoverage;
2118 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2119 linked_shader->Program->info.fs.post_depth_coverage |=
2120 shader->PostDepthCoverage;
2121 linked_shader->Program->info.fs.pixel_interlock_ordered |=
2122 shader->PixelInterlockOrdered;
2123 linked_shader->Program->info.fs.pixel_interlock_unordered |=
2124 shader->PixelInterlockUnordered;
2125 linked_shader->Program->info.fs.sample_interlock_ordered |=
2126 shader->SampleInterlockOrdered;
2127 linked_shader->Program->info.fs.sample_interlock_unordered |=
2128 shader->SampleInterlockUnordered;
2129 linked_shader->Program->info.fs.advanced_blend_modes |= shader->BlendSupport;
2130 }
2131
2132 linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer;
2133 linked_shader->Program->info.fs.origin_upper_left = origin_upper_left;
2134 }
2135
2136 /**
2137 * Performs the cross-validation of geometry shader max_vertices and
2138 * primitive type layout qualifiers for the attached geometry shaders,
2139 * and propagates them to the linked GS and linked shader program.
2140 */
2141 static void
link_gs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)2142 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2143 struct gl_program *gl_prog,
2144 struct gl_shader **shader_list,
2145 unsigned num_shaders)
2146 {
2147 /* No in/out qualifiers defined for anything but GLSL 1.50+
2148 * geometry shaders so far.
2149 */
2150 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2151 prog->data->Version < 150)
2152 return;
2153
2154 int vertices_out = -1;
2155
2156 gl_prog->info.gs.invocations = 0;
2157 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2158 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2159
2160 /* From the GLSL 1.50 spec, page 46:
2161 *
2162 * "All geometry shader output layout declarations in a program
2163 * must declare the same layout and same value for
2164 * max_vertices. There must be at least one geometry output
2165 * layout declaration somewhere in a program, but not all
2166 * geometry shaders (compilation units) are required to
2167 * declare it."
2168 */
2169
2170 for (unsigned i = 0; i < num_shaders; i++) {
2171 struct gl_shader *shader = shader_list[i];
2172
2173 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2174 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2175 gl_prog->info.gs.input_primitive !=
2176 shader->info.Geom.InputType) {
2177 linker_error(prog, "geometry shader defined with conflicting "
2178 "input types\n");
2179 return;
2180 }
2181 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2182 }
2183
2184 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2185 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2186 gl_prog->info.gs.output_primitive !=
2187 shader->info.Geom.OutputType) {
2188 linker_error(prog, "geometry shader defined with conflicting "
2189 "output types\n");
2190 return;
2191 }
2192 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2193 }
2194
2195 if (shader->info.Geom.VerticesOut != -1) {
2196 if (vertices_out != -1 &&
2197 vertices_out != shader->info.Geom.VerticesOut) {
2198 linker_error(prog, "geometry shader defined with conflicting "
2199 "output vertex count (%d and %d)\n",
2200 vertices_out, shader->info.Geom.VerticesOut);
2201 return;
2202 }
2203 vertices_out = shader->info.Geom.VerticesOut;
2204 }
2205
2206 if (shader->info.Geom.Invocations != 0) {
2207 if (gl_prog->info.gs.invocations != 0 &&
2208 gl_prog->info.gs.invocations !=
2209 (unsigned) shader->info.Geom.Invocations) {
2210 linker_error(prog, "geometry shader defined with conflicting "
2211 "invocation count (%d and %d)\n",
2212 gl_prog->info.gs.invocations,
2213 shader->info.Geom.Invocations);
2214 return;
2215 }
2216 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2217 }
2218 }
2219
2220 /* Just do the intrastage -> interstage propagation right now,
2221 * since we already know we're in the right type of shader program
2222 * for doing it.
2223 */
2224 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2225 linker_error(prog,
2226 "geometry shader didn't declare primitive input type\n");
2227 return;
2228 }
2229
2230 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2231 linker_error(prog,
2232 "geometry shader didn't declare primitive output type\n");
2233 return;
2234 }
2235
2236 if (vertices_out == -1) {
2237 linker_error(prog,
2238 "geometry shader didn't declare max_vertices\n");
2239 return;
2240 } else {
2241 gl_prog->info.gs.vertices_out = vertices_out;
2242 }
2243
2244 if (gl_prog->info.gs.invocations == 0)
2245 gl_prog->info.gs.invocations = 1;
2246 }
2247
2248
2249 /**
2250 * Perform cross-validation of compute shader local_size_{x,y,z} layout and
2251 * derivative arrangement qualifiers for the attached compute shaders, and
2252 * propagate them to the linked CS and linked shader program.
2253 */
2254 static void
link_cs_input_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)2255 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2256 struct gl_program *gl_prog,
2257 struct gl_shader **shader_list,
2258 unsigned num_shaders)
2259 {
2260 /* This function is called for all shader stages, but it only has an effect
2261 * for compute shaders.
2262 */
2263 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2264 return;
2265
2266 for (int i = 0; i < 3; i++)
2267 gl_prog->info.workgroup_size[i] = 0;
2268
2269 gl_prog->info.workgroup_size_variable = false;
2270
2271 gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE;
2272
2273 /* From the ARB_compute_shader spec, in the section describing local size
2274 * declarations:
2275 *
2276 * If multiple compute shaders attached to a single program object
2277 * declare local work-group size, the declarations must be identical;
2278 * otherwise a link-time error results. Furthermore, if a program
2279 * object contains any compute shaders, at least one must contain an
2280 * input layout qualifier specifying the local work sizes of the
2281 * program, or a link-time error will occur.
2282 */
2283 for (unsigned sh = 0; sh < num_shaders; sh++) {
2284 struct gl_shader *shader = shader_list[sh];
2285
2286 if (shader->info.Comp.LocalSize[0] != 0) {
2287 if (gl_prog->info.workgroup_size[0] != 0) {
2288 for (int i = 0; i < 3; i++) {
2289 if (gl_prog->info.workgroup_size[i] !=
2290 shader->info.Comp.LocalSize[i]) {
2291 linker_error(prog, "compute shader defined with conflicting "
2292 "local sizes\n");
2293 return;
2294 }
2295 }
2296 }
2297 for (int i = 0; i < 3; i++) {
2298 gl_prog->info.workgroup_size[i] =
2299 shader->info.Comp.LocalSize[i];
2300 }
2301 } else if (shader->info.Comp.LocalSizeVariable) {
2302 if (gl_prog->info.workgroup_size[0] != 0) {
2303 /* The ARB_compute_variable_group_size spec says:
2304 *
2305 * If one compute shader attached to a program declares a
2306 * variable local group size and a second compute shader
2307 * attached to the same program declares a fixed local group
2308 * size, a link-time error results.
2309 */
2310 linker_error(prog, "compute shader defined with both fixed and "
2311 "variable local group size\n");
2312 return;
2313 }
2314 gl_prog->info.workgroup_size_variable = true;
2315 }
2316
2317 enum gl_derivative_group group = shader->info.Comp.DerivativeGroup;
2318 if (group != DERIVATIVE_GROUP_NONE) {
2319 if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE &&
2320 gl_prog->info.cs.derivative_group != group) {
2321 linker_error(prog, "compute shader defined with conflicting "
2322 "derivative groups\n");
2323 return;
2324 }
2325 gl_prog->info.cs.derivative_group = group;
2326 }
2327 }
2328
2329 /* Just do the intrastage -> interstage propagation right now,
2330 * since we already know we're in the right type of shader program
2331 * for doing it.
2332 */
2333 if (gl_prog->info.workgroup_size[0] == 0 &&
2334 !gl_prog->info.workgroup_size_variable) {
2335 linker_error(prog, "compute shader must contain a fixed or a variable "
2336 "local group size\n");
2337 return;
2338 }
2339
2340 if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
2341 if (gl_prog->info.workgroup_size[0] % 2 != 0) {
2342 linker_error(prog, "derivative_group_quadsNV must be used with a "
2343 "local group size whose first dimension "
2344 "is a multiple of 2\n");
2345 return;
2346 }
2347 if (gl_prog->info.workgroup_size[1] % 2 != 0) {
2348 linker_error(prog, "derivative_group_quadsNV must be used with a local"
2349 "group size whose second dimension "
2350 "is a multiple of 2\n");
2351 return;
2352 }
2353 } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
2354 if ((gl_prog->info.workgroup_size[0] *
2355 gl_prog->info.workgroup_size[1] *
2356 gl_prog->info.workgroup_size[2]) % 4 != 0) {
2357 linker_error(prog, "derivative_group_linearNV must be used with a "
2358 "local group size whose total number of invocations "
2359 "is a multiple of 4\n");
2360 return;
2361 }
2362 }
2363 }
2364
2365 /**
2366 * Link all out variables on a single stage which are not
2367 * directly used in a shader with the main function.
2368 */
2369 static void
link_output_variables(struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2370 link_output_variables(struct gl_linked_shader *linked_shader,
2371 struct gl_shader **shader_list,
2372 unsigned num_shaders)
2373 {
2374 struct glsl_symbol_table *symbols = linked_shader->symbols;
2375
2376 for (unsigned i = 0; i < num_shaders; i++) {
2377
2378 /* Skip shader object with main function */
2379 if (shader_list[i]->symbols->get_function("main"))
2380 continue;
2381
2382 foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2383 if (ir->ir_type != ir_type_variable)
2384 continue;
2385
2386 ir_variable *var = (ir_variable *) ir;
2387
2388 if (var->data.mode == ir_var_shader_out &&
2389 !symbols->get_variable(var->name)) {
2390 var = var->clone(linked_shader, NULL);
2391 symbols->add_variable(var);
2392 linked_shader->ir->push_head(var);
2393 }
2394 }
2395 }
2396
2397 return;
2398 }
2399
2400
2401 /**
2402 * Combine a group of shaders for a single stage to generate a linked shader
2403 *
2404 * \note
2405 * If this function is supplied a single shader, it is cloned, and the new
2406 * shader is returned.
2407 */
2408 struct gl_linked_shader *
link_intrastage_shaders(void * mem_ctx,struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool allow_missing_main)2409 link_intrastage_shaders(void *mem_ctx,
2410 struct gl_context *ctx,
2411 struct gl_shader_program *prog,
2412 struct gl_shader **shader_list,
2413 unsigned num_shaders,
2414 bool allow_missing_main)
2415 {
2416 struct gl_uniform_block *ubo_blocks = NULL;
2417 struct gl_uniform_block *ssbo_blocks = NULL;
2418 unsigned num_ubo_blocks = 0;
2419 unsigned num_ssbo_blocks = 0;
2420
2421 /* Check that global variables defined in multiple shaders are consistent.
2422 */
2423 glsl_symbol_table variables;
2424 for (unsigned i = 0; i < num_shaders; i++) {
2425 if (shader_list[i] == NULL)
2426 continue;
2427 cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2428 false);
2429 }
2430
2431 if (!prog->data->LinkStatus)
2432 return NULL;
2433
2434 /* Check that interface blocks defined in multiple shaders are consistent.
2435 */
2436 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2437 num_shaders);
2438 if (!prog->data->LinkStatus)
2439 return NULL;
2440
2441 /* Check that there is only a single definition of each function signature
2442 * across all shaders.
2443 */
2444 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2445 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2446 ir_function *const f = node->as_function();
2447
2448 if (f == NULL)
2449 continue;
2450
2451 for (unsigned j = i + 1; j < num_shaders; j++) {
2452 ir_function *const other =
2453 shader_list[j]->symbols->get_function(f->name);
2454
2455 /* If the other shader has no function (and therefore no function
2456 * signatures) with the same name, skip to the next shader.
2457 */
2458 if (other == NULL)
2459 continue;
2460
2461 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2462 if (!sig->is_defined)
2463 continue;
2464
2465 ir_function_signature *other_sig =
2466 other->exact_matching_signature(NULL, &sig->parameters);
2467
2468 if (other_sig != NULL && other_sig->is_defined) {
2469 linker_error(prog, "function `%s' is multiply defined\n",
2470 f->name);
2471 return NULL;
2472 }
2473 }
2474 }
2475 }
2476 }
2477
2478 /* Find the shader that defines main, and make a clone of it.
