• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierachy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	cpumask_var_t cpus_requested;
109 	nodemask_t mems_allowed;
110 
111 	/* effective CPUs and Memory Nodes allow to tasks */
112 	cpumask_var_t effective_cpus;
113 	nodemask_t effective_mems;
114 
115 	/*
116 	 * CPUs allocated to child sub-partitions (default hierarchy only)
117 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
118 	 * - effective_cpus and subparts_cpus are mutually exclusive.
119 	 *
120 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
121 	 * may have offlined ones.
122 	 */
123 	cpumask_var_t subparts_cpus;
124 
125 	/*
126 	 * This is old Memory Nodes tasks took on.
127 	 *
128 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
129 	 * - A new cpuset's old_mems_allowed is initialized when some
130 	 *   task is moved into it.
131 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
132 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
133 	 *   then old_mems_allowed is updated to mems_allowed.
134 	 */
135 	nodemask_t old_mems_allowed;
136 
137 	struct fmeter fmeter;		/* memory_pressure filter */
138 
139 	/*
140 	 * Tasks are being attached to this cpuset.  Used to prevent
141 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 	 */
143 	int attach_in_progress;
144 
145 	/* partition number for rebuild_sched_domains() */
146 	int pn;
147 
148 	/* for custom sched domain */
149 	int relax_domain_level;
150 
151 	/* number of CPUs in subparts_cpus */
152 	int nr_subparts_cpus;
153 
154 	/* partition root state */
155 	int partition_root_state;
156 
157 	/*
158 	 * Default hierarchy only:
159 	 * use_parent_ecpus - set if using parent's effective_cpus
160 	 * child_ecpus_count - # of children with use_parent_ecpus set
161 	 */
162 	int use_parent_ecpus;
163 	int child_ecpus_count;
164 };
165 
166 /*
167  * Partition root states:
168  *
169  *   0 - not a partition root
170  *
171  *   1 - partition root
172  *
173  *  -1 - invalid partition root
174  *       None of the cpus in cpus_allowed can be put into the parent's
175  *       subparts_cpus. In this case, the cpuset is not a real partition
176  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
177  *       and the cpuset can be restored back to a partition root if the
178  *       parent cpuset can give more CPUs back to this child cpuset.
179  */
180 #define PRS_DISABLED		0
181 #define PRS_ENABLED		1
182 #define PRS_ERROR		-1
183 
184 /*
185  * Temporary cpumasks for working with partitions that are passed among
186  * functions to avoid memory allocation in inner functions.
187  */
188 struct tmpmasks {
189 	cpumask_var_t addmask, delmask;	/* For partition root */
190 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
191 };
192 
css_cs(struct cgroup_subsys_state * css)193 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
194 {
195 	return css ? container_of(css, struct cpuset, css) : NULL;
196 }
197 
198 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)199 static inline struct cpuset *task_cs(struct task_struct *task)
200 {
201 	return css_cs(task_css(task, cpuset_cgrp_id));
202 }
203 
parent_cs(struct cpuset * cs)204 static inline struct cpuset *parent_cs(struct cpuset *cs)
205 {
206 	return css_cs(cs->css.parent);
207 }
208 
209 /* bits in struct cpuset flags field */
210 typedef enum {
211 	CS_ONLINE,
212 	CS_CPU_EXCLUSIVE,
213 	CS_MEM_EXCLUSIVE,
214 	CS_MEM_HARDWALL,
215 	CS_MEMORY_MIGRATE,
216 	CS_SCHED_LOAD_BALANCE,
217 	CS_SPREAD_PAGE,
218 	CS_SPREAD_SLAB,
219 } cpuset_flagbits_t;
220 
221 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)222 static inline bool is_cpuset_online(struct cpuset *cs)
223 {
224 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
225 }
226 
is_cpu_exclusive(const struct cpuset * cs)227 static inline int is_cpu_exclusive(const struct cpuset *cs)
228 {
229 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
230 }
231 
is_mem_exclusive(const struct cpuset * cs)232 static inline int is_mem_exclusive(const struct cpuset *cs)
233 {
234 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
235 }
236 
is_mem_hardwall(const struct cpuset * cs)237 static inline int is_mem_hardwall(const struct cpuset *cs)
238 {
239 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
240 }
241 
is_sched_load_balance(const struct cpuset * cs)242 static inline int is_sched_load_balance(const struct cpuset *cs)
243 {
244 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
245 }
246 
is_memory_migrate(const struct cpuset * cs)247 static inline int is_memory_migrate(const struct cpuset *cs)
248 {
249 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
250 }
251 
is_spread_page(const struct cpuset * cs)252 static inline int is_spread_page(const struct cpuset *cs)
253 {
254 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
255 }
256 
is_spread_slab(const struct cpuset * cs)257 static inline int is_spread_slab(const struct cpuset *cs)
258 {
259 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
260 }
261 
is_partition_root(const struct cpuset * cs)262 static inline int is_partition_root(const struct cpuset *cs)
263 {
264 	return cs->partition_root_state > 0;
265 }
266 
267 static struct cpuset top_cpuset = {
268 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
269 		  (1 << CS_MEM_EXCLUSIVE)),
270 	.partition_root_state = PRS_ENABLED,
271 };
272 
273 /**
274  * cpuset_for_each_child - traverse online children of a cpuset
275  * @child_cs: loop cursor pointing to the current child
276  * @pos_css: used for iteration
277  * @parent_cs: target cpuset to walk children of
278  *
279  * Walk @child_cs through the online children of @parent_cs.  Must be used
280  * with RCU read locked.
281  */
282 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
283 	css_for_each_child((pos_css), &(parent_cs)->css)		\
284 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
285 
286 /**
287  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
288  * @des_cs: loop cursor pointing to the current descendant
289  * @pos_css: used for iteration
290  * @root_cs: target cpuset to walk ancestor of
291  *
292  * Walk @des_cs through the online descendants of @root_cs.  Must be used
293  * with RCU read locked.  The caller may modify @pos_css by calling
294  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
295  * iteration and the first node to be visited.
296  */
297 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
298 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
299 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
300 
301 /*
302  * There are two global locks guarding cpuset structures - cpuset_mutex and
303  * callback_lock. We also require taking task_lock() when dereferencing a
304  * task's cpuset pointer. See "The task_lock() exception", at the end of this
305  * comment.
306  *
307  * A task must hold both locks to modify cpusets.  If a task holds
308  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
309  * is the only task able to also acquire callback_lock and be able to
310  * modify cpusets.  It can perform various checks on the cpuset structure
311  * first, knowing nothing will change.  It can also allocate memory while
312  * just holding cpuset_mutex.  While it is performing these checks, various
313  * callback routines can briefly acquire callback_lock to query cpusets.
314  * Once it is ready to make the changes, it takes callback_lock, blocking
315  * everyone else.
316  *
317  * Calls to the kernel memory allocator can not be made while holding
318  * callback_lock, as that would risk double tripping on callback_lock
319  * from one of the callbacks into the cpuset code from within
320  * __alloc_pages().
321  *
322  * If a task is only holding callback_lock, then it has read-only
323  * access to cpusets.
324  *
325  * Now, the task_struct fields mems_allowed and mempolicy may be changed
326  * by other task, we use alloc_lock in the task_struct fields to protect
327  * them.
328  *
329  * The cpuset_common_file_read() handlers only hold callback_lock across
330  * small pieces of code, such as when reading out possibly multi-word
331  * cpumasks and nodemasks.
332  *
333  * Accessing a task's cpuset should be done in accordance with the
334  * guidelines for accessing subsystem state in kernel/cgroup.c
335  */
336 
337 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
338 
cpuset_read_lock(void)339 void cpuset_read_lock(void)
340 {
341 	percpu_down_read(&cpuset_rwsem);
342 }
343 
cpuset_read_unlock(void)344 void cpuset_read_unlock(void)
345 {
346 	percpu_up_read(&cpuset_rwsem);
347 }
348 
349 static DEFINE_SPINLOCK(callback_lock);
350 
351 static struct workqueue_struct *cpuset_migrate_mm_wq;
352 
353 /*
354  * CPU / memory hotplug is handled asynchronously.
355  */
356 static void cpuset_hotplug_workfn(struct work_struct *work);
357 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
358 
359 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
360 
361 /*
362  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
363  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
364  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
365  * With v2 behavior, "cpus" and "mems" are always what the users have
366  * requested and won't be changed by hotplug events. Only the effective
367  * cpus or mems will be affected.
368  */
is_in_v2_mode(void)369 static inline bool is_in_v2_mode(void)
370 {
371 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
372 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
373 }
374 
375 /*
376  * Return in pmask the portion of a cpusets's cpus_allowed that
377  * are online.  If none are online, walk up the cpuset hierarchy
378  * until we find one that does have some online cpus.
379  *
380  * One way or another, we guarantee to return some non-empty subset
381  * of cpu_online_mask.
382  *
383  * Call with callback_lock or cpuset_mutex held.
384  */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)385 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
386 {
387 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
388 		cs = parent_cs(cs);
389 		if (unlikely(!cs)) {
390 			/*
391 			 * The top cpuset doesn't have any online cpu as a
392 			 * consequence of a race between cpuset_hotplug_work
393 			 * and cpu hotplug notifier.  But we know the top
394 			 * cpuset's effective_cpus is on its way to be
395 			 * identical to cpu_online_mask.
396 			 */
397 			cpumask_copy(pmask, cpu_online_mask);
398 			return;
399 		}
400 	}
401 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
402 }
403 
404 /*
405  * Return in *pmask the portion of a cpusets's mems_allowed that
406  * are online, with memory.  If none are online with memory, walk
407  * up the cpuset hierarchy until we find one that does have some
408  * online mems.  The top cpuset always has some mems online.
409  *
410  * One way or another, we guarantee to return some non-empty subset
411  * of node_states[N_MEMORY].
412  *
413  * Call with callback_lock or cpuset_mutex held.
414  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)415 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
416 {
417 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
418 		cs = parent_cs(cs);
419 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
420 }
421 
422 /*
423  * update task's spread flag if cpuset's page/slab spread flag is set
424  *
425  * Call with callback_lock or cpuset_mutex held.
426  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)427 static void cpuset_update_task_spread_flag(struct cpuset *cs,
428 					struct task_struct *tsk)
429 {
430 	if (is_spread_page(cs))
431 		task_set_spread_page(tsk);
432 	else
433 		task_clear_spread_page(tsk);
434 
435 	if (is_spread_slab(cs))
436 		task_set_spread_slab(tsk);
437 	else
438 		task_clear_spread_slab(tsk);
439 }
440 
441 /*
442  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
443  *
444  * One cpuset is a subset of another if all its allowed CPUs and
445  * Memory Nodes are a subset of the other, and its exclusive flags
446  * are only set if the other's are set.  Call holding cpuset_mutex.
447  */
448 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)449 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
450 {
451 	return	cpumask_subset(p->cpus_requested, q->cpus_requested) &&
452 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
453 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
454 		is_mem_exclusive(p) <= is_mem_exclusive(q);
455 }
456 
457 /**
458  * alloc_cpumasks - allocate three cpumasks for cpuset
459  * @cs:  the cpuset that have cpumasks to be allocated.
460  * @tmp: the tmpmasks structure pointer
461  * Return: 0 if successful, -ENOMEM otherwise.
462  *
463  * Only one of the two input arguments should be non-NULL.
464  */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)465 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
466 {
467 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
468 
469 	if (cs) {
470 		pmask1 = &cs->cpus_allowed;
471 		pmask2 = &cs->effective_cpus;
472 		pmask3 = &cs->subparts_cpus;
473 		pmask4 = &cs->cpus_requested;
474 	} else {
475 		pmask1 = &tmp->new_cpus;
476 		pmask2 = &tmp->addmask;
477 		pmask3 = &tmp->delmask;
478 	}
479 
480 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
481 		return -ENOMEM;
482 
483 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
484 		goto free_one;
485 
486 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
487 		goto free_two;
488 
489 	if (cs && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
490 		goto free_three;
491 
492 	return 0;
493 
494 free_three:
495 	free_cpumask_var(*pmask3);
496 free_two:
497 	free_cpumask_var(*pmask2);
498 free_one:
499 	free_cpumask_var(*pmask1);
500 	return -ENOMEM;
501 }
502 
503 /**
504  * free_cpumasks - free cpumasks in a tmpmasks structure
505  * @cs:  the cpuset that have cpumasks to be free.
506  * @tmp: the tmpmasks structure pointer
507  */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)508 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
509 {
510 	if (cs) {
511 		free_cpumask_var(cs->cpus_allowed);
512 		free_cpumask_var(cs->cpus_requested);
513 		free_cpumask_var(cs->effective_cpus);
514 		free_cpumask_var(cs->subparts_cpus);
515 	}
516 	if (tmp) {
517 		free_cpumask_var(tmp->new_cpus);
518 		free_cpumask_var(tmp->addmask);
519 		free_cpumask_var(tmp->delmask);
520 	}
521 }
522 
523 /**
524  * alloc_trial_cpuset - allocate a trial cpuset
525  * @cs: the cpuset that the trial cpuset duplicates
526  */
alloc_trial_cpuset(struct cpuset * cs)527 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
528 {
529 	struct cpuset *trial;
530 
531 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
532 	if (!trial)
533 		return NULL;
534 
535 	if (alloc_cpumasks(trial, NULL)) {
536 		kfree(trial);
537 		return NULL;
538 	}
539 
540 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
541 	cpumask_copy(trial->cpus_requested, cs->cpus_requested);
542 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
543 	return trial;
544 }
545 
546 /**
547  * free_cpuset - free the cpuset
548  * @cs: the cpuset to be freed
549  */
free_cpuset(struct cpuset * cs)550 static inline void free_cpuset(struct cpuset *cs)
551 {
552 	free_cpumasks(cs, NULL);
553 	kfree(cs);
554 }
555 
556 /*
557  * validate_change() - Used to validate that any proposed cpuset change
558  *		       follows the structural rules for cpusets.
559  *
560  * If we replaced the flag and mask values of the current cpuset
561  * (cur) with those values in the trial cpuset (trial), would
562  * our various subset and exclusive rules still be valid?  Presumes
563  * cpuset_mutex held.
564  *
565  * 'cur' is the address of an actual, in-use cpuset.  Operations
566  * such as list traversal that depend on the actual address of the
567  * cpuset in the list must use cur below, not trial.
568  *
569  * 'trial' is the address of bulk structure copy of cur, with
570  * perhaps one or more of the fields cpus_allowed, mems_allowed,
571  * or flags changed to new, trial values.
572  *
573  * Return 0 if valid, -errno if not.
574  */
575 
validate_change(struct cpuset * cur,struct cpuset * trial)576 static int validate_change(struct cpuset *cur, struct cpuset *trial)
577 {
578 	struct cgroup_subsys_state *css;
579 	struct cpuset *c, *par;
580 	int ret;
581 
582 	rcu_read_lock();
583 
584 	/* Each of our child cpusets must be a subset of us */
585 	ret = -EBUSY;
586 	cpuset_for_each_child(c, css, cur)
587 		if (!is_cpuset_subset(c, trial))
588 			goto out;
589 
590 	/* Remaining checks don't apply to root cpuset */
591 	ret = 0;
592 	if (cur == &top_cpuset)
593 		goto out;
594 
595 	par = parent_cs(cur);
596 
597 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
598 	ret = -EACCES;
599 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
600 		goto out;
601 
602 	/*
603 	 * If either I or some sibling (!= me) is exclusive, we can't
604 	 * overlap
605 	 */
606 	ret = -EINVAL;
607 	cpuset_for_each_child(c, css, par) {
608 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
609 		    c != cur &&
610 		    cpumask_intersects(trial->cpus_requested,
611 				       c->cpus_requested))
612 			goto out;
613 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
614 		    c != cur &&
615 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
616 			goto out;
617 	}
618 
619 	/*
620 	 * Cpusets with tasks - existing or newly being attached - can't
621 	 * be changed to have empty cpus_allowed or mems_allowed.
622 	 */
623 	ret = -ENOSPC;
624 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
625 		if (!cpumask_empty(cur->cpus_allowed) &&
626 		    cpumask_empty(trial->cpus_allowed))
627 			goto out;
628 		if (!nodes_empty(cur->mems_allowed) &&
629 		    nodes_empty(trial->mems_allowed))
630 			goto out;
631 	}
632 
633 	/*
634 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
635 	 * tasks.
636 	 */
637 	ret = -EBUSY;
638 	if (is_cpu_exclusive(cur) &&
639 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
640 				       trial->cpus_allowed))
641 		goto out;
642 
643 	ret = 0;
644 out:
645 	rcu_read_unlock();
646 	return ret;
647 }
648 
649 #ifdef CONFIG_SMP
650 /*
651  * Helper routine for generate_sched_domains().
652  * Do cpusets a, b have overlapping effective cpus_allowed masks?
653  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)654 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
655 {
656 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
657 }
658 
659 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)660 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
661 {
662 	if (dattr->relax_domain_level < c->relax_domain_level)
663 		dattr->relax_domain_level = c->relax_domain_level;
664 	return;
665 }
666 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)667 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
668 				    struct cpuset *root_cs)
669 {
670 	struct cpuset *cp;
671 	struct cgroup_subsys_state *pos_css;
672 
673 	rcu_read_lock();
674 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
675 		/* skip the whole subtree if @cp doesn't have any CPU */
676 		if (cpumask_empty(cp->cpus_allowed)) {
677 			pos_css = css_rightmost_descendant(pos_css);
678 			continue;
679 		}
680 
681 		if (is_sched_load_balance(cp))
682 			update_domain_attr(dattr, cp);
683 	}
684 	rcu_read_unlock();
685 }
686 
687 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)688 static inline int nr_cpusets(void)
689 {
690 	/* jump label reference count + the top-level cpuset */
691 	return static_key_count(&cpusets_enabled_key.key) + 1;
692 }
693 
694 /*
695  * generate_sched_domains()
696  *
697  * This function builds a partial partition of the systems CPUs
698  * A 'partial partition' is a set of non-overlapping subsets whose
699  * union is a subset of that set.
700  * The output of this function needs to be passed to kernel/sched/core.c
701  * partition_sched_domains() routine, which will rebuild the scheduler's
702  * load balancing domains (sched domains) as specified by that partial
703  * partition.
704  *
705  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
706  * for a background explanation of this.
707  *
708  * Does not return errors, on the theory that the callers of this
709  * routine would rather not worry about failures to rebuild sched
710  * domains when operating in the severe memory shortage situations
711  * that could cause allocation failures below.
712  *
713  * Must be called with cpuset_mutex held.
714  *
715  * The three key local variables below are:
716  *    cp - cpuset pointer, used (together with pos_css) to perform a
717  *	   top-down scan of all cpusets. For our purposes, rebuilding
718  *	   the schedulers sched domains, we can ignore !is_sched_load_
719  *	   balance cpusets.
720  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
721  *	   that need to be load balanced, for convenient iterative
722  *	   access by the subsequent code that finds the best partition,
723  *	   i.e the set of domains (subsets) of CPUs such that the
724  *	   cpus_allowed of every cpuset marked is_sched_load_balance
725  *	   is a subset of one of these domains, while there are as
726  *	   many such domains as possible, each as small as possible.
727  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
728  *	   the kernel/sched/core.c routine partition_sched_domains() in a
729  *	   convenient format, that can be easily compared to the prior
730  *	   value to determine what partition elements (sched domains)
731  *	   were changed (added or removed.)
732  *
733  * Finding the best partition (set of domains):
734  *	The triple nested loops below over i, j, k scan over the
735  *	load balanced cpusets (using the array of cpuset pointers in
736  *	csa[]) looking for pairs of cpusets that have overlapping
737  *	cpus_allowed, but which don't have the same 'pn' partition
738  *	number and gives them in the same partition number.  It keeps
739  *	looping on the 'restart' label until it can no longer find
740  *	any such pairs.
741  *
742  *	The union of the cpus_allowed masks from the set of
743  *	all cpusets having the same 'pn' value then form the one
744  *	element of the partition (one sched domain) to be passed to
745  *	partition_sched_domains().