2479 *
2480 * Starting with the clone, search for undefined references. If one is
2481 * found, find the shader that defines it. Clone the reference and add
2482 * it to the shader. Repeat until there are no undefined references or
2483 * until a reference cannot be resolved.
2484 */
2485 gl_shader *main = NULL;
2486 for (unsigned i = 0; i < num_shaders; i++) {
2487 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2488 main = shader_list[i];
2489 break;
2490 }
2491 }
2492
2493 if (main == NULL && allow_missing_main)
2494 main = shader_list[0];
2495
2496 if (main == NULL) {
2497 linker_error(prog, "%s shader lacks `main'\n",
2498 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2499 return NULL;
2500 }
2501
2502 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2503 linked->Stage = shader_list[0]->Stage;
2504
2505 /* Create program and attach it to the linked shader */
2506 struct gl_program *gl_prog =
2507 ctx->Driver.NewProgram(ctx, shader_list[0]->Stage, prog->Name, false);
2508 if (!gl_prog) {
2509 prog->data->LinkStatus = LINKING_FAILURE;
2510 _mesa_delete_linked_shader(ctx, linked);
2511 return NULL;
2512 }
2513
2514 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2515
2516 /* Don't use _mesa_reference_program() just take ownership */
2517 linked->Program = gl_prog;
2518
2519 linked->ir = new(linked) exec_list;
2520 clone_ir_list(mem_ctx, linked->ir, main->ir);
2521
2522 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2523 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2524 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2525 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2526 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2527
2528 if (linked->Stage != MESA_SHADER_FRAGMENT)
2529 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2530
2531 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2532
2533 link_layer_viewport_relative_qualifier(prog, gl_prog, shader_list, num_shaders);
2534
2535 populate_symbol_table(linked, shader_list[0]->symbols);
2536
2537 /* The pointer to the main function in the final linked shader (i.e., the
2538 * copy of the original shader that contained the main function).
2539 */
2540 ir_function_signature *const main_sig =
2541 _mesa_get_main_function_signature(linked->symbols);
2542
2543 /* Move any instructions other than variable declarations or function
2544 * declarations into main.
2545 */
2546 if (main_sig != NULL) {
2547 exec_node *insertion_point =
2548 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2549 linked);
2550
2551 for (unsigned i = 0; i < num_shaders; i++) {
2552 if (shader_list[i] == main)
2553 continue;
2554
2555 insertion_point = move_non_declarations(shader_list[i]->ir,
2556 insertion_point, true, linked);
2557 }
2558 }
2559
2560 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2561 _mesa_delete_linked_shader(ctx, linked);
2562 return NULL;
2563 }
2564
2565 if (linked->Stage != MESA_SHADER_FRAGMENT)
2566 link_output_variables(linked, shader_list, num_shaders);
2567
2568 /* Make a pass over all variable declarations to ensure that arrays with
2569 * unspecified sizes have a size specified. The size is inferred from the
2570 * max_array_access field.
2571 */
2572 array_sizing_visitor v;
2573 v.run(linked->ir);
2574 v.fixup_unnamed_interface_types();
2575
2576 /* Now that we know the sizes of all the arrays, we can replace .length()
2577 * calls with a constant expression.
2578 */
2579 array_length_to_const_visitor len_v;
2580 len_v.run(linked->ir);
2581
2582 /* Link up uniform blocks defined within this stage. */
2583 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2584 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2585
2586 const unsigned max_uniform_blocks =
2587 ctx->Const.Program[linked->Stage].MaxUniformBlocks;
2588 if (num_ubo_blocks > max_uniform_blocks) {
2589 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2590 _mesa_shader_stage_to_string(linked->Stage),
2591 num_ubo_blocks, max_uniform_blocks);
2592 }
2593
2594 const unsigned max_shader_storage_blocks =
2595 ctx->Const.Program[linked->Stage].MaxShaderStorageBlocks;
2596 if (num_ssbo_blocks > max_shader_storage_blocks) {
2597 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
2598 _mesa_shader_stage_to_string(linked->Stage),
2599 num_ssbo_blocks, max_shader_storage_blocks);
2600 }
2601
2602 if (!prog->data->LinkStatus) {
2603 _mesa_delete_linked_shader(ctx, linked);
2604 return NULL;
2605 }
2606
2607 /* Copy ubo blocks to linked shader list */
2608 linked->Program->sh.UniformBlocks =
2609 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2610 ralloc_steal(linked, ubo_blocks);
2611 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2612 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2613 }
2614 linked->Program->sh.NumUniformBlocks = num_ubo_blocks;
2615 linked->Program->info.num_ubos = num_ubo_blocks;
2616
2617 /* Copy ssbo blocks to linked shader list */
2618 linked->Program->sh.ShaderStorageBlocks =
2619 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2620 ralloc_steal(linked, ssbo_blocks);
2621 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2622 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2623 }
2624 linked->Program->info.num_ssbos = num_ssbo_blocks;
2625
2626 /* At this point linked should contain all of the linked IR, so
2627 * validate it to make sure nothing went wrong.
2628 */
2629 validate_ir_tree(linked->ir);
2630
2631 /* Set the size of geometry shader input arrays */
2632 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2633 unsigned num_vertices =
2634 vertices_per_prim(gl_prog->info.gs.input_primitive);
2635 array_resize_visitor input_resize_visitor(num_vertices, prog,
2636 MESA_SHADER_GEOMETRY);
2637 foreach_in_list(ir_instruction, ir, linked->ir) {
2638 ir->accept(&input_resize_visitor);
2639 }
2640 }
2641
2642 if (ctx->Const.VertexID_is_zero_based)
2643 lower_vertex_id(linked);
2644
2645 if (ctx->Const.LowerCsDerivedVariables)
2646 lower_cs_derived(linked);
2647
2648 #ifdef DEBUG
2649 /* Compute the source checksum. */
2650 linked->SourceChecksum = 0;
2651 for (unsigned i = 0; i < num_shaders; i++) {
2652 if (shader_list[i] == NULL)
2653 continue;
2654 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2655 }
2656 #endif
2657
2658 return linked;
2659 }
2660
2661 /**
2662 * Update the sizes of linked shader uniform arrays to the maximum
2663 * array index used.
2664 *
2665 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2666 *
2667 * If one or more elements of an array are active,
2668 * GetActiveUniform will return the name of the array in name,
2669 * subject to the restrictions listed above. The type of the array
2670 * is returned in type. The size parameter contains the highest
2671 * array element index used, plus one. The compiler or linker
2672 * determines the highest index used. There will be only one
2673 * active uniform reported by the GL per uniform array.
2674
2675 */
2676 static void
update_array_sizes(struct gl_shader_program * prog)2677 update_array_sizes(struct gl_shader_program *prog)
2678 {
2679 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2680 if (prog->_LinkedShaders[i] == NULL)
2681 continue;
2682
2683 bool types_were_updated = false;
2684
2685 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2686 ir_variable *const var = node->as_variable();
2687
2688 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2689 !var->type->is_array())
2690 continue;
2691
2692 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2693 * will not be eliminated. Since we always do std140, just
2694 * don't resize arrays in UBOs.
2695 *
2696 * Atomic counters are supposed to get deterministic
2697 * locations assigned based on the declaration ordering and
2698 * sizes, array compaction would mess that up.
2699 *
2700 * Subroutine uniforms are not removed.
2701 */
2702 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2703 var->type->contains_subroutine() || var->constant_initializer)
2704 continue;
2705
2706 int size = var->data.max_array_access;
2707 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2708 if (prog->_LinkedShaders[j] == NULL)
2709 continue;
2710
2711 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2712 ir_variable *other_var = node2->as_variable();
2713 if (!other_var)
2714 continue;
2715
2716 if (strcmp(var->name, other_var->name) == 0 &&
2717 other_var->data.max_array_access > size) {
2718 size = other_var->data.max_array_access;
2719 }
2720 }
2721 }
2722
2723 if (size + 1 != (int)var->type->length) {
2724 /* If this is a built-in uniform (i.e., it's backed by some
2725 * fixed-function state), adjust the number of state slots to
2726 * match the new array size. The number of slots per array entry
2727 * is not known. It seems safe to assume that the total number of
2728 * slots is an integer multiple of the number of array elements.
2729 * Determine the number of slots per array element by dividing by
2730 * the old (total) size.
2731 */
2732 const unsigned num_slots = var->get_num_state_slots();
2733 if (num_slots > 0) {
2734 var->set_num_state_slots((size + 1)
2735 * (num_slots / var->type->length));
2736 }
2737
2738 var->type = glsl_type::get_array_instance(var->type->fields.array,
2739 size + 1);
2740 types_were_updated = true;
2741 }
2742 }
2743
2744 /* Update the types of dereferences in case we changed any. */
2745 if (types_were_updated) {
2746 deref_type_updater v;
2747 v.run(prog->_LinkedShaders[i]->ir);
2748 }
2749 }
2750 }
2751
2752 /**
2753 * Resize tessellation evaluation per-vertex inputs to the size of
2754 * tessellation control per-vertex outputs.
2755 */
2756 static void
resize_tes_inputs(struct gl_context * ctx,struct gl_shader_program * prog)2757 resize_tes_inputs(struct gl_context *ctx,
2758 struct gl_shader_program *prog)
2759 {
2760 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2761 return;
2762
2763 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2764 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2765
2766 /* If no control shader is present, then the TES inputs are statically
2767 * sized to MaxPatchVertices; the actual size of the arrays won't be
2768 * known until draw time.
2769 */
2770 const int num_vertices = tcs
2771 ? tcs->Program->info.tess.tcs_vertices_out
2772 : ctx->Const.MaxPatchVertices;
2773
2774 array_resize_visitor input_resize_visitor(num_vertices, prog,
2775 MESA_SHADER_TESS_EVAL);
2776 foreach_in_list(ir_instruction, ir, tes->ir) {
2777 ir->accept(&input_resize_visitor);
2778 }
2779
2780 if (tcs) {
2781 /* Convert the gl_PatchVerticesIn system value into a constant, since
2782 * the value is known at this point.
2783 */
2784 foreach_in_list(ir_instruction, ir, tes->ir) {
2785 ir_variable *var = ir->as_variable();
2786 if (var && var->data.mode == ir_var_system_value &&
2787 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2788 void *mem_ctx = ralloc_parent(var);
2789 var->data.location = 0;
2790 var->data.explicit_location = false;
2791 var->data.mode = ir_var_auto;
2792 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2793 }
2794 }
2795 }
2796 }
2797
2798 /**
2799 * Find a contiguous set of available bits in a bitmask.
2800 *
2801 * \param used_mask Bits representing used (1) and unused (0) locations
2802 * \param needed_count Number of contiguous bits needed.
2803 *
2804 * \return
2805 * Base location of the available bits on success or -1 on failure.
2806 */
2807 static int
find_available_slots(unsigned used_mask,unsigned needed_count)2808 find_available_slots(unsigned used_mask, unsigned needed_count)
2809 {
2810 unsigned needed_mask = (1 << needed_count) - 1;
2811 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2812
2813 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2814 * cannot optimize possibly infinite loops" for the loop below.
2815 */
2816 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2817 return -1;
2818
2819 for (int i = 0; i <= max_bit_to_test; i++) {
2820 if ((needed_mask & ~used_mask) == needed_mask)
2821 return i;
2822
2823 needed_mask <<= 1;
2824 }
2825
2826 return -1;
2827 }
2828
2829
2830 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2831
2832 /**
2833 * Assign locations for either VS inputs or FS outputs.
2834 *
2835 * \param mem_ctx Temporary ralloc context used for linking.
2836 * \param prog Shader program whose variables need locations
2837 * assigned.