746  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)747 static int generate_sched_domains(cpumask_var_t **domains,
748 			struct sched_domain_attr **attributes)
749 {
750 	struct cpuset *cp;	/* top-down scan of cpusets */
751 	struct cpuset **csa;	/* array of all cpuset ptrs */
752 	int csn;		/* how many cpuset ptrs in csa so far */
753 	int i, j, k;		/* indices for partition finding loops */
754 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
755 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
756 	int ndoms = 0;		/* number of sched domains in result */
757 	int nslot;		/* next empty doms[] struct cpumask slot */
758 	struct cgroup_subsys_state *pos_css;
759 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
760 
761 	doms = NULL;
762 	dattr = NULL;
763 	csa = NULL;
764 
765 	/* Special case for the 99% of systems with one, full, sched domain */
766 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
767 		ndoms = 1;
768 		doms = alloc_sched_domains(ndoms);
769 		if (!doms)
770 			goto done;
771 
772 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
773 		if (dattr) {
774 			*dattr = SD_ATTR_INIT;
775 			update_domain_attr_tree(dattr, &top_cpuset);
776 		}
777 		cpumask_and(doms[0], top_cpuset.effective_cpus,
778 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
779 
780 		goto done;
781 	}
782 
783 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
784 	if (!csa)
785 		goto done;
786 	csn = 0;
787 
788 	rcu_read_lock();
789 	if (root_load_balance)
790 		csa[csn++] = &top_cpuset;
791 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
792 		if (cp == &top_cpuset)
793 			continue;
794 		/*
795 		 * Continue traversing beyond @cp iff @cp has some CPUs and
796 		 * isn't load balancing.  The former is obvious.  The
797 		 * latter: All child cpusets contain a subset of the
798 		 * parent's cpus, so just skip them, and then we call
799 		 * update_domain_attr_tree() to calc relax_domain_level of
800 		 * the corresponding sched domain.
801 		 *
802 		 * If root is load-balancing, we can skip @cp if it
803 		 * is a subset of the root's effective_cpus.
804 		 */
805 		if (!cpumask_empty(cp->cpus_allowed) &&
806 		    !(is_sched_load_balance(cp) &&
807 		      cpumask_intersects(cp->cpus_allowed,
808 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
809 			continue;
810 
811 		if (root_load_balance &&
812 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
813 			continue;
814 
815 		if (is_sched_load_balance(cp) &&
816 		    !cpumask_empty(cp->effective_cpus))
817 			csa[csn++] = cp;
818 
819 		/* skip @cp's subtree if not a partition root */
820 		if (!is_partition_root(cp))
821 			pos_css = css_rightmost_descendant(pos_css);
822 	}
823 	rcu_read_unlock();
824 
825 	for (i = 0; i < csn; i++)
826 		csa[i]->pn = i;
827 	ndoms = csn;
828 
829 restart:
830 	/* Find the best partition (set of sched domains) */
831 	for (i = 0; i < csn; i++) {
832 		struct cpuset *a = csa[i];
833 		int apn = a->pn;
834 
835 		for (j = 0; j < csn; j++) {
836 			struct cpuset *b = csa[j];
837 			int bpn = b->pn;
838 
839 			if (apn != bpn && cpusets_overlap(a, b)) {
840 				for (k = 0; k < csn; k++) {
841 					struct cpuset *c = csa[k];
842 
843 					if (c->pn == bpn)
844 						c->pn = apn;
845 				}
846 				ndoms--;	/* one less element */
847 				goto restart;
848 			}
849 		}
850 	}
851 
852 	/*
853 	 * Now we know how many domains to create.
854 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
855 	 */
856 	doms = alloc_sched_domains(ndoms);
857 	if (!doms)
858 		goto done;
859 
860 	/*
861 	 * The rest of the code, including the scheduler, can deal with
862 	 * dattr==NULL case. No need to abort if alloc fails.
863 	 */
864 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
865 			      GFP_KERNEL);
866 
867 	for (nslot = 0, i = 0; i < csn; i++) {
868 		struct cpuset *a = csa[i];
869 		struct cpumask *dp;
870 		int apn = a->pn;
871 
872 		if (apn < 0) {
873 			/* Skip completed partitions */
874 			continue;
875 		}
876 
877 		dp = doms[nslot];
878 
879 		if (nslot == ndoms) {
880 			static int warnings = 10;
881 			if (warnings) {
882 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
883 					nslot, ndoms, csn, i, apn);
884 				warnings--;
885 			}
886 			continue;
887 		}
888 
889 		cpumask_clear(dp);
890 		if (dattr)
891 			*(dattr + nslot) = SD_ATTR_INIT;
892 		for (j = i; j < csn; j++) {
893 			struct cpuset *b = csa[j];
894 
895 			if (apn == b->pn) {
896 				cpumask_or(dp, dp, b->effective_cpus);
897 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
898 				if (dattr)
899 					update_domain_attr_tree(dattr + nslot, b);
900 
901 				/* Done with this partition */
902 				b->pn = -1;
903 			}
904 		}
905 		nslot++;
906 	}
907 	BUG_ON(nslot != ndoms);
908 
909 done:
910 	kfree(csa);
911 
912 	/*
913 	 * Fallback to the default domain if kmalloc() failed.
914 	 * See comments in partition_sched_domains().
915 	 */
916 	if (doms == NULL)
917 		ndoms = 1;
918 
919 	*domains    = doms;
920 	*attributes = dattr;
921 	return ndoms;
922 }
923 
update_tasks_root_domain(struct cpuset * cs)924 static void update_tasks_root_domain(struct cpuset *cs)
925 {
926 	struct css_task_iter it;
927 	struct task_struct *task;
928 
929 	css_task_iter_start(&cs->css, 0, &it);
930 
931 	while ((task = css_task_iter_next(&it)))
932 		dl_add_task_root_domain(task);
933 
934 	css_task_iter_end(&it);
935 }
936 
rebuild_root_domains(void)937 static void rebuild_root_domains(void)
938 {
939 	struct cpuset *cs = NULL;
940 	struct cgroup_subsys_state *pos_css;
941 
942 	percpu_rwsem_assert_held(&cpuset_rwsem);
943 	lockdep_assert_cpus_held();
944 	lockdep_assert_held(&sched_domains_mutex);
945 
946 	rcu_read_lock();
947 
948 	/*
949 	 * Clear default root domain DL accounting, it will be computed again
950 	 * if a task belongs to it.
951 	 */
952 	dl_clear_root_domain(&def_root_domain);
953 
954 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
955 
956 		if (cpumask_empty(cs->effective_cpus)) {
957 			pos_css = css_rightmost_descendant(pos_css);
958 			continue;
959 		}
960 
961 		css_get(&cs->css);
962 
963 		rcu_read_unlock();
964 
965 		update_tasks_root_domain(cs);
966 
967 		rcu_read_lock();
968 		css_put(&cs->css);
969 	}
970 	rcu_read_unlock();
971 }
972 
973 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)974 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
975 				    struct sched_domain_attr *dattr_new)
976 {
977 	mutex_lock(&sched_domains_mutex);
978 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
979 	rebuild_root_domains();
980 	mutex_unlock(&sched_domains_mutex);
981 }
982 
983 /*
984  * Rebuild scheduler domains.
985  *
986  * If the flag 'sched_load_balance' of any cpuset with non-empty
987  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
988  * which has that flag enabled, or if any cpuset with a non-empty
989  * 'cpus' is removed, then call this routine to rebuild the
990  * scheduler's dynamic sched domains.
991  *
992  * Call with cpuset_mutex held.  Takes get_online_cpus().
993  */
rebuild_sched_domains_locked(void)994 static void rebuild_sched_domains_locked(void)
995 {
996 	struct cgroup_subsys_state *pos_css;
997 	struct sched_domain_attr *attr;
998 	cpumask_var_t *doms;
999 	struct cpuset *cs;
1000 	int ndoms;
1001 
1002 	lockdep_assert_cpus_held();
1003 	percpu_rwsem_assert_held(&cpuset_rwsem);
1004 
1005 	/*
1006 	 * If we have raced with CPU hotplug, return early to avoid
1007 	 * passing doms with offlined cpu to partition_sched_domains().
1008 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1009 	 *
1010 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1011 	 * should be the same as the active CPUs, so checking only top_cpuset
1012 	 * is enough to detect racing CPU offlines.
1013 	 */
1014 	if (!top_cpuset.nr_subparts_cpus &&
1015 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1016 		return;
1017 
1018 	/*
1019 	 * With subpartition CPUs, however, the effective CPUs of a partition
1020 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1021 	 * partition root could be offlined, all must be checked.
1022 	 */
1023 	if (top_cpuset.nr_subparts_cpus) {
1024 		rcu_read_lock();
1025 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1026 			if (!is_partition_root(cs)) {
1027 				pos_css = css_rightmost_descendant(pos_css);
1028 				continue;
1029 			}
1030 			if (!cpumask_subset(cs->effective_cpus,
1031 					    cpu_active_mask)) {
1032 				rcu_read_unlock();
1033 				return;
1034 			}
1035 		}
1036 		rcu_read_unlock();
1037 	}
1038 
1039 	/* Generate domain masks and attrs */
1040 	ndoms = generate_sched_domains(&doms, &attr);
1041 
1042 	/* Have scheduler rebuild the domains */
1043 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1044 }
1045 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1046 static void rebuild_sched_domains_locked(void)
1047 {
1048 }
1049 #endif /* CONFIG_SMP */
1050 
rebuild_sched_domains(void)1051 void rebuild_sched_domains(void)
1052 {
1053 	get_online_cpus();
1054 	percpu_down_write(&cpuset_rwsem);
1055 	rebuild_sched_domains_locked();
1056 	percpu_up_write(&cpuset_rwsem);
1057 	put_online_cpus();
1058 }
1059 
1060 /**
1061  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1062  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1063  *
1064  * Iterate through each task of @cs updating its cpus_allowed to the
1065  * effective cpuset's.  As this function is called with cpuset_mutex held,
1066  * cpuset membership stays stable.
1067  */
update_tasks_cpumask(struct cpuset * cs)1068 static void update_tasks_cpumask(struct cpuset *cs)
1069 {
1070 	struct css_task_iter it;
1071 	struct task_struct *task;
1072 
1073 	css_task_iter_start(&cs->css, 0, &it);
1074 	while ((task = css_task_iter_next(&it)))
1075 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1076 	css_task_iter_end(&it);
1077 }
1078 
1079 /**
1080  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1081  * @new_cpus: the temp variable for the new effective_cpus mask
1082  * @cs: the cpuset the need to recompute the new effective_cpus mask
1083  * @parent: the parent cpuset
1084  *
1085  * If the parent has subpartition CPUs, include them in the list of
1086  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1087  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1088  * to mask those out.
1089  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1090 static void compute_effective_cpumask(struct cpumask *new_cpus,
1091 				      struct cpuset *cs, struct cpuset *parent)
1092 {
1093 	if (parent->nr_subparts_cpus) {
1094 		cpumask_or(new_cpus, parent->effective_cpus,
1095 			   parent->subparts_cpus);
1096 		cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1097 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1098 	} else {
1099 		cpumask_and(new_cpus, cs->cpus_requested,
1100 			    parent->effective_cpus);
1101 	}
1102 }
1103 
1104 /*
1105  * Commands for update_parent_subparts_cpumask
1106  */
1107 enum subparts_cmd {
1108 	partcmd_enable,		/* Enable partition root	 */
1109 	partcmd_disable,	/* Disable partition root	 */
1110 	partcmd_update,		/* Update parent's subparts_cpus */
1111 };
1112 
1113 /**
1114  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1115  * @cpuset:  The cpuset that requests change in partition root state
1116  * @cmd:     Partition root state change command
1117  * @newmask: Optional new cpumask for partcmd_update
1118  * @tmp:     Temporary addmask and delmask
1119  * Return:   0, 1 or an error code
1120  *
1121  * For partcmd_enable, the cpuset is being transformed from a non-partition
1122  * root to a partition root. The cpus_allowed mask of the given cpuset will
1123  * be put into parent's subparts_cpus and taken away from parent's
1124  * effective_cpus. The function will return 0 if all the CPUs listed in
1125  * cpus_allowed can be granted or an error code will be returned.
1126  *
1127  * For partcmd_disable, the cpuset is being transofrmed from a partition
1128  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1129  * parent's subparts_cpus will be taken away from that cpumask and put back
1130  * into parent's effective_cpus. 0 should always be returned.
1131  *
1132  * For partcmd_update, if the optional newmask is specified, the cpu
1133  * list is to be changed from cpus_allowed to newmask. Otherwise,
1134  * cpus_allowed is assumed to remain the same. The cpuset should either
1135  * be a partition root or an invalid partition root. The partition root
1136  * state may change if newmask is NULL and none of the requested CPUs can
1137  * be granted by the parent. The function will return 1 if changes to
1138  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1139  * Error code should only be returned when newmask is non-NULL.
1140  *
1141  * The partcmd_enable and partcmd_disable commands are used by
1142  * update_prstate(). The partcmd_update command is used by
1143  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1144  * newmask set.
1145  *
1146  * The checking is more strict when enabling partition root than the
1147  * other two commands.
1148  *
1149  * Because of the implicit cpu exclusive nature of a partition root,
1150  * cpumask changes that violates the cpu exclusivity rule will not be
1151  * permitted when checked by validate_change(). The validate_change()
1152  * function will also prevent any changes to the cpu list if it is not
1153  * a superset of children's cpu lists.
1154  */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1155 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1156 					  struct cpumask *newmask,
1157 					  struct tmpmasks *tmp)
1158 {
1159 	struct cpuset *parent = parent_cs(cpuset);
1160 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1161 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1162 	int new_prs;
1163 	bool part_error = false;	/* Partition error? */
1164 
1165 	percpu_rwsem_assert_held(&cpuset_rwsem);
1166 
1167 	/*
1168 	 * The parent must be a partition root.
1169 	 * The new cpumask, if present, or the current cpus_allowed must
1170 	 * not be empty.
1171 	 */
1172 	if (!is_partition_root(parent) ||
1173 	   (newmask && cpumask_empty(newmask)) ||
1174 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1175 		return -EINVAL;
1176 
1177 	/*
1178 	 * Enabling/disabling partition root is not allowed if there are
1179 	 * online children.
1180 	 */
1181 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1182 		return -EBUSY;
1183 
1184 	/*
1185 	 * Enabling partition root is not allowed if not all the CPUs
1186 	 * can be granted from parent's effective_cpus or at least one
1187 	 * CPU will be left after that.
1188 	 */
1189 	if ((cmd == partcmd_enable) &&
1190 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1191 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1192 		return -EINVAL;
1193 
1194 	/*
1195 	 * A cpumask update cannot make parent's effective_cpus become empty.
1196 	 */
1197 	adding = deleting = false;
1198 	new_prs = cpuset->partition_root_state;
1199 	if (cmd == partcmd_enable) {
1200 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1201 		adding = true;
1202 	} else if (cmd == partcmd_disable) {
1203 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1204 				       parent->subparts_cpus);
1205 	} else if (newmask) {
1206 		/*
1207 		 * partcmd_update with newmask:
1208 		 *
1209 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1210 		 * addmask = newmask & parent->effective_cpus
1211 		 *		     & ~parent->subparts_cpus
1212 		 */
1213 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1214 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1215 				       parent->subparts_cpus);
1216 
1217 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1218 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1219 					parent->subparts_cpus);
1220 		/*
1221 		 * Return error if the new effective_cpus could become empty.
1222 		 */
1223 		if (adding &&
1224 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1225 			if (!deleting)
1226 				return -EINVAL;
1227 			/*
1228 			 * As some of the CPUs in subparts_cpus might have
1229 			 * been offlined, we need to compute the real delmask
1230 			 * to confirm that.
1231 			 */
1232 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1233 					 cpu_active_mask))
1234 				return -EINVAL;
1235 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1236 		}
1237 	} else {
1238 		/*
1239 		 * partcmd_update w/o newmask:
1240 		 *
1241 		 * addmask = cpus_allowed & parent->effective_cpus
1242 		 *
1243 		 * Note that parent's subparts_cpus may have been
1244 		 * pre-shrunk in case there is a change in the cpu list.
1245 		 * So no deletion is needed.
1246 		 */
1247 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1248 				     parent->effective_cpus);
1249 		part_error = cpumask_equal(tmp->addmask,
1250 					   parent->effective_cpus);
1251 	}
1252 
1253 	if (cmd == partcmd_update) {
1254 		int prev_prs = cpuset->partition_root_state;
1255 
1256 		/*
1257 		 * Check for possible transition between PRS_ENABLED
1258 		 * and PRS_ERROR.
1259 		 */
1260 		switch (cpuset->partition_root_state) {
1261 		case PRS_ENABLED:
1262 			if (part_error)
1263 				new_prs = PRS_ERROR;
1264 			break;
1265 		case PRS_ERROR:
1266 			if (!part_error)
1267 				new_prs = PRS_ENABLED;
1268 			break;
1269 		}
1270 		/*
1271 		 * Set part_error if previously in invalid state.
1272 		 */
1273 		part_error = (prev_prs == PRS_ERROR);
1274 	}
1275 
1276 	if (!part_error && (new_prs == PRS_ERROR))
1277 		return 0;	/* Nothing need to be done */
1278 
1279 	if (new_prs == PRS_ERROR) {
1280 		/*
1281 		 * Remove all its cpus from parent's subparts_cpus.
1282 		 */
1283 		adding = false;
1284 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1285 				       parent->subparts_cpus);
1286 	}
1287 
1288 	if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1289 		return 0;
1290 
1291 	/*
1292 	 * Change the parent's subparts_cpus.
1293 	 * Newly added CPUs will be removed from effective_cpus and
1294 	 * newly deleted ones will be added back to effective_cpus.
1295 	 */
1296 	spin_lock_irq(&callback_lock);
1297 	if (adding) {
1298 		cpumask_or(parent->subparts_cpus,
1299 			   parent->subparts_cpus, tmp->addmask);
1300 		cpumask_andnot(parent->effective_cpus,
1301 			       parent->effective_cpus, tmp->addmask);
1302 	}
1303 	if (deleting) {
1304 		cpumask_andnot(parent->subparts_cpus,
1305 			       parent->subparts_cpus, tmp->delmask);
1306 		/*
1307 		 * Some of the CPUs in subparts_cpus might have been offlined.
1308 		 */
1309 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1310 		cpumask_or(parent->effective_cpus,
1311 			   parent->effective_cpus, tmp->delmask);
1312 	}
1313 
1314 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1315 
1316 	if (cpuset->partition_root_state != new_prs)
1317 		cpuset->partition_root_state = new_prs;
1318 	spin_unlock_irq(&callback_lock);
1319 
1320 	return cmd == partcmd_update;
1321 }
1322 
1323 /*
1324  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1325  * @cs:  the cpuset to consider
1326  * @tmp: temp variables for calculating effective_cpus & partition setup
1327  *
1328  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1329  * and all its descendants need to be updated.
1330  *
1331  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1332  *
1333  * Called with cpuset_mutex held
1334  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1335 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1336 {
1337 	struct cpuset *cp;
1338 	struct cgroup_subsys_state *pos_css;
1339 	bool need_rebuild_sched_domains = false;
1340 	int new_prs;
1341 
1342 	rcu_read_lock();
1343 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1344 		struct cpuset *parent = parent_cs(cp);
1345 
1346 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1347 
1348 		/*
1349 		 * If it becomes empty, inherit the effective mask of the
1350 		 * parent, which is guaranteed to have some CPUs.
1351 		 */
1352 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1353 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1354 			if (!cp->use_parent_ecpus) {
1355 				cp->use_parent_ecpus = true;
1356 				parent->child_ecpus_count++;
1357 			}
1358 		} else if (cp->use_parent_ecpus) {
1359 			cp->use_parent_ecpus = false;
1360 			WARN_ON_ONCE(!parent->child_ecpus_count);
1361 			parent->child_ecpus_count--;
1362 		}
1363 
1364 		/*
1365 		 * Skip the whole subtree if the cpumask remains the same
1366 		 * and has no partition root state.