2838 * \param constants Driver specific constant values for the program.
2839 * \param target_index Selector for the program target to receive location
2840 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2841 * \c MESA_SHADER_FRAGMENT.
2842 * \param do_assignment Whether we are actually marking the assignment or we
2843 * are just doing a dry-run checking.
2844 *
2845 * \return
2846 * If locations are (or can be, in case of dry-running) successfully assigned,
2847 * true is returned. Otherwise an error is emitted to the shader link log and
2848 * false is returned.
2849 */
2850 static bool
assign_attribute_or_color_locations(void * mem_ctx,gl_shader_program * prog,struct gl_constants * constants,unsigned target_index,bool do_assignment)2851 assign_attribute_or_color_locations(void *mem_ctx,
2852 gl_shader_program *prog,
2853 struct gl_constants *constants,
2854 unsigned target_index,
2855 bool do_assignment)
2856 {
2857 /* Maximum number of generic locations. This corresponds to either the
2858 * maximum number of draw buffers or the maximum number of generic
2859 * attributes.
2860 */
2861 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2862 constants->Program[target_index].MaxAttribs :
2863 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2864
2865 /* Mark invalid locations as being used.
2866 */
2867 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2868 unsigned double_storage_locations = 0;
2869
2870 assert((target_index == MESA_SHADER_VERTEX)
2871 || (target_index == MESA_SHADER_FRAGMENT));
2872
2873 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2874 if (sh == NULL)
2875 return true;
2876
2877 /* Operate in a total of four passes.
2878 *
2879 * 1. Invalidate the location assignments for all vertex shader inputs.
2880 *
2881 * 2. Assign locations for inputs that have user-defined (via
2882 * glBindVertexAttribLocation) locations and outputs that have
2883 * user-defined locations (via glBindFragDataLocation).
2884 *
2885 * 3. Sort the attributes without assigned locations by number of slots
2886 * required in decreasing order. Fragmentation caused by attribute
2887 * locations assigned by the application may prevent large attributes
2888 * from having enough contiguous space.
2889 *
2890 * 4. Assign locations to any inputs without assigned locations.
2891 */
2892
2893 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2894 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2895
2896 const enum ir_variable_mode direction =
2897 (target_index == MESA_SHADER_VERTEX)
2898 ? ir_var_shader_in : ir_var_shader_out;
2899
2900
2901 /* Temporary storage for the set of attributes that need locations assigned.
2902 */
2903 struct temp_attr {
2904 unsigned slots;
2905 ir_variable *var;
2906
2907 /* Used below in the call to qsort. */
2908 static int compare(const void *a, const void *b)
2909 {
2910 const temp_attr *const l = (const temp_attr *) a;
2911 const temp_attr *const r = (const temp_attr *) b;
2912
2913 /* Reversed because we want a descending order sort below. */
2914 return r->slots - l->slots;
2915 }
2916 } to_assign[32];
2917 assert(max_index <= 32);
2918
2919 /* Temporary array for the set of attributes that have locations assigned,
2920 * for the purpose of checking overlapping slots/components of (non-ES)
2921 * fragment shader outputs.
2922 */
2923 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2924 unsigned assigned_attr = 0;
2925
2926 unsigned num_attr = 0;
2927
2928 foreach_in_list(ir_instruction, node, sh->ir) {
2929 ir_variable *const var = node->as_variable();
2930
2931 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2932 continue;
2933
2934 if (var->data.explicit_location) {
2935 var->data.is_unmatched_generic_inout = 0;
2936 if ((var->data.location >= (int)(max_index + generic_base))
2937 || (var->data.location < 0)) {
2938 linker_error(prog,
2939 "invalid explicit location %d specified for `%s'\n",
2940 (var->data.location < 0)
2941 ? var->data.location
2942 : var->data.location - generic_base,
2943 var->name);
2944 return false;
2945 }
2946 } else if (target_index == MESA_SHADER_VERTEX) {
2947 unsigned binding;
2948
2949 if (prog->AttributeBindings->get(binding, var->name)) {
2950 assert(binding >= VERT_ATTRIB_GENERIC0);
2951 var->data.location = binding;
2952 var->data.is_unmatched_generic_inout = 0;
2953 }
2954 } else if (target_index == MESA_SHADER_FRAGMENT) {
2955 unsigned binding;
2956 unsigned index;
2957 const char *name = var->name;
2958 const glsl_type *type = var->type;
2959
2960 while (type) {
2961 /* Check if there's a binding for the variable name */
2962 if (prog->FragDataBindings->get(binding, name)) {
2963 assert(binding >= FRAG_RESULT_DATA0);
2964 var->data.location = binding;
2965 var->data.is_unmatched_generic_inout = 0;
2966
2967 if (prog->FragDataIndexBindings->get(index, name)) {
2968 var->data.index = index;
2969 }
2970 break;
2971 }
2972
2973 /* If not, but it's an array type, look for name[0] */
2974 if (type->is_array()) {
2975 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2976 type = type->fields.array;
2977 continue;
2978 }
2979
2980 break;
2981 }
2982 }
2983
2984 if (strcmp(var->name, "gl_LastFragData") == 0)
2985 continue;
2986
2987 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2988 *
2989 * "Output binding assignments will cause LinkProgram to fail:
2990 * ...
2991 * If the program has an active output assigned to a location greater
2992 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2993 * an active output assigned an index greater than or equal to one;"
2994 */
2995 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2996 var->data.location - generic_base >=
2997 (int) constants->MaxDualSourceDrawBuffers) {
2998 linker_error(prog,
2999 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
3000 "with index %u for %s\n",
3001 var->data.location - generic_base, var->data.index,
3002 var->name);
3003 return false;
3004 }
3005
3006 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
3007
3008 /* If the variable is not a built-in and has a location statically
3009 * assigned in the shader (presumably via a layout qualifier), make sure
3010 * that it doesn't collide with other assigned locations. Otherwise,
3011 * add it to the list of variables that need linker-assigned locations.
3012 */
3013 if (var->data.location != -1) {
3014 if (var->data.location >= generic_base && var->data.index < 1) {
3015 /* From page 61 of the OpenGL 4.0 spec:
3016 *
3017 * "LinkProgram will fail if the attribute bindings assigned
3018 * by BindAttribLocation do not leave not enough space to
3019 * assign a location for an active matrix attribute or an
3020 * active attribute array, both of which require multiple
3021 * contiguous generic attributes."
3022 *
3023 * I think above text prohibits the aliasing of explicit and
3024 * automatic assignments. But, aliasing is allowed in manual
3025 * assignments of attribute locations. See below comments for
3026 * the details.
3027 *
3028 * From OpenGL 4.0 spec, page 61:
3029 *
3030 * "It is possible for an application to bind more than one
3031 * attribute name to the same location. This is referred to as
3032 * aliasing. This will only work if only one of the aliased
3033 * attributes is active in the executable program, or if no
3034 * path through the shader consumes more than one attribute of
3035 * a set of attributes aliased to the same location. A link
3036 * error can occur if the linker determines that every path
3037 * through the shader consumes multiple aliased attributes,
3038 * but implementations are not required to generate an error
3039 * in this case."
3040 *
3041 * From GLSL 4.30 spec, page 54:
3042 *
3043 * "A program will fail to link if any two non-vertex shader
3044 * input variables are assigned to the same location. For
3045 * vertex shaders, multiple input variables may be assigned
3046 * to the same location using either layout qualifiers or via
3047 * the OpenGL API. However, such aliasing is intended only to
3048 * support vertex shaders where each execution path accesses
3049 * at most one input per each location. Implementations are
3050 * permitted, but not required, to generate link-time errors
3051 * if they detect that every path through the vertex shader
3052 * executable accesses multiple inputs assigned to any single
3053 * location. For all shader types, a program will fail to link
3054 * if explicit location assignments leave the linker unable
3055 * to find space for other variables without explicit
3056 * assignments."
3057 *
3058 * From OpenGL ES 3.0 spec, page 56:
3059 *
3060 * "Binding more than one attribute name to the same location
3061 * is referred to as aliasing, and is not permitted in OpenGL
3062 * ES Shading Language 3.00 vertex shaders. LinkProgram will
3063 * fail when this condition exists. However, aliasing is
3064 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
3065 * This will only work if only one of the aliased attributes
3066 * is active in the executable program, or if no path through
3067 * the shader consumes more than one attribute of a set of
3068 * attributes aliased to the same location. A link error can
3069 * occur if the linker determines that every path through the
3070 * shader consumes multiple aliased attributes, but implemen-
3071 * tations are not required to generate an error in this case."
3072 *
3073 * After looking at above references from OpenGL, OpenGL ES and
3074 * GLSL specifications, we allow aliasing of vertex input variables
3075 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
3076 *
3077 * NOTE: This is not required by the spec but its worth mentioning
3078 * here that we're not doing anything to make sure that no path
3079 * through the vertex shader executable accesses multiple inputs
3080 * assigned to any single location.
3081 */
3082
3083 /* Mask representing the contiguous slots that will be used by
3084 * this attribute.
3085 */
3086 const unsigned attr = var->data.location - generic_base;
3087 const unsigned use_mask = (1 << slots) - 1;
3088 const char *const string = (target_index == MESA_SHADER_VERTEX)
3089 ? "vertex shader input" : "fragment shader output";
3090
3091 /* Generate a link error if the requested locations for this
3092 * attribute exceed the maximum allowed attribute location.
3093 */
3094 if (attr + slots > max_index) {
3095 linker_error(prog,
3096 "insufficient contiguous locations "
3097 "available for %s `%s' %d %d %d\n", string,
3098 var->name, used_locations, use_mask, attr);
3099 return false;
3100 }
3101
3102 /* Generate a link error if the set of bits requested for this
3103 * attribute overlaps any previously allocated bits.
3104 */
3105 if ((~(use_mask << attr) & used_locations) != used_locations) {
3106 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3107 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
3108 * 4.40 spec:
3109 *
3110 * "Additionally, for fragment shader outputs, if two
3111 * variables are placed within the same location, they
3112 * must have the same underlying type (floating-point or
3113 * integer). No component aliasing of output variables or
3114 * members is allowed.
3115 */
3116 for (unsigned i = 0; i < assigned_attr; i++) {
3117 unsigned assigned_slots =
3118 assigned[i]->type->count_attribute_slots(false);
3119 unsigned assig_attr =
3120 assigned[i]->data.location - generic_base;
3121 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
3122
3123 if ((assigned_use_mask << assig_attr) &
3124 (use_mask << attr)) {
3125
3126 const glsl_type *assigned_type =
3127 assigned[i]->type->without_array();
3128 const glsl_type *type = var->type->without_array();
3129 if (assigned_type->base_type != type->base_type) {
3130 linker_error(prog, "types do not match for aliased"
3131 " %ss %s and %s\n", string,
3132 assigned[i]->name, var->name);
3133 return false;
3134 }
3135
3136 unsigned assigned_component_mask =
3137 ((1 << assigned_type->vector_elements) - 1) <<
3138 assigned[i]->data.location_frac;
3139 unsigned component_mask =
3140 ((1 << type->vector_elements) - 1) <<
3141 var->data.location_frac;
3142 if (assigned_component_mask & component_mask) {
3143 linker_error(prog, "overlapping component is "
3144 "assigned to %ss %s and %s "
3145 "(component=%d)\n",
3146 string, assigned[i]->name, var->name,
3147 var->data.location_frac);
3148 return false;
3149 }
3150 }
3151 }
3152 } else if (target_index == MESA_SHADER_FRAGMENT ||
3153 (prog->IsES && prog->data->Version >= 300)) {
3154 linker_error(prog, "overlapping location is assigned "
3155 "to %s `%s' %d %d %d\n", string, var->name,
3156 used_locations, use_mask, attr);
3157 return false;
3158 } else {
3159 linker_warning(prog, "overlapping location is assigned "
3160 "to %s `%s' %d %d %d\n", string, var->name,
3161 used_locations, use_mask, attr);
3162 }
3163 }
3164
3165 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3166 /* Only track assigned variables for non-ES fragment shaders
3167 * to avoid overflowing the array.
3168 *
3169 * At most one variable per fragment output component should
3170 * reach this.
3171 */
3172 assert(assigned_attr < ARRAY_SIZE(assigned));
3173 assigned[assigned_attr] = var;
3174 assigned_attr++;
3175 }
3176
3177 used_locations |= (use_mask << attr);
3178
3179 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3180 *
3181 * "A program with more than the value of MAX_VERTEX_ATTRIBS
3182 * active attribute variables may fail to link, unless
3183 * device-dependent optimizations are able to make the program
3184 * fit within available hardware resources. For the purposes
3185 * of this test, attribute variables of the type dvec3, dvec4,
3186 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3187 * count as consuming twice as many attributes as equivalent
3188 * single-precision types. While these types use the same number
3189 * of generic attributes as their single-precision equivalents,
3190 * implementations are permitted to consume two single-precision
3191 * vectors of internal storage for each three- or four-component
3192 * double-precision vector."
3193 *
3194 * Mark this attribute slot as taking up twice as much space
3195 * so we can count it properly against limits. According to
3196 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3197 * is optional behavior, but it seems preferable.
3198 */
3199 if (var->type->without_array()->is_dual_slot())
3200 double_storage_locations |= (use_mask << attr);
3201 }
3202
3203 continue;
3204 }
3205
3206 if (num_attr >= max_index) {
3207 linker_error(prog, "too many %s (max %u)",
3208 target_index == MESA_SHADER_VERTEX ?
3209 "vertex shader inputs" : "fragment shader outputs",
3210 max_index);
3211 return false;
3212 }
3213 to_assign[num_attr].slots = slots;
3214 to_assign[num_attr].var = var;
3215 num_attr++;
3216 }
3217
3218 if (!do_assignment)
3219 return true;
3220
3221 if (target_index == MESA_SHADER_VERTEX) {
3222 unsigned total_attribs_size =
3223 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3224 util_bitcount(double_storage_locations);
3225 if (total_attribs_size > max_index) {
3226 linker_error(prog,
3227 "attempt to use %d vertex attribute slots only %d available ",
3228 total_attribs_size, max_index);
3229 return false;
3230 }
3231 }
3232
3233 /* If all of the attributes were assigned locations by the application (or
3234 * are built-in attributes with fixed locations), return early. This should
3235 * be the common case.
3236 */
3237 if (num_attr == 0)
3238 return true;
3239
3240 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3241
3242 if (target_index == MESA_SHADER_VERTEX) {
3243 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
3244 * only be explicitly assigned by via glBindAttribLocation. Mark it as
3245 * reserved to prevent it from being automatically allocated below.
3246 */
3247 find_deref_visitor find("gl_Vertex");
3248 find.run(sh->ir);
3249 if (find.variable_found())
3250 used_locations |= (1 << 0);
3251 }
3252
3253 for (unsigned i = 0; i < num_attr; i++) {
3254 /* Mask representing the contiguous slots that will be used by this
3255 * attribute.
3256 */
3257 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3258
3259 int location = find_available_slots(used_locations, to_assign[i].slots);
3260
3261 if (location < 0) {
3262 const char *const string = (target_index == MESA_SHADER_VERTEX)
3263 ? "vertex shader input" : "fragment shader output";
3264
3265 linker_error(prog,
3266 "insufficient contiguous locations "
3267 "available for %s `%s'\n",
3268 string, to_assign[i].var->name);
3269 return false;
3270 }
3271
3272 to_assign[i].var->data.location = generic_base + location;
3273 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3274 used_locations |= (use_mask << location);
3275
3276 if (to_assign[i].var->type->without_array()->is_dual_slot())
3277 double_storage_locations |= (use_mask << location);
3278 }
3279
3280 /* Now that we have all the locations, from the GL 4.5 core spec, section
3281 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3282 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3283 * as equivalent single-precision types.
3284 */
3285 if (target_index == MESA_SHADER_VERTEX) {
3286 unsigned total_attribs_size =
3287 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3288 util_bitcount(double_storage_locations);
3289 if (total_attribs_size > max_index) {
3290 linker_error(prog,
3291 "attempt to use %d vertex attribute slots only %d available ",
3292 total_attribs_size, max_index);
3293 return false;
3294 }
3295 }
3296
3297 return true;
3298 }
3299
3300 /**
3301 * Match explicit locations of outputs to inputs and deactivate the
3302 * unmatch flag if found so we don't optimise them away.
3303 */
3304 static void
match_explicit_outputs_to_inputs(gl_linked_shader * producer,gl_linked_shader * consumer)3305 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3306 gl_linked_shader *consumer)
3307 {
3308 glsl_symbol_table parameters;
3309 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3310 { {NULL, NULL} };
3311
3312 /* Find all shader outputs in the "producer" stage.
3313 */
3314 foreach_in_list(ir_instruction, node, producer->ir) {
3315 ir_variable *const var = node->as_variable();
3316
3317 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3318 continue;
3319
3320 if (var->data.explicit_location &&
3321 var->data.location >= VARYING_SLOT_VAR0) {
3322 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3323 if (explicit_locations[idx][var->data.location_frac] == NULL)
3324 explicit_locations[idx][var->data.location_frac] = var;
3325
3326 /* Always match TCS outputs. They are shared by all invocations
3327 * within a patch and can be used as shared memory.
3328 */
3329 if (producer->Stage == MESA_SHADER_TESS_CTRL)
3330 var->data.is_unmatched_generic_inout = 0;
3331 }
3332 }
3333
3334 /* Match inputs to outputs */
3335 foreach_in_list(ir_instruction, node, consumer->ir) {
3336 ir_variable *const input = node->as_variable();
3337
3338 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3339 continue;
3340
3341 ir_variable *output = NULL;
3342 if (input->data.explicit_location
3343 && input->data.location >= VARYING_SLOT_VAR0) {
3344 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3345 [input->data.location_frac];
3346
3347 if (output != NULL){
3348 input->data.is_unmatched_generic_inout = 0;
3349 output->data.is_unmatched_generic_inout = 0;
3350 }
3351 }
3352 }
3353 }
3354
3355 /**
3356 * Store the gl_FragDepth layout in the gl_shader_program struct.
3357 */
3358 static void
store_fragdepth_layout(struct gl_shader_program * prog)3359 store_fragdepth_layout(struct gl_shader_program *prog)
3360 {
3361 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3362 return;
3363 }
3364
3365 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3366
3367 /* We don't look up the gl_FragDepth symbol directly because if
3368 * gl_FragDepth is not used in the shader, it's removed from the IR.
3369 * However, the symbol won't be removed from the symbol table.
3370 *
3371 * We're only interested in the cases where the variable is NOT removed
3372 * from the IR.
3373 */
3374 foreach_in_list(ir_instruction, node, ir) {
3375 ir_variable *const var = node->as_variable();
3376
3377 if (var == NULL || var->data.mode != ir_var_shader_out) {
3378 continue;
3379 }
3380
3381 if (strcmp(var->name, "gl_FragDepth") == 0) {
3382 switch (var->data.depth_layout) {
3383 case ir_depth_layout_none:
3384 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3385 return;
3386 case ir_depth_layout_any:
3387 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3388 return;
3389 case ir_depth_layout_greater:
3390 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3391 return;
3392 case ir_depth_layout_less:
3393 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3394 return;
3395 case ir_depth_layout_unchanged:
3396 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3397 return;
3398 default:
3399 assert(0);
3400 return;
3401 }
3402 }
3403 }
3404 }
3405
3406 /**
3407 * Validate shader image resources.
3408 */
3409 static void
check_image_resources(struct gl_context * ctx,struct gl_shader_program * prog)3410 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3411 {
3412 unsigned total_image_units = 0;
3413 unsigned fragment_outputs = 0;
3414 unsigned total_shader_storage_blocks = 0;
3415
3416 if (!ctx->Extensions.ARB_shader_image_load_store)
3417 return;
3418
3419 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3420 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3421
3422 if (sh) {
3423 total_image_units += sh->Program->info.num_images;
3424 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3425
3426 if (i == MESA_SHADER_FRAGMENT) {
3427 foreach_in_list(ir_instruction, node, sh->ir) {
3428 ir_variable *var = node->as_variable();
3429 if (var && var->data.mode == ir_var_shader_out)
3430 /* since there are no double fs outputs - pass false */
3431 fragment_outputs += var->type->count_attribute_slots(false);
3432 }
3433 }
3434 }
3435 }
3436
3437 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3438 linker_error(prog, "Too many combined image uniforms\n");
3439
3440 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3441 ctx->Const.MaxCombinedShaderOutputResources)
3442 linker_error(prog, "Too many combined image uniforms, shader storage "
3443 " buffers and fragment outputs\n");
3444 }
3445
3446
3447 /**
3448 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3449 * for a variable, checks for overlaps between other uniforms using explicit
3450 * locations.
3451 */
3452 static int
reserve_explicit_locations(struct gl_shader_program * prog,string_to_uint_map * map,ir_variable * var)3453 reserve_explicit_locations(struct gl_shader_program *prog,
3454 string_to_uint_map *map, ir_variable *var)
3455 {
3456 unsigned slots = var->type->uniform_locations();
3457 unsigned max_loc = var->data.location + slots - 1;
3458 unsigned return_value = slots;
3459
3460 /* Resize remap table if locations do not fit in the current one. */
3461 if (max_loc + 1 > prog->NumUniformRemapTable) {
3462 prog->UniformRemapTable =
3463 reralloc(prog, prog->UniformRemapTable,
3464 gl_uniform_storage *,
3465 max_loc + 1);
3466
3467 if (!prog->UniformRemapTable) {
3468 linker_error(prog, "Out of memory during linking.\n");
3469 return -1;
3470 }
3471
3472 /* Initialize allocated space. */
3473 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3474 prog->UniformRemapTable[i] = NULL;
3475
3476 prog->NumUniformRemapTable = max_loc + 1;
3477 }
3478
3479 for (unsigned i = 0; i < slots; i++) {
3480 unsigned loc = var->data.location + i;
3481
3482 /* Check if location is already used. */
3483 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3484
3485 /* Possibly same uniform from a different stage, this is ok. */
3486 unsigned hash_loc;
3487 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3488 return_value = 0;
3489 continue;
3490 }
3491
3492 /* ARB_explicit_uniform_location specification states:
3493 *
3494 * "No two default-block uniform variables in the program can have
3495 * the same location, even if they are unused, otherwise a compiler
3496 * or linker error will be generated."
3497 */
3498 linker_error(prog,
3499 "location qualifier for uniform %s overlaps "
3500 "previously used location\n",
3501 var->name);
3502 return -1;
3503 }
3504
3505 /* Initialize location as inactive before optimization
3506 * rounds and location assignment.
3507 */
3508 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3509 }
3510
3511 /* Note, base location used for arrays. */
3512 map->put(var->data.location, var->name);
3513
3514 return return_value;
3515 }
3516
3517 static bool
reserve_subroutine_explicit_locations(struct gl_shader_program * prog,struct gl_program * p,ir_variable * var)3518 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3519 struct gl_program *p,
3520 ir_variable *var)
3521 {
3522 unsigned slots = var->type->uniform_locations();
3523 unsigned max_loc = var->data.location + slots - 1;
3524
3525 /* Resize remap table if locations do not fit in the current one. */
3526 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3527 p->sh.SubroutineUniformRemapTable =
3528 reralloc(p, p->sh.SubroutineUniformRemapTable,
3529 gl_uniform_storage *,
3530 max_loc + 1);
3531
3532 if (!p->sh.SubroutineUniformRemapTable) {
3533 linker_error(prog, "Out of memory during linking.\n");
3534 return false;
3535 }
3536
3537 /* Initialize allocated space. */
3538 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3539 p->sh.SubroutineUniformRemapTable[i] = NULL;
3540
3541 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3542 }
3543
3544 for (unsigned i = 0; i < slots; i++) {
3545 unsigned loc = var->data.location + i;
3546
3547 /* Check if location is already used. */
3548 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3549
3550 /* ARB_explicit_uniform_location specification states:
3551 * "No two subroutine uniform variables can have the same location
3552 * in the same shader stage, otherwise a compiler or linker error
3553 * will be generated."