1367 		 */
1368 		if (!cp->partition_root_state &&
1369 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1370 			pos_css = css_rightmost_descendant(pos_css);
1371 			continue;
1372 		}
1373 
1374 		/*
1375 		 * update_parent_subparts_cpumask() should have been called
1376 		 * for cs already in update_cpumask(). We should also call
1377 		 * update_tasks_cpumask() again for tasks in the parent
1378 		 * cpuset if the parent's subparts_cpus changes.
1379 		 */
1380 		new_prs = cp->partition_root_state;
1381 		if ((cp != cs) && new_prs) {
1382 			switch (parent->partition_root_state) {
1383 			case PRS_DISABLED:
1384 				/*
1385 				 * If parent is not a partition root or an
1386 				 * invalid partition root, clear its state
1387 				 * and its CS_CPU_EXCLUSIVE flag.
1388 				 */
1389 				WARN_ON_ONCE(cp->partition_root_state
1390 					     != PRS_ERROR);
1391 				new_prs = PRS_DISABLED;
1392 
1393 				/*
1394 				 * clear_bit() is an atomic operation and
1395 				 * readers aren't interested in the state
1396 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1397 				 * just update the flag without holding
1398 				 * the callback_lock.
1399 				 */
1400 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1401 				break;
1402 
1403 			case PRS_ENABLED:
1404 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1405 					update_tasks_cpumask(parent);
1406 				break;
1407 
1408 			case PRS_ERROR:
1409 				/*
1410 				 * When parent is invalid, it has to be too.
1411 				 */
1412 				new_prs = PRS_ERROR;
1413 				break;
1414 			}
1415 		}
1416 
1417 		if (!css_tryget_online(&cp->css))
1418 			continue;
1419 		rcu_read_unlock();
1420 
1421 		spin_lock_irq(&callback_lock);
1422 
1423 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1424 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1425 			cp->nr_subparts_cpus = 0;
1426 			cpumask_clear(cp->subparts_cpus);
1427 		} else if (cp->nr_subparts_cpus) {
1428 			/*
1429 			 * Make sure that effective_cpus & subparts_cpus
1430 			 * are mutually exclusive.
1431 			 *
1432 			 * In the unlikely event that effective_cpus
1433 			 * becomes empty. we clear cp->nr_subparts_cpus and
1434 			 * let its child partition roots to compete for
1435 			 * CPUs again.
1436 			 */
1437 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1438 				       cp->subparts_cpus);
1439 			if (cpumask_empty(cp->effective_cpus)) {
1440 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1441 				cpumask_clear(cp->subparts_cpus);
1442 				cp->nr_subparts_cpus = 0;
1443 			} else if (!cpumask_subset(cp->subparts_cpus,
1444 						   tmp->new_cpus)) {
1445 				cpumask_andnot(cp->subparts_cpus,
1446 					cp->subparts_cpus, tmp->new_cpus);
1447 				cp->nr_subparts_cpus
1448 					= cpumask_weight(cp->subparts_cpus);
1449 			}
1450 		}
1451 
1452 		if (new_prs != cp->partition_root_state)
1453 			cp->partition_root_state = new_prs;
1454 
1455 		spin_unlock_irq(&callback_lock);
1456 
1457 		WARN_ON(!is_in_v2_mode() &&
1458 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1459 
1460 		update_tasks_cpumask(cp);
1461 
1462 		/*
1463 		 * On legacy hierarchy, if the effective cpumask of any non-
1464 		 * empty cpuset is changed, we need to rebuild sched domains.
1465 		 * On default hierarchy, the cpuset needs to be a partition
1466 		 * root as well.
1467 		 */
1468 		if (!cpumask_empty(cp->cpus_allowed) &&
1469 		    is_sched_load_balance(cp) &&
1470 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1471 		    is_partition_root(cp)))
1472 			need_rebuild_sched_domains = true;
1473 
1474 		rcu_read_lock();
1475 		css_put(&cp->css);
1476 	}
1477 	rcu_read_unlock();
1478 
1479 	if (need_rebuild_sched_domains)
1480 		rebuild_sched_domains_locked();
1481 }
1482 
1483 /**
1484  * update_sibling_cpumasks - Update siblings cpumasks
1485  * @parent:  Parent cpuset
1486  * @cs:      Current cpuset
1487  * @tmp:     Temp variables
1488  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1489 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1490 				    struct tmpmasks *tmp)
1491 {
1492 	struct cpuset *sibling;
1493 	struct cgroup_subsys_state *pos_css;
1494 
1495 	/*
1496 	 * Check all its siblings and call update_cpumasks_hier()
1497 	 * if their use_parent_ecpus flag is set in order for them
1498 	 * to use the right effective_cpus value.
1499 	 */
1500 	rcu_read_lock();
1501 	cpuset_for_each_child(sibling, pos_css, parent) {
1502 		if (sibling == cs)
1503 			continue;
1504 		if (!sibling->use_parent_ecpus)
1505 			continue;
1506 
1507 		update_cpumasks_hier(sibling, tmp);
1508 	}
1509 	rcu_read_unlock();
1510 }
1511 
1512 /**
1513  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1514  * @cs: the cpuset to consider
1515  * @trialcs: trial cpuset
1516  * @buf: buffer of cpu numbers written to this cpuset
1517  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1518 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1519 			  const char *buf)
1520 {
1521 	int retval;
1522 	struct tmpmasks tmp;
1523 
1524 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1525 	if (cs == &top_cpuset)
1526 		return -EACCES;
1527 
1528 	/*
1529 	 * An empty cpus_requested is ok only if the cpuset has no tasks.
1530 	 * Since cpulist_parse() fails on an empty mask, we special case
1531 	 * that parsing.  The validate_change() call ensures that cpusets
1532 	 * with tasks have cpus.
1533 	 */
1534 	if (!*buf) {
1535 		cpumask_clear(trialcs->cpus_requested);
1536 	} else {
1537 		retval = cpulist_parse(buf, trialcs->cpus_requested);
1538 		if (retval < 0)
1539 			return retval;
1540 	}
1541 
1542 	if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1543 		return -EINVAL;
1544 
1545 	cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested,
1546 		    cpu_active_mask);
1547 
1548 	/* Nothing to do if the cpus didn't change */
1549 	if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1550 		return 0;
1551 
1552 	retval = validate_change(cs, trialcs);
1553 	if (retval < 0)
1554 		return retval;
1555 
1556 #ifdef CONFIG_CPUMASK_OFFSTACK
1557 	/*
1558 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1559 	 * to allocated cpumasks.
1560 	 */
1561 	tmp.addmask  = trialcs->subparts_cpus;
1562 	tmp.delmask  = trialcs->effective_cpus;
1563 	tmp.new_cpus = trialcs->cpus_allowed;
1564 #endif
1565 
1566 	if (cs->partition_root_state) {
1567 		/* Cpumask of a partition root cannot be empty */
1568 		if (cpumask_empty(trialcs->cpus_allowed))
1569 			return -EINVAL;
1570 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1571 					trialcs->cpus_allowed, &tmp) < 0)
1572 			return -EINVAL;
1573 	}
1574 
1575 	spin_lock_irq(&callback_lock);
1576 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1577 	cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1578 
1579 	/*
1580 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1581 	 */
1582 	if (cs->nr_subparts_cpus) {
1583 		cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1584 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1585 	}
1586 	spin_unlock_irq(&callback_lock);
1587 
1588 	update_cpumasks_hier(cs, &tmp);
1589 
1590 	if (cs->partition_root_state) {
1591 		struct cpuset *parent = parent_cs(cs);
1592 
1593 		/*
1594 		 * For partition root, update the cpumasks of sibling
1595 		 * cpusets if they use parent's effective_cpus.
1596 		 */
1597 		if (parent->child_ecpus_count)
1598 			update_sibling_cpumasks(parent, cs, &tmp);
1599 	}
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Migrate memory region from one set of nodes to another.  This is
1605  * performed asynchronously as it can be called from process migration path
1606  * holding locks involved in process management.  All mm migrations are
1607  * performed in the queued order and can be waited for by flushing
1608  * cpuset_migrate_mm_wq.
1609  */
1610 
1611 struct cpuset_migrate_mm_work {
1612 	struct work_struct	work;
1613 	struct mm_struct	*mm;
1614 	nodemask_t		from;
1615 	nodemask_t		to;
1616 };
1617 
cpuset_migrate_mm_workfn(struct work_struct * work)1618 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1619 {
1620 	struct cpuset_migrate_mm_work *mwork =
1621 		container_of(work, struct cpuset_migrate_mm_work, work);
1622 
1623 	/* on a wq worker, no need to worry about %current's mems_allowed */
1624 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1625 	mmput(mwork->mm);
1626 	kfree(mwork);
1627 }
1628 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1629 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1630 							const nodemask_t *to)
1631 {
1632 	struct cpuset_migrate_mm_work *mwork;
1633 
1634 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1635 	if (mwork) {
1636 		mwork->mm = mm;
1637 		mwork->from = *from;
1638 		mwork->to = *to;
1639 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1640 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1641 	} else {
1642 		mmput(mm);
1643 	}
1644 }
1645 
cpuset_post_attach(void)1646 static void cpuset_post_attach(void)
1647 {
1648 	flush_workqueue(cpuset_migrate_mm_wq);
1649 }
1650 
1651 /*
1652  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1653  * @tsk: the task to change
1654  * @newmems: new nodes that the task will be set
1655  *
1656  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1657  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1658  * parallel, it might temporarily see an empty intersection, which results in
1659  * a seqlock check and retry before OOM or allocation failure.
1660  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1661 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1662 					nodemask_t *newmems)
1663 {
1664 	task_lock(tsk);
1665 
1666 	local_irq_disable();
1667 	write_seqcount_begin(&tsk->mems_allowed_seq);
1668 
1669 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1670 	mpol_rebind_task(tsk, newmems);
1671 	tsk->mems_allowed = *newmems;
1672 
1673 	write_seqcount_end(&tsk->mems_allowed_seq);
1674 	local_irq_enable();
1675 
1676 	task_unlock(tsk);
1677 }
1678 
1679 static void *cpuset_being_rebound;
1680 
1681 /**
1682  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1683  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1684  *
1685  * Iterate through each task of @cs updating its mems_allowed to the
1686  * effective cpuset's.  As this function is called with cpuset_mutex held,
1687  * cpuset membership stays stable.