3554 */
3555 linker_error(prog,
3556 "location qualifier for uniform %s overlaps "
3557 "previously used location\n",
3558 var->name);
3559 return false;
3560 }
3561
3562 /* Initialize location as inactive before optimization
3563 * rounds and location assignment.
3564 */
3565 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3566 }
3567
3568 return true;
3569 }
3570 /**
3571 * Check and reserve all explicit uniform locations, called before
3572 * any optimizations happen to handle also inactive uniforms and
3573 * inactive array elements that may get trimmed away.
3574 */
3575 static void
check_explicit_uniform_locations(struct gl_context * ctx,struct gl_shader_program * prog)3576 check_explicit_uniform_locations(struct gl_context *ctx,
3577 struct gl_shader_program *prog)
3578 {
3579 prog->NumExplicitUniformLocations = 0;
3580
3581 if (!ctx->Extensions.ARB_explicit_uniform_location)
3582 return;
3583
3584 /* This map is used to detect if overlapping explicit locations
3585 * occur with the same uniform (from different stage) or a different one.
3586 */
3587 string_to_uint_map *uniform_map = new string_to_uint_map;
3588
3589 if (!uniform_map) {
3590 linker_error(prog, "Out of memory during linking.\n");
3591 return;
3592 }
3593
3594 unsigned entries_total = 0;
3595 unsigned mask = prog->data->linked_stages;
3596 while (mask) {
3597 const int i = u_bit_scan(&mask);
3598 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3599
3600 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3601 ir_variable *var = node->as_variable();
3602 if (!var || var->data.mode != ir_var_uniform)
3603 continue;
3604
3605 if (var->data.explicit_location) {
3606 bool ret = false;
3607 if (var->type->without_array()->is_subroutine())
3608 ret = reserve_subroutine_explicit_locations(prog, p, var);
3609 else {
3610 int slots = reserve_explicit_locations(prog, uniform_map,
3611 var);
3612 if (slots != -1) {
3613 ret = true;
3614 entries_total += slots;
3615 }
3616 }
3617 if (!ret) {
3618 delete uniform_map;
3619 return;
3620 }
3621 }
3622 }
3623 }
3624
3625 link_util_update_empty_uniform_locations(prog);
3626
3627 delete uniform_map;
3628 prog->NumExplicitUniformLocations = entries_total;
3629 }
3630
3631 /* Function checks if a variable var is a packed varying and
3632 * if given name is part of packed varying's list.
3633 *
3634 * If a variable is a packed varying, it has a name like
3635 * 'packed:a,b,c' where a, b and c are separate variables.
3636 */
3637 static bool
included_in_packed_varying(ir_variable * var,const char * name)3638 included_in_packed_varying(ir_variable *var, const char *name)
3639 {
3640 if (strncmp(var->name, "packed:", 7) != 0)
3641 return false;
3642
3643 char *list = strdup(var->name + 7);
3644 assert(list);
3645
3646 bool found = false;
3647 char *saveptr;
3648 char *token = strtok_r(list, ",", &saveptr);
3649 while (token) {
3650 if (strcmp(token, name) == 0) {
3651 found = true;
3652 break;
3653 }
3654 token = strtok_r(NULL, ",", &saveptr);
3655 }
3656 free(list);
3657 return found;
3658 }
3659
3660 /**
3661 * Function builds a stage reference bitmask from variable name.
3662 */
3663 static uint8_t
build_stageref(struct gl_shader_program * shProg,const char * name,unsigned mode)3664 build_stageref(struct gl_shader_program *shProg, const char *name,
3665 unsigned mode)
3666 {
3667 uint8_t stages = 0;
3668
3669 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3670 * used for reference mask in gl_program_resource will need to be changed.
3671 */
3672 assert(MESA_SHADER_STAGES < 8);
3673
3674 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3675 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3676 if (!sh)
3677 continue;
3678
3679 /* Shader symbol table may contain variables that have
3680 * been optimized away. Search IR for the variable instead.
3681 */
3682 foreach_in_list(ir_instruction, node, sh->ir) {
3683 ir_variable *var = node->as_variable();
3684 if (var) {
3685 unsigned baselen = strlen(var->name);
3686
3687 if (included_in_packed_varying(var, name)) {
3688 stages |= (1 << i);
3689 break;
3690 }
3691
3692 /* Type needs to match if specified, otherwise we might
3693 * pick a variable with same name but different interface.
3694 */
3695 if (var->data.mode != mode)
3696 continue;
3697
3698 if (strncmp(var->name, name, baselen) == 0) {
3699 /* Check for exact name matches but also check for arrays and
3700 * structs.
3701 */
3702 if (name[baselen] == '\0' ||
3703 name[baselen] == '[' ||
3704 name[baselen] == '.') {
3705 stages |= (1 << i);
3706 break;
3707 }
3708 }
3709 }
3710 }
3711 }
3712 return stages;
3713 }
3714
3715 /**
3716 * Create gl_shader_variable from ir_variable class.
3717 */
3718 static gl_shader_variable *
create_shader_variable(struct gl_shader_program * shProg,const ir_variable * in,const char * name,const glsl_type * type,const glsl_type * interface_type,bool use_implicit_location,int location,const glsl_type * outermost_struct_type)3719 create_shader_variable(struct gl_shader_program *shProg,
3720 const ir_variable *in,
3721 const char *name, const glsl_type *type,
3722 const glsl_type *interface_type,
3723 bool use_implicit_location, int location,
3724 const glsl_type *outermost_struct_type)
3725 {
3726 /* Allocate zero-initialized memory to ensure that bitfield padding
3727 * is zero.
3728 */
3729 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3730 if (!out)
3731 return NULL;
3732
3733 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3734 * expect to see gl_VertexID in the program resource list. Pretend.
3735 */
3736 if (in->data.mode == ir_var_system_value &&
3737 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3738 out->name = ralloc_strdup(shProg, "gl_VertexID");
3739 } else if ((in->data.mode == ir_var_shader_out &&
3740 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3741 (in->data.mode == ir_var_system_value &&
3742 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3743 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3744 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3745 } else if ((in->data.mode == ir_var_shader_out &&
3746 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3747 (in->data.mode == ir_var_system_value &&
3748 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3749 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3750 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3751 } else {
3752 out->name = ralloc_strdup(shProg, name);
3753 }
3754
3755 if (!out->name)
3756 return NULL;
3757
3758 /* The ARB_program_interface_query spec says:
3759 *
3760 * "Not all active variables are assigned valid locations; the
3761 * following variables will have an effective location of -1:
3762 *
3763 * * uniforms declared as atomic counters;
3764 *
3765 * * members of a uniform block;
3766 *
3767 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3768 *
3769 * * inputs or outputs not declared with a "location" layout
3770 * qualifier, except for vertex shader inputs and fragment shader
3771 * outputs."
3772 */
3773 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3774 !(in->data.explicit_location || use_implicit_location)) {
3775 out->location = -1;
3776 } else {
3777 out->location = location;
3778 }
3779
3780 out->type = type;
3781 out->outermost_struct_type = outermost_struct_type;
3782 out->interface_type = interface_type;
3783 out->component = in->data.location_frac;
3784 out->index = in->data.index;
3785 out->patch = in->data.patch;
3786 out->mode = in->data.mode;
3787 out->interpolation = in->data.interpolation;
3788 out->explicit_location = in->data.explicit_location;
3789 out->precision = in->data.precision;
3790
3791 return out;
3792 }
3793
3794 static bool
add_shader_variable(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage_mask,GLenum programInterface,ir_variable * var,const char * name,const glsl_type * type,bool use_implicit_location,int location,bool inouts_share_location,const glsl_type * outermost_struct_type=NULL)3795 add_shader_variable(const struct gl_context *ctx,
3796 struct gl_shader_program *shProg,
3797 struct set *resource_set,
3798 unsigned stage_mask,
3799 GLenum programInterface, ir_variable *var,
3800 const char *name, const glsl_type *type,
3801 bool use_implicit_location, int location,
3802 bool inouts_share_location,
3803 const glsl_type *outermost_struct_type = NULL)
3804 {
3805 const glsl_type *interface_type = var->get_interface_type();
3806
3807 if (outermost_struct_type == NULL) {
3808 if (var->data.from_named_ifc_block) {
3809 const char *interface_name = interface_type->name;
3810
3811 if (interface_type->is_array()) {
3812 /* Issue #16 of the ARB_program_interface_query spec says:
3813 *
3814 * "* If a variable is a member of an interface block without an
3815 * instance name, it is enumerated using just the variable name.
3816 *
3817 * * If a variable is a member of an interface block with an
3818 * instance name, it is enumerated as "BlockName.Member", where
3819 * "BlockName" is the name of the interface block (not the
3820 * instance name) and "Member" is the name of the variable."
3821 *
3822 * In particular, it indicates that it should be "BlockName",
3823 * not "BlockName[array length]". The conformance suite and
3824 * dEQP both require this behavior.
3825 *
3826 * Here, we unwrap the extra array level added by named interface
3827 * block array lowering so we have the correct variable type. We
3828 * also unwrap the interface type when constructing the name.
3829 *
3830 * We leave interface_type the same so that ES 3.x SSO pipeline
3831 * validation can enforce the rules requiring array length to
3832 * match on interface blocks.
3833 */
3834 type = type->fields.array;
3835
3836 interface_name = interface_type->fields.array->name;
3837 }
3838
3839 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3840 }
3841 }
3842
3843 switch (type->base_type) {
3844 case GLSL_TYPE_STRUCT: {
3845 /* The ARB_program_interface_query spec says:
3846 *
3847 * "For an active variable declared as a structure, a separate entry
3848 * will be generated for each active structure member. The name of
3849 * each entry is formed by concatenating the name of the structure,
3850 * the "." character, and the name of the structure member. If a
3851 * structure member to enumerate is itself a structure or array,
3852 * these enumeration rules are applied recursively."
3853 */
3854 if (outermost_struct_type == NULL)
3855 outermost_struct_type = type;
3856
3857 unsigned field_location = location;
3858 for (unsigned i = 0; i < type->length; i++) {
3859 const struct glsl_struct_field *field = &type->fields.structure[i];
3860 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3861 if (!add_shader_variable(ctx, shProg, resource_set,
3862 stage_mask, programInterface,
3863 var, field_name, field->type,
3864 use_implicit_location, field_location,
3865 false, outermost_struct_type))
3866 return false;
3867
3868 field_location += field->type->count_attribute_slots(false);
3869 }
3870 return true;
3871 }
3872
3873 case GLSL_TYPE_ARRAY: {
3874 /* The ARB_program_interface_query spec says:
3875 *
3876 * "For an active variable declared as an array of basic types, a
3877 * single entry will be generated, with its name string formed by
3878 * concatenating the name of the array and the string "[0]"."
3879 *
3880 * "For an active variable declared as an array of an aggregate data
3881 * type (structures or arrays), a separate entry will be generated
3882 * for each active array element, unless noted immediately below.
3883 * The name of each entry is formed by concatenating the name of
3884 * the array, the "[" character, an integer identifying the element
3885 * number, and the "]" character. These enumeration rules are
3886 * applied recursively, treating each enumerated array element as a
3887 * separate active variable."