1688  */
update_tasks_nodemask(struct cpuset * cs)1689 static void update_tasks_nodemask(struct cpuset *cs)
1690 {
1691 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1692 	struct css_task_iter it;
1693 	struct task_struct *task;
1694 
1695 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1696 
1697 	guarantee_online_mems(cs, &newmems);
1698 
1699 	/*
1700 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1701 	 * take while holding tasklist_lock.  Forks can happen - the
1702 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1703 	 * and rebind their vma mempolicies too.  Because we still hold
1704 	 * the global cpuset_mutex, we know that no other rebind effort
1705 	 * will be contending for the global variable cpuset_being_rebound.
1706 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1707 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1708 	 */
1709 	css_task_iter_start(&cs->css, 0, &it);
1710 	while ((task = css_task_iter_next(&it))) {
1711 		struct mm_struct *mm;
1712 		bool migrate;
1713 
1714 		cpuset_change_task_nodemask(task, &newmems);
1715 
1716 		mm = get_task_mm(task);
1717 		if (!mm)
1718 			continue;
1719 
1720 		migrate = is_memory_migrate(cs);
1721 
1722 		mpol_rebind_mm(mm, &cs->mems_allowed);
1723 		if (migrate)
1724 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1725 		else
1726 			mmput(mm);
1727 	}
1728 	css_task_iter_end(&it);
1729 
1730 	/*
1731 	 * All the tasks' nodemasks have been updated, update
1732 	 * cs->old_mems_allowed.
1733 	 */
1734 	cs->old_mems_allowed = newmems;
1735 
1736 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1737 	cpuset_being_rebound = NULL;
1738 }
1739 
1740 /*
1741  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1742  * @cs: the cpuset to consider
1743  * @new_mems: a temp variable for calculating new effective_mems
1744  *
1745  * When configured nodemask is changed, the effective nodemasks of this cpuset
1746  * and all its descendants need to be updated.
1747  *
1748  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1749  *
1750  * Called with cpuset_mutex held
1751  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1752 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1753 {
1754 	struct cpuset *cp;
1755 	struct cgroup_subsys_state *pos_css;
1756 
1757 	rcu_read_lock();
1758 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1759 		struct cpuset *parent = parent_cs(cp);
1760 
1761 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1762 
1763 		/*
1764 		 * If it becomes empty, inherit the effective mask of the
1765 		 * parent, which is guaranteed to have some MEMs.
1766 		 */
1767 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1768 			*new_mems = parent->effective_mems;
1769 
1770 		/* Skip the whole subtree if the nodemask remains the same. */
1771 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1772 			pos_css = css_rightmost_descendant(pos_css);
1773 			continue;
1774 		}
1775 
1776 		if (!css_tryget_online(&cp->css))
1777 			continue;
1778 		rcu_read_unlock();
1779 
1780 		spin_lock_irq(&callback_lock);
1781 		cp->effective_mems = *new_mems;
1782 		spin_unlock_irq(&callback_lock);
1783 
1784 		WARN_ON(!is_in_v2_mode() &&
1785 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1786 
1787 		update_tasks_nodemask(cp);
1788 
1789 		rcu_read_lock();
1790 		css_put(&cp->css);
1791 	}
1792 	rcu_read_unlock();
1793 }
1794 
1795 /*
1796  * Handle user request to change the 'mems' memory placement
1797  * of a cpuset.  Needs to validate the request, update the
1798  * cpusets mems_allowed, and for each task in the cpuset,
1799  * update mems_allowed and rebind task's mempolicy and any vma
1800  * mempolicies and if the cpuset is marked 'memory_migrate',
1801  * migrate the tasks pages to the new memory.
1802  *
1803  * Call with cpuset_mutex held. May take callback_lock during call.
1804  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1805  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1806  * their mempolicies to the cpusets new mems_allowed.
1807  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1808 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1809 			   const char *buf)
1810 {
1811 	int retval;
1812 
1813 	/*
1814 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1815 	 * it's read-only
1816 	 */
1817 	if (cs == &top_cpuset) {
1818 		retval = -EACCES;
1819 		goto done;
1820 	}
1821 
1822 	/*
1823 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1824 	 * Since nodelist_parse() fails on an empty mask, we special case
1825 	 * that parsing.  The validate_change() call ensures that cpusets
1826 	 * with tasks have memory.
1827 	 */
1828 	if (!*buf) {
1829 		nodes_clear(trialcs->mems_allowed);
1830 	} else {
1831 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1832 		if (retval < 0)
1833 			goto done;
1834 
1835 		if (!nodes_subset(trialcs->mems_allowed,
1836 				  top_cpuset.mems_allowed)) {
1837 			retval = -EINVAL;
1838 			goto done;
1839 		}
1840 	}
1841 
1842 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1843 		retval = 0;		/* Too easy - nothing to do */
1844 		goto done;
1845 	}
1846 	retval = validate_change(cs, trialcs);
1847 	if (retval < 0)
1848 		goto done;
1849 
1850 	spin_lock_irq(&callback_lock);
1851 	cs->mems_allowed = trialcs->mems_allowed;
1852 	spin_unlock_irq(&callback_lock);
1853 
1854 	/* use trialcs->mems_allowed as a temp variable */
1855 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1856 done:
1857 	return retval;
1858 }
1859 
current_cpuset_is_being_rebound(void)1860 bool current_cpuset_is_being_rebound(void)
1861 {
1862 	bool ret;
1863 
1864 	rcu_read_lock();
1865 	ret = task_cs(current) == cpuset_being_rebound;
1866 	rcu_read_unlock();
1867 
1868 	return ret;
1869 }
1870 
update_relax_domain_level(struct cpuset * cs,s64 val)1871 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1872 {
1873 #ifdef CONFIG_SMP
1874 	if (val < -1 || val >= sched_domain_level_max)
1875 		return -EINVAL;
1876 #endif
1877 
1878 	if (val != cs->relax_domain_level) {
1879 		cs->relax_domain_level = val;
1880 		if (!cpumask_empty(cs->cpus_allowed) &&
1881 		    is_sched_load_balance(cs))
1882 			rebuild_sched_domains_locked();
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1890  * @cs: the cpuset in which each task's spread flags needs to be changed
1891  *
1892  * Iterate through each task of @cs updating its spread flags.  As this
1893  * function is called with cpuset_mutex held, cpuset membership stays
1894  * stable.
1895  */
update_tasks_flags(struct cpuset * cs)1896 static void update_tasks_flags(struct cpuset *cs)
1897 {
1898 	struct css_task_iter it;
1899 	struct task_struct *task;
1900 
1901 	css_task_iter_start(&cs->css, 0, &it);
1902 	while ((task = css_task_iter_next(&it)))
1903 		cpuset_update_task_spread_flag(cs, task);
1904 	css_task_iter_end(&it);
1905 }
1906 
1907 /*
1908  * update_flag - read a 0 or a 1 in a file and update associated flag
1909  * bit:		the bit to update (see cpuset_flagbits_t)
1910  * cs:		the cpuset to update
1911  * turning_on: 	whether the flag is being set or cleared
1912  *
1913  * Call with cpuset_mutex held.
1914  */
1915 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1916 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1917 		       int turning_on)
1918 {
1919 	struct cpuset *trialcs;
1920 	int balance_flag_changed;
1921 	int spread_flag_changed;
1922 	int err;
1923 
1924 	trialcs = alloc_trial_cpuset(cs);
1925 	if (!trialcs)
1926 		return -ENOMEM;
1927 
1928 	if (turning_on)
1929 		set_bit(bit, &trialcs->flags);
1930 	else
1931 		clear_bit(bit, &trialcs->flags);
1932 
1933 	err = validate_change(cs, trialcs);
1934 	if (err < 0)
1935 		goto out;
1936 
1937 	balance_flag_changed = (is_sched_load_balance(cs) !=
1938 				is_sched_load_balance(trialcs));
1939 
1940 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1941 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1942 
1943 	spin_lock_irq(&callback_lock);
1944 	cs->flags = trialcs->flags;
1945 	spin_unlock_irq(&callback_lock);
1946 
1947 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1948 		rebuild_sched_domains_locked();
1949 
1950 	if (spread_flag_changed)
1951 		update_tasks_flags(cs);
1952 out:
1953 	free_cpuset(trialcs);
1954 	return err;
1955 }
1956 
1957 /*
1958  * update_prstate - update partititon_root_state
1959  * cs: the cpuset to update
1960  * new_prs: new partition root state
1961  *
1962  * Call with cpuset_mutex held.
1963  */
update_prstate(struct cpuset * cs,int new_prs)1964 static int update_prstate(struct cpuset *cs, int new_prs)
1965 {
1966 	int err, old_prs = cs->partition_root_state;
1967 	struct cpuset *parent = parent_cs(cs);
1968 	struct tmpmasks tmpmask;
1969 
1970 	if (old_prs == new_prs)
1971 		return 0;
1972 
1973 	/*
1974 	 * Cannot force a partial or invalid partition root to a full
1975 	 * partition root.
1976 	 */
1977 	if (new_prs && (old_prs == PRS_ERROR))
1978 		return -EINVAL;
1979 
1980 	if (alloc_cpumasks(NULL, &tmpmask))
1981 		return -ENOMEM;
1982 
1983 	err = -EINVAL;
1984 	if (!old_prs) {
1985 		/*
1986 		 * Turning on partition root requires setting the
1987 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1988 		 * cannot be NULL.
1989 		 */
1990 		if (cpumask_empty(cs->cpus_allowed))
1991 			goto out;
1992 
1993 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1994 		if (err)
1995 			goto out;
1996 
1997 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1998 						     NULL, &tmpmask);
1999 		if (err) {
2000 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2001 			goto out;
2002 		}
2003 	} else {
2004 		/*
2005 		 * Turning off partition root will clear the
2006 		 * CS_CPU_EXCLUSIVE bit.
2007 		 */
2008 		if (old_prs == PRS_ERROR) {
2009 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2010 			err = 0;
2011 			goto out;
2012 		}
2013 
2014 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2015 						     NULL, &tmpmask);
2016 		if (err)
2017 			goto out;
2018 
2019 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2020 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2021 	}
2022 
2023 	/*
2024 	 * Update cpumask of parent's tasks except when it is the top
2025 	 * cpuset as some system daemons cannot be mapped to other CPUs.
2026 	 */
2027 	if (parent != &top_cpuset)
2028 		update_tasks_cpumask(parent);
2029 
2030 	if (parent->child_ecpus_count)
2031 		update_sibling_cpumasks(parent, cs, &tmpmask);
2032 
2033 	rebuild_sched_domains_locked();
2034 out:
2035 	if (!err) {
2036 		spin_lock_irq(&callback_lock);
2037 		cs->partition_root_state = new_prs;
2038 		spin_unlock_irq(&callback_lock);
2039 	}
2040 
2041 	free_cpumasks(NULL, &tmpmask);
2042 	return err;
2043 }
2044 
2045 /*
2046  * Frequency meter - How fast is some event occurring?
2047  *
2048  * These routines manage a digitally filtered, constant time based,
2049  * event frequency meter.  There are four routines:
2050  *   fmeter_init() - initialize a frequency meter.
2051  *   fmeter_markevent() - called each time the event happens.
2052  *   fmeter_getrate() - returns the recent rate of such events.
2053  *   fmeter_update() - internal routine used to update fmeter.
2054  *
2055  * A common data structure is passed to each of these routines,
2056  * which is used to keep track of the state required to manage the
2057  * frequency meter and its digital filter.
2058  *
2059  * The filter works on the number of events marked per unit time.
2060  * The filter is single-pole low-pass recursive (IIR).  The time unit
2061  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2062  * simulate 3 decimal digits of precision (multiplied by 1000).
2063  *
2064  * With an FM_COEF of 933, and a time base of 1 second, the filter
2065  * has a half-life of 10 seconds, meaning that if the events quit
2066  * happening, then the rate returned from the fmeter_getrate()
2067  * will be cut in half each 10 seconds, until it converges to zero.
2068  *
2069  * It is not worth doing a real infinitely recursive filter.  If more
2070  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2071  * just compute FM_MAXTICKS ticks worth, by which point the level
2072  * will be stable.
2073  *
2074  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2075  * arithmetic overflow in the fmeter_update() routine.
2076  *
2077  * Given the simple 32 bit integer arithmetic used, this meter works
2078  * best for reporting rates between one per millisecond (msec) and
2079  * one per 32 (approx) seconds.  At constant rates faster than one
2080  * per msec it maxes out at values just under 1,000,000.  At constant
2081  * rates between one per msec, and one per second it will stabilize
2082  * to a value N*1000, where N is the rate of events per second.
2083  * At constant rates between one per second and one per 32 seconds,
2084  * it will be choppy, moving up on the seconds that have an event,
2085  * and then decaying until the next event.  At rates slower than
2086  * about one in 32 seconds, it decays all the way back to zero between
2087  * each event.
2088  */
2089 
2090 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2091 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2092 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2093 #define FM_SCALE 1000		/* faux fixed point scale */
2094 
2095 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2096 static void fmeter_init(struct fmeter *fmp)
2097 {
2098 	fmp->cnt = 0;
2099 	fmp->val = 0;
2100 	fmp->time = 0;
2101 	spin_lock_init(&fmp->lock);
2102 }
2103 
2104 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2105 static void fmeter_update(struct fmeter *fmp)
2106 {
2107 	time64_t now;
2108 	u32 ticks;
2109 
2110 	now = ktime_get_seconds();
2111 	ticks = now - fmp->time;
2112 
2113 	if (ticks == 0)
2114 		return;
2115 
2116 	ticks = min(FM_MAXTICKS, ticks);
2117 	while (ticks-- > 0)
2118 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2119 	fmp->time = now;
2120 
2121 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2122 	fmp->cnt = 0;
2123 }
2124 
2125 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2126 static void fmeter_markevent(struct fmeter *fmp)
2127 {
2128 	spin_lock(&fmp->lock);
2129 	fmeter_update(fmp);
2130 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2131 	spin_unlock(&fmp->lock);
2132 }
2133 
2134 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2135 static int fmeter_getrate(struct fmeter *fmp)
2136 {
2137 	int val;
2138 
2139 	spin_lock(&fmp->lock);
2140 	fmeter_update(fmp);
2141 	val = fmp->val;
2142 	spin_unlock(&fmp->lock);
2143 	return val;
2144 }
2145 
2146 static struct cpuset *cpuset_attach_old_cs;
2147 
2148 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2149 static int cpuset_can_attach(struct cgroup_taskset *tset)
2150 {
2151 	struct cgroup_subsys_state *css;
2152 	struct cpuset *cs;
2153 	struct task_struct *task;
2154 	int ret;
2155 
2156 	/* used later by cpuset_attach() */
2157 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2158 	cs = css_cs(css);
2159 
2160 	percpu_down_write(&cpuset_rwsem);
2161 
2162 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2163 	ret = -ENOSPC;
2164 	if (!is_in_v2_mode() &&
2165 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2166 		goto out_unlock;
2167 
2168 	cgroup_taskset_for_each(task, css, tset) {
2169 		ret = task_can_attach(task, cs->cpus_allowed);
2170 		if (ret)
2171 			goto out_unlock;
2172 		ret = security_task_setscheduler(task);
2173 		if (ret)
2174 			goto out_unlock;
2175 	}
2176 
2177 	/*
2178 	 * Mark attach is in progress.  This makes validate_change() fail
2179 	 * changes which zero cpus/mems_allowed.
2180 	 */
2181 	cs->attach_in_progress++;
2182 	ret = 0;
2183 out_unlock:
2184 	percpu_up_write(&cpuset_rwsem);
2185 	return ret;
2186 }
2187 
cpuset_cancel_attach(struct cgroup_taskset * tset)2188 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2189 {
2190 	struct cgroup_subsys_state *css;
2191 
2192 	cgroup_taskset_first(tset, &css);
2193 
2194 	percpu_down_write(&cpuset_rwsem);
2195 	css_cs(css)->attach_in_progress--;
2196 	percpu_up_write(&cpuset_rwsem);
2197 }
2198 
2199 /*
2200  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2201  * but we can't allocate it dynamically there.  Define it global and
2202  * allocate from cpuset_init().
2203  */
2204 static cpumask_var_t cpus_attach;
2205 
cpuset_attach(struct cgroup_taskset * tset)2206 static void cpuset_attach(struct cgroup_taskset *tset)
2207 {
2208 	/* static buf protected by cpuset_mutex */
2209 	static nodemask_t cpuset_attach_nodemask_to;
2210 	struct task_struct *task;
2211 	struct task_struct *leader;
2212 	struct cgroup_subsys_state *css;
2213 	struct cpuset *cs;
2214 	struct cpuset *oldcs = cpuset_attach_old_cs;
2215 
2216 	cgroup_taskset_first(tset, &css);
2217 	cs = css_cs(css);
2218 
2219 	percpu_down_write(&cpuset_rwsem);
2220 
2221 	/* prepare for attach */
2222 	if (cs == &top_cpuset)
2223 		cpumask_copy(cpus_attach, cpu_possible_mask);
2224 	else
2225 		guarantee_online_cpus(cs, cpus_attach);
2226 
2227 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2228 
2229 	cgroup_taskset_for_each(task, css, tset) {
2230 		/*
2231 		 * can_attach beforehand should guarantee that this doesn't
2232 		 * fail.  TODO: have a better way to handle failure here
2233 		 */
2234 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2235 
2236 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2237 		cpuset_update_task_spread_flag(cs, task);
2238 	}
2239 
2240 	/*
2241 	 * Change mm for all threadgroup leaders. This is expensive and may
2242 	 * sleep and should be moved outside migration path proper.
2243 	 */
2244 	cpuset_attach_nodemask_to = cs->effective_mems;
2245 	cgroup_taskset_for_each_leader(leader, css, tset) {
2246 		struct mm_struct *mm = get_task_mm(leader);
2247 
2248 		if (mm) {
2249 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2250 
2251 			/*
2252 			 * old_mems_allowed is the same with mems_allowed
2253 			 * here, except if this task is being moved
2254 			 * automatically due to hotplug.  In that case
2255 			 * @mems_allowed has been updated and is empty, so
2256 			 * @old_mems_allowed is the right nodesets that we
2257 			 * migrate mm from.