3888 */
3889 const struct glsl_type *array_type = type->fields.array;
3890 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3891 array_type->base_type == GLSL_TYPE_ARRAY) {
3892 unsigned elem_location = location;
3893 unsigned stride = inouts_share_location ? 0 :
3894 array_type->count_attribute_slots(false);
3895 for (unsigned i = 0; i < type->length; i++) {
3896 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3897 if (!add_shader_variable(ctx, shProg, resource_set,
3898 stage_mask, programInterface,
3899 var, elem, array_type,
3900 use_implicit_location, elem_location,
3901 false, outermost_struct_type))
3902 return false;
3903 elem_location += stride;
3904 }
3905 return true;
3906 }
3907 FALLTHROUGH;
3908 }
3909
3910 default: {
3911 /* The ARB_program_interface_query spec says:
3912 *
3913 * "For an active variable declared as a single instance of a basic
3914 * type, a single entry will be generated, using the variable name
3915 * from the shader source."
3916 */
3917 gl_shader_variable *sha_v =
3918 create_shader_variable(shProg, var, name, type, interface_type,
3919 use_implicit_location, location,
3920 outermost_struct_type);
3921 if (!sha_v)
3922 return false;
3923
3924 return link_util_add_program_resource(shProg, resource_set,
3925 programInterface, sha_v, stage_mask);
3926 }
3927 }
3928 }
3929
3930 static bool
inout_has_same_location(const ir_variable * var,unsigned stage)3931 inout_has_same_location(const ir_variable *var, unsigned stage)
3932 {
3933 if (!var->data.patch &&
3934 ((var->data.mode == ir_var_shader_out &&
3935 stage == MESA_SHADER_TESS_CTRL) ||
3936 (var->data.mode == ir_var_shader_in &&
3937 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3938 stage == MESA_SHADER_GEOMETRY))))
3939 return true;
3940 else
3941 return false;
3942 }
3943
3944 static bool
add_interface_variables(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage,GLenum programInterface)3945 add_interface_variables(const struct gl_context *ctx,
3946 struct gl_shader_program *shProg,
3947 struct set *resource_set,
3948 unsigned stage, GLenum programInterface)
3949 {
3950 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3951
3952 foreach_in_list(ir_instruction, node, ir) {
3953 ir_variable *var = node->as_variable();
3954
3955 if (!var || var->data.how_declared == ir_var_hidden)
3956 continue;
3957
3958 int loc_bias;
3959
3960 switch (var->data.mode) {
3961 case ir_var_system_value:
3962 case ir_var_shader_in:
3963 if (programInterface != GL_PROGRAM_INPUT)
3964 continue;
3965 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3966 : int(VARYING_SLOT_VAR0);
3967 break;
3968 case ir_var_shader_out:
3969 if (programInterface != GL_PROGRAM_OUTPUT)
3970 continue;
3971 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3972 : int(VARYING_SLOT_VAR0);
3973 break;
3974 default:
3975 continue;
3976 };
3977
3978 if (var->data.patch)
3979 loc_bias = int(VARYING_SLOT_PATCH0);
3980
3981 /* Skip packed varyings, packed varyings are handled separately
3982 * by add_packed_varyings.
3983 */
3984 if (strncmp(var->name, "packed:", 7) == 0)
3985 continue;
3986
3987 /* Skip fragdata arrays, these are handled separately
3988 * by add_fragdata_arrays.
3989 */
3990 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3991 continue;
3992
3993 const bool vs_input_or_fs_output =
3994 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3995 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3996
3997 if (!add_shader_variable(ctx, shProg, resource_set,
3998 1 << stage, programInterface,
3999 var, var->name, var->type, vs_input_or_fs_output,
4000 var->data.location - loc_bias,
4001 inout_has_same_location(var, stage)))
4002 return false;
4003 }
4004 return true;
4005 }
4006
4007 static bool
add_packed_varyings(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,int stage,GLenum type)4008 add_packed_varyings(const struct gl_context *ctx,
4009 struct gl_shader_program *shProg,
4010 struct set *resource_set,
4011 int stage, GLenum type)
4012 {
4013 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4014 GLenum iface;
4015
4016 if (!sh || !sh->packed_varyings)
4017 return true;
4018
4019 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4020 ir_variable *var = node->as_variable();
4021 if (var) {
4022 switch (var->data.mode) {
4023 case ir_var_shader_in:
4024 iface = GL_PROGRAM_INPUT;
4025 break;
4026 case ir_var_shader_out:
4027 iface = GL_PROGRAM_OUTPUT;
4028 break;
4029 default:
4030 unreachable("unexpected type");
4031 }
4032
4033 if (type == iface) {
4034 const int stage_mask =
4035 build_stageref(shProg, var->name, var->data.mode);
4036 if (!add_shader_variable(ctx, shProg, resource_set,
4037 stage_mask,
4038 iface, var, var->name, var->type, false,
4039 var->data.location - VARYING_SLOT_VAR0,
4040 inout_has_same_location(var, stage)))
4041 return false;
4042 }
4043 }
4044 }
4045 return true;
4046 }
4047
4048 static bool
add_fragdata_arrays(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set)4049 add_fragdata_arrays(const struct gl_context *ctx,
4050 struct gl_shader_program *shProg,
4051 struct set *resource_set)
4052 {
4053 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4054
4055 if (!sh || !sh->fragdata_arrays)
4056 return true;
4057
4058 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4059 ir_variable *var = node->as_variable();
4060 if (var) {
4061 assert(var->data.mode == ir_var_shader_out);
4062
4063 if (!add_shader_variable(ctx, shProg, resource_set,
4064 1 << MESA_SHADER_FRAGMENT,
4065 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4066 true, var->data.location - FRAG_RESULT_DATA0,
4067 false))
4068 return false;
4069 }
4070 }
4071 return true;
4072 }
4073
4074 /**
4075 * Builds up a list of program resources that point to existing
4076 * resource data.
4077 */
4078 void
build_program_resource_list(struct gl_context * ctx,struct gl_shader_program * shProg,bool add_packed_varyings_only)4079 build_program_resource_list(struct gl_context *ctx,
4080 struct gl_shader_program *shProg,
4081 bool add_packed_varyings_only)
4082 {
4083 /* Rebuild resource list. */
4084 if (shProg->data->ProgramResourceList) {
4085 ralloc_free(shProg->data->ProgramResourceList);
4086 shProg->data->ProgramResourceList = NULL;
4087 shProg->data->NumProgramResourceList = 0;
4088 }
4089
4090 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4091
4092 /* Determine first input and final output stage. These are used to
4093 * detect which variables should be enumerated in the resource list
4094 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4095 */
4096 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4097 if (!shProg->_LinkedShaders[i])
4098 continue;
4099 if (input_stage == MESA_SHADER_STAGES)
4100 input_stage = i;
4101 output_stage = i;
4102 }
4103
4104 /* Empty shader, no resources. */
4105 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4106 return;
4107
4108 struct set *resource_set = _mesa_pointer_set_create(NULL);
4109
4110 /* Program interface needs to expose varyings in case of SSO. */
4111 if (shProg->SeparateShader) {
4112 if (!add_packed_varyings(ctx, shProg, resource_set,
4113 input_stage, GL_PROGRAM_INPUT))
4114 return;
4115
4116 if (!add_packed_varyings(ctx, shProg, resource_set,
4117 output_stage, GL_PROGRAM_OUTPUT))
4118 return;
4119 }
4120
4121 if (add_packed_varyings_only) {
4122 _mesa_set_destroy(resource_set, NULL);
4123 return;
4124 }
4125
4126 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4127 return;
4128
4129 /* Add inputs and outputs to the resource list. */
4130 if (!add_interface_variables(ctx, shProg, resource_set,
4131 input_stage, GL_PROGRAM_INPUT))
4132 return;
4133
4134 if (!add_interface_variables(ctx, shProg, resource_set,
4135 output_stage, GL_PROGRAM_OUTPUT))
4136 return;
4137
4138 if (shProg->last_vert_prog) {
4139 struct gl_transform_feedback_info *linked_xfb =
4140 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4141
4142 /* Add transform feedback varyings. */
4143 if (linked_xfb->NumVarying > 0) {
4144 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4145 if (!link_util_add_program_resource(shProg, resource_set,
4146 GL_TRANSFORM_FEEDBACK_VARYING,
4147 &linked_xfb->Varyings[i], 0))
4148 return;
4149 }
4150 }
4151
4152 /* Add transform feedback buffers. */
4153 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4154 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4155 linked_xfb->Buffers[i].Binding = i;
4156 if (!link_util_add_program_resource(shProg, resource_set,
4157 GL_TRANSFORM_FEEDBACK_BUFFER,
4158 &linked_xfb->Buffers[i], 0))
4159 return;
4160 }
4161 }
4162 }
4163
4164 int top_level_array_base_offset = -1;
4165 int top_level_array_size_in_bytes = -1;
4166 int second_element_offset = -1;
4167 int buffer_block_index = -1;
4168
4169 /* Add uniforms from uniform storage. */
4170 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4171 /* Do not add uniforms internally used by Mesa. */
4172 if (shProg->data->UniformStorage[i].hidden)
4173 continue;
4174
4175 bool is_shader_storage =
4176 shProg->data->UniformStorage[i].is_shader_storage;
4177 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4178 if (!link_util_should_add_buffer_variable(shProg,
4179 &shProg->data->UniformStorage[i],
4180 top_level_array_base_offset,
4181 top_level_array_size_in_bytes,
4182 second_element_offset,
4183 buffer_block_index))
4184 continue;
4185
4186 if (is_shader_storage) {
4187 /* From the OpenGL 4.6 specification, 7.3.1.1 Naming Active Resources:
4188 *
4189 * "For an active shader storage block member declared as an array
4190 * of an aggregate type, an entry will be generated only for the
4191 * first array element, regardless of its type. Such block members
4192 * are referred to as top-level arrays. If the block member is an
4193 * aggregate type, the enumeration rules are then applied
4194 * recursively."
4195 *
4196 * Below we update our tracking values used by
4197 * link_util_should_add_buffer_variable(). We only want to reset the
4198 * offsets once we have moved past the first element.
4199 */
4200 if (shProg->data->UniformStorage[i].offset >= second_element_offset) {
4201 top_level_array_base_offset =
4202 shProg->data->UniformStorage[i].offset;
4203
4204 top_level_array_size_in_bytes =
4205 shProg->data->UniformStorage[i].top_level_array_size *
4206 shProg->data->UniformStorage[i].top_level_array_stride;
4207
4208 /* Set or reset the second element offset. For non arrays this
4209 * will be set to -1.
4210 */
4211 second_element_offset = top_level_array_size_in_bytes ?
4212 top_level_array_base_offset +
4213 shProg->data->UniformStorage[i].top_level_array_stride : -1;
4214 }
4215
4216 buffer_block_index = shProg->data->UniformStorage[i].block_index;
4217 }
4218
4219 uint8_t stageref = shProg->data->UniformStorage[i].active_shader_mask;
4220 if (!link_util_add_program_resource(shProg, resource_set, type,
4221 &shProg->data->UniformStorage[i], stageref))
4222 return;
4223 }
4224
4225 /* Add program uniform blocks. */
4226 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4227 if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4228 &shProg->data->UniformBlocks[i], 0))
4229 return;
4230 }
4231
4232 /* Add program shader storage blocks. */
4233 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4234 if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4235 &shProg->data->ShaderStorageBlocks[i], 0))
4236 return;
4237 }
4238
4239 /* Add atomic counter buffers. */
4240 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4241 if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4242 &shProg->data->AtomicBuffers[i], 0))
4243 return;
4244 }
4245
4246 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4247 GLenum type;
4248 if (!shProg->data->UniformStorage[i].hidden)
4249 continue;
4250
4251 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4252 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4253 !shProg->data->UniformStorage[i].type->is_subroutine())
4254 continue;
4255
4256 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4257 /* add shader subroutines */
4258 if (!link_util_add_program_resource(shProg, resource_set,
4259 type, &shProg->data->UniformStorage[i], 0))
4260 return;
4261 }
4262 }
4263
4264 unsigned mask = shProg->data->linked_stages;
4265 while (mask) {
4266 const int i = u_bit_scan(&mask);
4267 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4268
4269 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4270 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4271 if (!link_util_add_program_resource(shProg, resource_set,
4272 type, &p->sh.SubroutineFunctions[j], 0))
4273 return;
4274 }
4275 }
4276
4277 _mesa_set_destroy(resource_set, NULL);
4278 }
4279
4280 /**
4281 * This check is done to make sure we allow only constant expression
4282 * indexing and "constant-index-expression" (indexing with an expression
4283 * that includes loop induction variable).
4284 */
4285 static bool
validate_sampler_array_indexing(struct gl_context * ctx,struct gl_shader_program * prog)4286 validate_sampler_array_indexing(struct gl_context *ctx,
4287 struct gl_shader_program *prog)
4288 {
4289 dynamic_sampler_array_indexing_visitor v;
4290 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4291 if (prog->_LinkedShaders[i] == NULL)
4292 continue;
4293
4294 bool no_dynamic_indexing =
4295 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4296
4297 /* Search for array derefs in shader. */
4298 v.run(prog->_LinkedShaders[i]->ir);
4299 if (v.uses_dynamic_sampler_array_indexing()) {
4300 const char *msg = "sampler arrays indexed with non-constant "
4301 "expressions is forbidden in GLSL %s %u";
4302 /* Backend has indicated that it has no dynamic indexing support. */
4303 if (no_dynamic_indexing) {
4304 linker_error(prog, msg, prog->IsES ? "ES" : "",
4305 prog->data->Version);
4306 return false;
4307 } else {
4308 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4309 prog->data->Version);
4310 }
4311 }
4312 }
4313 return true;
4314 }
4315
4316 static void
link_assign_subroutine_types(struct gl_shader_program * prog)4317 link_assign_subroutine_types(struct gl_shader_program *prog)
4318 {
4319 unsigned mask = prog->data->linked_stages;
4320 while (mask) {
4321 const int i = u_bit_scan(&mask);
4322 gl_program *p = prog->_LinkedShaders[i]->Program;
4323
4324 p->sh.MaxSubroutineFunctionIndex = 0;
4325 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4326 ir_function *fn = node->as_function();
4327 if (!fn)
4328 continue;
4329
4330 if (fn->is_subroutine)
4331 p->sh.NumSubroutineUniformTypes++;
4332
4333 if (!fn->num_subroutine_types)
4334 continue;
4335
4336 /* these should have been calculated earlier. */
4337 assert(fn->subroutine_index != -1);
4338 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4339 linker_error(prog, "Too many subroutine functions declared.\n");
4340 return;
4341 }
4342 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4343 struct gl_subroutine_function,
4344 p->sh.NumSubroutineFunctions + 1);
4345 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4346 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4347 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4348 ralloc_array(p, const struct glsl_type *,
4349 fn->num_subroutine_types);
4350
4351 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4352 * GLSL 4.5 spec:
4353 *
4354 * "Each subroutine with an index qualifier in the shader must be
4355 * given a unique index, otherwise a compile or link error will be
4356 * generated."
4357 */
4358 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4359 if (p->sh.SubroutineFunctions[j].index != -1 &&
4360 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4361 linker_error(prog, "each subroutine index qualifier in the "
4362 "shader must be unique\n");
4363 return;
4364 }
4365 }
4366 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4367 fn->subroutine_index;
4368
4369 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4370 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4371
4372 for (int j = 0; j < fn->num_subroutine_types; j++)
4373 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4374 p->sh.NumSubroutineFunctions++;
4375 }
4376 }
4377 }
4378
4379 static void
verify_subroutine_associated_funcs(struct gl_shader_program * prog)4380 verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4381 {
4382 unsigned mask = prog->data->linked_stages;
4383 while (mask) {
4384 const int i = u_bit_scan(&mask);
4385 gl_program *p = prog->_LinkedShaders[i]->Program;
4386 glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4387
4388 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4389 *
4390 * "A program will fail to compile or link if any shader
4391 * or stage contains two or more functions with the same
4392 * name if the name is associated with a subroutine type."
4393 */
4394 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4395 unsigned definitions = 0;
4396 char *name = p->sh.SubroutineFunctions[j].name;
4397 ir_function *fn = symbols->get_function(name);
4398
4399 /* Calculate number of function definitions with the same name */
4400 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4401 if (sig->is_defined) {
4402 if (++definitions > 1) {
4403 linker_error(prog, "%s shader contains two or more function "
4404 "definitions with name `%s', which is "
4405 "associated with a subroutine type.\n",
4406 _mesa_shader_stage_to_string(i),
4407 fn->name);
4408 return;
4409 }
4410 }
4411 }
4412 }
4413 }
4414 }
4415
4416
4417 static void
set_always_active_io(exec_list * ir,ir_variable_mode io_mode)4418 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4419 {
4420 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4421
4422 foreach_in_list(ir_instruction, node, ir) {
4423 ir_variable *const var = node->as_variable();
4424
4425 if (var == NULL || var->data.mode != io_mode)
4426 continue;
4427
4428 /* Don't set always active on builtins that haven't been redeclared */
4429 if (var->data.how_declared == ir_var_declared_implicitly)
4430 continue;
4431
4432 var->data.always_active_io = true;
4433 }
4434 }
4435
4436 /**
4437 * When separate shader programs are enabled, only input/outputs between
4438 * the stages of a multi-stage separate program can be safely removed
4439 * from the shader interface. Other inputs/outputs must remain active.
4440 */
4441 static void
disable_varying_optimizations_for_sso(struct gl_shader_program * prog)4442 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4443 {
4444 unsigned first, last;
4445 assert(prog->SeparateShader);
4446
4447 first = MESA_SHADER_STAGES;
4448 last = 0;
4449
4450 /* Determine first and last stage. Excluding the compute stage */
4451 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4452 if (!prog->_LinkedShaders[i])
4453 continue;
4454 if (first == MESA_SHADER_STAGES)
4455 first = i;
4456 last = i;
4457 }
4458
4459 if (first == MESA_SHADER_STAGES)
4460 return;
4461
4462 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4463 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4464 if (!sh)
4465 continue;
4466
4467 /* Prevent the removal of inputs to the first and outputs from the last
4468 * stage, unless they are the initial pipeline inputs or final pipeline
4469 * outputs, respectively.
4470 *
4471 * The removal of IO between shaders in the same program is always
4472 * allowed.
4473 */
4474 if (stage == first && stage != MESA_SHADER_VERTEX)
4475 set_always_active_io(sh->ir, ir_var_shader_in);
4476 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4477 set_always_active_io(sh->ir, ir_var_shader_out);
4478 }
4479 }
4480
4481 static void
link_and_validate_uniforms(struct gl_context * ctx,struct gl_shader_program * prog)4482 link_and_validate_uniforms(struct gl_context *ctx,
4483 struct gl_shader_program *prog)
4484 {
4485 assert(!ctx->Const.UseNIRGLSLLinker);
4486
4487 update_array_sizes(prog);
4488 link_assign_uniform_locations(prog, ctx);
4489
4490 if (prog->data->LinkStatus == LINKING_FAILURE)
4491 return;
4492
4493 link_util_calculate_subroutine_compat(prog);
4494 link_util_check_uniform_resources(ctx, prog);
4495 link_util_check_subroutine_resources(prog);
4496 check_image_resources(ctx, prog);
4497 link_assign_atomic_counter_resources(ctx, prog);
4498 link_check_atomic_counter_resources(ctx, prog);
4499 }
4500
4501 static bool
link_varyings_and_uniforms(unsigned first,unsigned last,struct gl_context * ctx,struct gl_shader_program * prog,void * mem_ctx)4502 link_varyings_and_uniforms(unsigned first, unsigned last,
4503 struct gl_context *ctx,
4504 struct gl_shader_program *prog, void *mem_ctx)
4505 {
4506 /* Mark all generic shader inputs and outputs as unpaired. */
4507 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4508 if (prog->_LinkedShaders[i] != NULL) {
4509 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4510 }
4511 }
4512
4513 unsigned prev = first;
4514 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4515 if (prog->_LinkedShaders[i] == NULL)
4516 continue;
4517
4518 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4519 prog->_LinkedShaders[i]);
4520 prev = i;
4521 }
4522
4523 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4524 MESA_SHADER_VERTEX, true)) {
4525 return false;
4526 }
4527
4528 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4529 MESA_SHADER_FRAGMENT, true)) {
4530 return false;
4531 }
4532
4533 prog->last_vert_prog = NULL;
4534 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4535 if (prog->_LinkedShaders[i] == NULL)
4536 continue;
4537
4538 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4539 break;
4540 }
4541
4542 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4543 return false;
4544
4545 if (!ctx->Const.UseNIRGLSLLinker)
4546 link_and_validate_uniforms(ctx, prog);
4547
4548 if (!prog->data->LinkStatus)
4549 return false;
4550
4551 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4552 if (prog->_LinkedShaders[i] == NULL)
4553 continue;
4554
4555 const struct gl_shader_compiler_options *options =
4556 &ctx->Const.ShaderCompilerOptions[i];
4557
4558 if (options->LowerBufferInterfaceBlocks)
4559 lower_ubo_reference(prog->_LinkedShaders[i],
4560 options->ClampBlockIndicesToArrayBounds,
4561 ctx->Const.UseSTD430AsDefaultPacking);
4562
4563 if (i == MESA_SHADER_COMPUTE)
4564 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4565
4566 lower_vector_derefs(prog->_LinkedShaders[i]);
4567 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4568 }
4569
4570 return true;
4571 }
4572
4573 static void
linker_optimisation_loop(struct gl_context * ctx,exec_list * ir,unsigned stage)4574 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4575 unsigned stage)
4576 {
4577 if (ctx->Const.GLSLOptimizeConservatively) {
4578 /* Run it just once. */
4579 do_common_optimization(ir, true, false,
4580 &ctx->Const.ShaderCompilerOptions[stage],
4581 ctx->Const.NativeIntegers);
4582 } else {
4583 /* Repeat it until it stops making changes. */
4584 while (do_common_optimization(ir, true, false,
4585 &ctx->Const.ShaderCompilerOptions[stage],
4586 ctx->Const.NativeIntegers))
4587 ;
4588 }
4589 }
4590
4591 void
link_shaders(struct gl_context * ctx,struct gl_shader_program * prog)4592 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4593 {
4594 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4595 prog->data->Validated = false;
4596
4597 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4598 *
4599 * "Linking can fail for a variety of reasons as specified in the
4600 * OpenGL Shading Language Specification, as well as any of the
4601 * following reasons:
4602 *
4603 * - No shader objects are attached to program."
4604 *
4605 * The Compatibility Profile specification does not list the error. In
4606 * Compatibility Profile missing shader stages are replaced by
4607 * fixed-function. This applies to the case where all stages are
4608 * missing.
4609 */
4610 if (prog->NumShaders == 0) {
4611 if (ctx->API != API_OPENGL_COMPAT)
4612 linker_error(prog, "no shaders attached to the program\n");
4613 return;
4614 }
4615
4616 #ifdef ENABLE_SHADER_CACHE
4617 if (shader_cache_read_program_metadata(ctx, prog))
4618 return;
4619 #endif
4620
4621 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4622
4623 prog->ARB_fragment_coord_conventions_enable = false;
4624
4625 /* Separate the shaders into groups based on their type.
4626 */
4627 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4628 unsigned num_shaders[MESA_SHADER_STAGES];
4629
4630 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4631 shader_list[i] = (struct gl_shader **)
4632 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4633 num_shaders[i] = 0;
4634 }
4635
4636 unsigned min_version = UINT_MAX;
4637 unsigned max_version = 0;
4638 for (unsigned i = 0; i < prog->NumShaders; i++) {
4639 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4640 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4641
4642 if (!ctx->Const.AllowGLSLRelaxedES &&
4643 prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4644 linker_error(prog, "all shaders must use same shading "
4645 "language version\n");
4646 goto done;
4647 }
4648
4649 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4650 prog->ARB_fragment_coord_conventions_enable = true;
4651 }
4652
4653 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4654 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4655 num_shaders[shader_type]++;
4656 }
4657
4658 /* In desktop GLSL, different shader versions may be linked together. In
4659 * GLSL ES, all shader versions must be the same.
4660 */
4661 if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4662 min_version != max_version) {
4663 linker_error(prog, "all shaders must use same shading "
4664 "language version\n");
4665 goto done;
4666 }
4667
4668 prog->data->Version = max_version;
4669 prog->IsES = prog->Shaders[0]->IsES;
4670
4671 /* Some shaders have to be linked with some other shaders present.
4672 */
4673 if (!prog->SeparateShader) {
4674 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4675 num_shaders[MESA_SHADER_VERTEX] == 0) {
4676 linker_error(prog, "Geometry shader must be linked with "
4677 "vertex shader\n");
4678 goto done;
4679 }
4680 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4681 num_shaders[MESA_SHADER_VERTEX] == 0) {
4682 linker_error(prog, "Tessellation evaluation shader must be linked "
4683 "with vertex shader\n");
4684 goto done;
4685 }
4686 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4687 num_shaders[MESA_SHADER_VERTEX] == 0) {
4688 linker_error(prog, "Tessellation control shader must be linked with "
4689 "vertex shader\n");
4690 goto done;
4691 }
4692
4693 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4694 *
4695 * "Linking can fail for [...] any of the following reasons:
4696 *
4697 * * program contains an object to form a tessellation control
4698 * shader [...] and [...] the program is not separable and
4699 * contains no object to form a tessellation evaluation shader"
4700 *
4701 * The OpenGL spec is contradictory. It allows linking without a tess
4702 * eval shader, but that can only be used with transform feedback and
4703 * rasterization disabled. However, transform feedback isn't allowed
4704 * with GL_PATCHES, so it can't be used.
4705 *
4706 * More investigation showed that the idea of transform feedback after
4707 * a tess control shader was dropped, because some hw vendors couldn't
4708 * support tessellation without a tess eval shader, but the linker
4709 * section wasn't updated to reflect that.
4710 *
4711 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4712 * spec bug.
4713 *
4714 * Do what's reasonable and always require a tess eval shader if a tess
4715 * control shader is present.
4716 */
4717 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4718 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4719 linker_error(prog, "Tessellation control shader must be linked with "
4720 "tessellation evaluation shader\n");
4721 goto done;
4722 }
4723
4724 if (prog->IsES) {
4725 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4726 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4727 linker_error(prog, "GLSL ES requires non-separable programs "
4728 "containing a tessellation evaluation shader to also "
4729 "be linked with a tessellation control shader\n");
4730 goto done;
4731 }
4732 }
4733 }
4734
4735 /* Compute shaders have additional restrictions. */
4736 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4737 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4738 linker_error(prog, "Compute shaders may not be linked with any other "
4739 "type of shader\n");
4740 }
4741
4742 /* Link all shaders for a particular stage and validate the result.
4743 */
4744 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4745 if (num_shaders[stage] > 0) {
4746 gl_linked_shader *const sh =
4747 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4748 num_shaders[stage], false);
4749
4750 if (!prog->data->LinkStatus) {
4751 if (sh)
4752 _mesa_delete_linked_shader(ctx, sh);
4753 goto done;
4754 }
4755
4756 switch (stage) {
4757 case MESA_SHADER_VERTEX:
4758 validate_vertex_shader_executable(prog, sh, ctx);
4759 break;
4760 case MESA_SHADER_TESS_CTRL:
4761 /* nothing to be done */
4762 break;
4763 case MESA_SHADER_TESS_EVAL:
4764 validate_tess_eval_shader_executable(prog, sh, ctx);
4765 break;
4766 case MESA_SHADER_GEOMETRY:
4767 validate_geometry_shader_executable(prog, sh, ctx);
4768 break;
4769 case MESA_SHADER_FRAGMENT:
4770 validate_fragment_shader_executable(prog, sh);
4771 break;
4772 }
4773 if (!prog->data->LinkStatus) {
4774 if (sh)
4775 _mesa_delete_linked_shader(ctx, sh);
4776 goto done;
4777 }
4778
4779 prog->_LinkedShaders[stage] = sh;
4780 prog->data->linked_stages |= 1 << stage;
4781 }
4782 }
4783
4784 /* Here begins the inter-stage linking phase. Some initial validation is
4785 * performed, then locations are assigned for uniforms, attributes, and
4786 * varyings.
4787 */
4788 cross_validate_uniforms(ctx, prog);
4789 if (!prog->data->LinkStatus)
4790 goto done;
4791
4792 unsigned first, last, prev;
4793
4794 first = MESA_SHADER_STAGES;
4795 last = 0;
4796
4797 /* Determine first and last stage. */
4798 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4799 if (!prog->_LinkedShaders[i])
4800 continue;
4801 if (first == MESA_SHADER_STAGES)
4802 first = i;
4803 last = i;
4804 }
4805
4806 check_explicit_uniform_locations(ctx, prog);
4807 link_assign_subroutine_types(prog);
4808 verify_subroutine_associated_funcs(prog);
4809
4810 if (!prog->data->LinkStatus)
4811 goto done;
4812
4813 resize_tes_inputs(ctx, prog);
4814
4815 /* Validate the inputs of each stage with the output of the preceding
4816 * stage.
4817 */
4818 prev = first;
4819 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4820 if (prog->_LinkedShaders[i] == NULL)
4821 continue;
4822
4823 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4824 prog->_LinkedShaders[i]);
4825 if (!prog->data->LinkStatus)
4826 goto done;
4827
4828 cross_validate_outputs_to_inputs(ctx, prog,
4829 prog->_LinkedShaders[prev],
4830 prog->_LinkedShaders[i]);
4831 if (!prog->data->LinkStatus)
4832 goto done;
4833
4834 prev = i;
4835 }
4836
4837 /* The cross validation of outputs/inputs above validates interstage
4838 * explicit locations. We need to do this also for the inputs in the first
4839 * stage and outputs of the last stage included in the program, since there
4840 * is no cross validation for these.
4841 */
4842 validate_first_and_last_interface_explicit_locations(ctx, prog,
4843 (gl_shader_stage) first,
4844 (gl_shader_stage) last);
4845
4846 /* Cross-validate uniform blocks between shader stages */
4847 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4848 if (!prog->data->LinkStatus)
4849 goto done;
4850
4851 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4852 if (prog->_LinkedShaders[i] != NULL)
4853 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4854 }
4855
4856 if (prog->IsES && prog->data->Version == 100)
4857 if (!validate_invariant_builtins(prog,
4858 prog->_LinkedShaders[MESA_SHADER_VERTEX],
4859 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
4860 goto done;
4861
4862 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4863 * it before optimization because we want most of the checks to get
4864 * dropped thanks to constant propagation.
4865 *
4866 * This rule also applies to GLSL ES 3.00.
4867 */
4868 if (max_version >= (prog->IsES ? 300 : 130)) {
4869 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4870 if (sh) {
4871 lower_discard_flow(sh->ir);
4872 }
4873 }
4874
4875 if (prog->SeparateShader)
4876 disable_varying_optimizations_for_sso(prog);
4877
4878 /* Process UBOs */
4879 if (!interstage_cross_validate_uniform_blocks(prog, false))
4880 goto done;
4881
4882 /* Process SSBOs */
4883 if (!interstage_cross_validate_uniform_blocks(prog, true))
4884 goto done;
4885
4886 /* Do common optimization before assigning storage for attributes,
4887 * uniforms, and varyings. Later optimization could possibly make
4888 * some of that unused.
4889 */
4890 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4891 if (prog->_LinkedShaders[i] == NULL)
4892 continue;
4893
4894 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4895 if (!prog->data->LinkStatus)
4896 goto done;
4897
4898 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4899 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4900 }
4901
4902 if (ctx->Const.LowerTessLevel) {
4903 lower_tess_level(prog->_LinkedShaders[i]);
4904 }
4905
4906 /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
4907 * specification says:
4908 *
4909 * "In general, the behavior of GLSL ES should not depend on compiler
4910 * optimizations which might be implementation-dependent. Name matching
4911 * rules in most languages, including C++ from which GLSL ES is derived,
4912 * are based on declarations rather than use.
4913 *
4914 * RESOLUTION: The existence of aliasing is determined by declarations
4915 * present after preprocessing."
4916 *
4917 * Because of this rule, we do a 'dry-run' of attribute assignment for
4918 * vertex shader inputs here.
4919 */
4920 if (prog->IsES && i == MESA_SHADER_VERTEX) {
4921 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4922 MESA_SHADER_VERTEX, false)) {
4923 goto done;
4924 }
4925 }
4926
4927 /* Call opts before lowering const arrays to uniforms so we can const
4928 * propagate any elements accessed directly.
4929 */
4930 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4931
4932 /* Call opts after lowering const arrays to copy propagate things. */
4933 if (ctx->Const.GLSLLowerConstArrays &&
4934 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i,
4935 ctx->Const.Program[i].MaxUniformComponents))
4936 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4937
4938 }
4939
4940 /* Validation for special cases where we allow sampler array indexing
4941 * with loop induction variable. This check emits a warning or error
4942 * depending if backend can handle dynamic indexing.
4943 */
4944 if ((!prog->IsES && prog->data->Version < 130) ||
4945 (prog->IsES && prog->data->Version < 300)) {
4946 if (!validate_sampler_array_indexing(ctx, prog))
4947 goto done;
4948 }
4949
4950 /* Check and validate stream emissions in geometry shaders */
4951 validate_geometry_shader_emissions(ctx, prog);
4952
4953 store_fragdepth_layout(prog);
4954
4955 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4956 goto done;
4957
4958 /* Linking varyings can cause some extra, useless swizzles to be generated
4959 * due to packing and unpacking.
4960 */
4961 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4962 if (prog->_LinkedShaders[i] == NULL)
4963 continue;
4964
4965 optimize_swizzles(prog->_LinkedShaders[i]->ir);
4966 }
4967
4968 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4969 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4970 * anything about shader linking when one of the shaders (vertex or
4971 * fragment shader) is absent. So, the extension shouldn't change the
4972 * behavior specified in GLSL specification.
4973 *
4974 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4975 * "Linking can fail for a variety of reasons as specified in the
4976 * OpenGL ES Shading Language Specification, as well as any of the
4977 * following reasons:
4978 *
4979 * ...
4980 *
4981 * * program contains objects to form either a vertex shader or
4982 * fragment shader, and program is not separable, and does not
4983 * contain objects to form both a vertex shader and fragment
4984 * shader."
4985 *
4986 * However, the only scenario in 3.1+ where we don't require them both is
4987 * when we have a compute shader. For example:
4988 *
4989 * - No shaders is a link error.
4990 * - Geom or Tess without a Vertex shader is a link error which means we
4991 * always require a Vertex shader and hence a Fragment shader.
4992 * - Finally a Compute shader linked with any other stage is a link error.
4993 */
4994 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4995 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4996 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4997 linker_error(prog, "program lacks a vertex shader\n");
4998 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4999 linker_error(prog, "program lacks a fragment shader\n");
5000 }
5001 }
5002
5003 done:
5004 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5005 free(shader_list[i]);
5006 if (prog->_LinkedShaders[i] == NULL)
5007 continue;
5008
5009 /* Do a final validation step to make sure that the IR wasn't
5010 * invalidated by any modifications performed after intrastage linking.
5011 */
5012 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5013
5014 /* Retain any live IR, but trash the rest. */
5015 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5016
5017 /* The symbol table in the linked shaders may contain references to
5018 * variables that were removed (e.g., unused uniforms). Since it may
5019 * contain junk, there is no possible valid use. Delete it and set the
5020 * pointer to NULL.
5021 */
5022 delete prog->_LinkedShaders[i]->symbols;
5023 prog->_LinkedShaders[i]->symbols = NULL;
5024 }
5025
5026 ralloc_free(mem_ctx);
5027 }
5028