2258 			 */
2259 			if (is_memory_migrate(cs))
2260 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2261 						  &cpuset_attach_nodemask_to);
2262 			else
2263 				mmput(mm);
2264 		}
2265 	}
2266 
2267 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2268 
2269 	cs->attach_in_progress--;
2270 	if (!cs->attach_in_progress)
2271 		wake_up(&cpuset_attach_wq);
2272 
2273 	percpu_up_write(&cpuset_rwsem);
2274 }
2275 
2276 /* The various types of files and directories in a cpuset file system */
2277 
2278 typedef enum {
2279 	FILE_MEMORY_MIGRATE,
2280 	FILE_CPULIST,
2281 	FILE_MEMLIST,
2282 	FILE_EFFECTIVE_CPULIST,
2283 	FILE_EFFECTIVE_MEMLIST,
2284 	FILE_SUBPARTS_CPULIST,
2285 	FILE_CPU_EXCLUSIVE,
2286 	FILE_MEM_EXCLUSIVE,
2287 	FILE_MEM_HARDWALL,
2288 	FILE_SCHED_LOAD_BALANCE,
2289 	FILE_PARTITION_ROOT,
2290 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2291 	FILE_MEMORY_PRESSURE_ENABLED,
2292 	FILE_MEMORY_PRESSURE,
2293 	FILE_SPREAD_PAGE,
2294 	FILE_SPREAD_SLAB,
2295 } cpuset_filetype_t;
2296 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2297 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2298 			    u64 val)
2299 {
2300 	struct cpuset *cs = css_cs(css);
2301 	cpuset_filetype_t type = cft->private;
2302 	int retval = 0;
2303 
2304 	get_online_cpus();
2305 	percpu_down_write(&cpuset_rwsem);
2306 	if (!is_cpuset_online(cs)) {
2307 		retval = -ENODEV;
2308 		goto out_unlock;
2309 	}
2310 
2311 	switch (type) {
2312 	case FILE_CPU_EXCLUSIVE:
2313 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2314 		break;
2315 	case FILE_MEM_EXCLUSIVE:
2316 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2317 		break;
2318 	case FILE_MEM_HARDWALL:
2319 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2320 		break;
2321 	case FILE_SCHED_LOAD_BALANCE:
2322 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2323 		break;
2324 	case FILE_MEMORY_MIGRATE:
2325 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2326 		break;
2327 	case FILE_MEMORY_PRESSURE_ENABLED:
2328 		cpuset_memory_pressure_enabled = !!val;
2329 		break;
2330 	case FILE_SPREAD_PAGE:
2331 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2332 		break;
2333 	case FILE_SPREAD_SLAB:
2334 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2335 		break;
2336 	default:
2337 		retval = -EINVAL;
2338 		break;
2339 	}
2340 out_unlock:
2341 	percpu_up_write(&cpuset_rwsem);
2342 	put_online_cpus();
2343 	return retval;
2344 }
2345 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2346 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2347 			    s64 val)
2348 {
2349 	struct cpuset *cs = css_cs(css);
2350 	cpuset_filetype_t type = cft->private;
2351 	int retval = -ENODEV;
2352 
2353 	get_online_cpus();
2354 	percpu_down_write(&cpuset_rwsem);
2355 	if (!is_cpuset_online(cs))
2356 		goto out_unlock;
2357 
2358 	switch (type) {
2359 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2360 		retval = update_relax_domain_level(cs, val);
2361 		break;
2362 	default:
2363 		retval = -EINVAL;
2364 		break;
2365 	}
2366 out_unlock:
2367 	percpu_up_write(&cpuset_rwsem);
2368 	put_online_cpus();
2369 	return retval;
2370 }
2371 
2372 /*
2373  * Common handling for a write to a "cpus" or "mems" file.
2374  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2375 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2376 				    char *buf, size_t nbytes, loff_t off)
2377 {
2378 	struct cpuset *cs = css_cs(of_css(of));
2379 	struct cpuset *trialcs;
2380 	int retval = -ENODEV;
2381 
2382 	buf = strstrip(buf);
2383 
2384 	/*
2385 	 * CPU or memory hotunplug may leave @cs w/o any execution
2386 	 * resources, in which case the hotplug code asynchronously updates
2387 	 * configuration and transfers all tasks to the nearest ancestor
2388 	 * which can execute.
2389 	 *
2390 	 * As writes to "cpus" or "mems" may restore @cs's execution
2391 	 * resources, wait for the previously scheduled operations before
2392 	 * proceeding, so that we don't end up keep removing tasks added
2393 	 * after execution capability is restored.
2394 	 *
2395 	 * cpuset_hotplug_work calls back into cgroup core via
2396 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2397 	 * operation like this one can lead to a deadlock through kernfs
2398 	 * active_ref protection.  Let's break the protection.  Losing the
2399 	 * protection is okay as we check whether @cs is online after
2400 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2401 	 * hierarchies.
2402 	 */
2403 	css_get(&cs->css);
2404 	kernfs_break_active_protection(of->kn);
2405 	flush_work(&cpuset_hotplug_work);
2406 
2407 	get_online_cpus();
2408 	percpu_down_write(&cpuset_rwsem);
2409 	if (!is_cpuset_online(cs))
2410 		goto out_unlock;
2411 
2412 	trialcs = alloc_trial_cpuset(cs);
2413 	if (!trialcs) {
2414 		retval = -ENOMEM;
2415 		goto out_unlock;
2416 	}
2417 
2418 	switch (of_cft(of)->private) {
2419 	case FILE_CPULIST:
2420 		retval = update_cpumask(cs, trialcs, buf);
2421 		break;
2422 	case FILE_MEMLIST:
2423 		retval = update_nodemask(cs, trialcs, buf);
2424 		break;
2425 	default:
2426 		retval = -EINVAL;
2427 		break;
2428 	}
2429 
2430 	free_cpuset(trialcs);
2431 out_unlock:
2432 	percpu_up_write(&cpuset_rwsem);
2433 	put_online_cpus();
2434 	kernfs_unbreak_active_protection(of->kn);
2435 	css_put(&cs->css);
2436 	flush_workqueue(cpuset_migrate_mm_wq);
2437 	return retval ?: nbytes;
2438 }
2439 
2440 /*
2441  * These ascii lists should be read in a single call, by using a user
2442  * buffer large enough to hold the entire map.  If read in smaller
2443  * chunks, there is no guarantee of atomicity.  Since the display format
2444  * used, list of ranges of sequential numbers, is variable length,
2445  * and since these maps can change value dynamically, one could read
2446  * gibberish by doing partial reads while a list was changing.
2447  */
cpuset_common_seq_show(struct seq_file * sf,void * v)2448 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2449 {
2450 	struct cpuset *cs = css_cs(seq_css(sf));
2451 	cpuset_filetype_t type = seq_cft(sf)->private;
2452 	int ret = 0;
2453 
2454 	spin_lock_irq(&callback_lock);
2455 
2456 	switch (type) {
2457 	case FILE_CPULIST:
2458 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2459 		break;
2460 	case FILE_MEMLIST:
2461 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2462 		break;
2463 	case FILE_EFFECTIVE_CPULIST:
2464 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2465 		break;
2466 	case FILE_EFFECTIVE_MEMLIST:
2467 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2468 		break;
2469 	case FILE_SUBPARTS_CPULIST:
2470 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2471 		break;
2472 	default:
2473 		ret = -EINVAL;
2474 	}
2475 
2476 	spin_unlock_irq(&callback_lock);
2477 	return ret;
2478 }
2479 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2480 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2481 {
2482 	struct cpuset *cs = css_cs(css);
2483 	cpuset_filetype_t type = cft->private;
2484 	switch (type) {
2485 	case FILE_CPU_EXCLUSIVE:
2486 		return is_cpu_exclusive(cs);
2487 	case FILE_MEM_EXCLUSIVE:
2488 		return is_mem_exclusive(cs);
2489 	case FILE_MEM_HARDWALL:
2490 		return is_mem_hardwall(cs);
2491 	case FILE_SCHED_LOAD_BALANCE:
2492 		return is_sched_load_balance(cs);
2493 	case FILE_MEMORY_MIGRATE:
2494 		return is_memory_migrate(cs);
2495 	case FILE_MEMORY_PRESSURE_ENABLED:
2496 		return cpuset_memory_pressure_enabled;
2497 	case FILE_MEMORY_PRESSURE:
2498 		return fmeter_getrate(&cs->fmeter);
2499 	case FILE_SPREAD_PAGE:
2500 		return is_spread_page(cs);
2501 	case FILE_SPREAD_SLAB:
2502 		return is_spread_slab(cs);
2503 	default:
2504 		BUG();
2505 	}
2506 
2507 	/* Unreachable but makes gcc happy */
2508 	return 0;
2509 }
2510 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2511 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2512 {
2513 	struct cpuset *cs = css_cs(css);
2514 	cpuset_filetype_t type = cft->private;
2515 	switch (type) {
2516 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2517 		return cs->relax_domain_level;
2518 	default:
2519 		BUG();
2520 	}
2521 
2522 	/* Unrechable but makes gcc happy */
2523 	return 0;
2524 }
2525 
sched_partition_show(struct seq_file * seq,void * v)2526 static int sched_partition_show(struct seq_file *seq, void *v)
2527 {
2528 	struct cpuset *cs = css_cs(seq_css(seq));
2529 
2530 	switch (cs->partition_root_state) {
2531 	case PRS_ENABLED:
2532 		seq_puts(seq, "root\n");
2533 		break;
2534 	case PRS_DISABLED:
2535 		seq_puts(seq, "member\n");
2536 		break;
2537 	case PRS_ERROR:
2538 		seq_puts(seq, "root invalid\n");
2539 		break;
2540 	}
2541 	return 0;
2542 }
2543 
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2544 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2545 				     size_t nbytes, loff_t off)
2546 {
2547 	struct cpuset *cs = css_cs(of_css(of));
2548 	int val;
2549 	int retval = -ENODEV;
2550 
2551 	buf = strstrip(buf);
2552 
2553 	/*
2554 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2555 	 */
2556 	if (!strcmp(buf, "root"))
2557 		val = PRS_ENABLED;
2558 	else if (!strcmp(buf, "member"))
2559 		val = PRS_DISABLED;
2560 	else
2561 		return -EINVAL;
2562 
2563 	css_get(&cs->css);
2564 	get_online_cpus();
2565 	percpu_down_write(&cpuset_rwsem);
2566 	if (!is_cpuset_online(cs))
2567 		goto out_unlock;
2568 
2569 	retval = update_prstate(cs, val);
2570 out_unlock:
2571 	percpu_up_write(&cpuset_rwsem);
2572 	put_online_cpus();
2573 	css_put(&cs->css);
2574 	return retval ?: nbytes;
2575 }
2576 
2577 /*
2578  * for the common functions, 'private' gives the type of file
2579  */
2580 
2581 static struct cftype legacy_files[] = {
2582 	{
2583 		.name = "cpus",
2584 		.seq_show = cpuset_common_seq_show,
2585 		.write = cpuset_write_resmask,
2586 		.max_write_len = (100U + 6 * NR_CPUS),
2587 		.private = FILE_CPULIST,
2588 	},
2589 
2590 	{
2591 		.name = "mems",
2592 		.seq_show = cpuset_common_seq_show,
2593 		.write = cpuset_write_resmask,
2594 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2595 		.private = FILE_MEMLIST,
2596 	},
2597 
2598 	{
2599 		.name = "effective_cpus",
2600 		.seq_show = cpuset_common_seq_show,
2601 		.private = FILE_EFFECTIVE_CPULIST,
2602 	},
2603 
2604 	{
2605 		.name = "effective_mems",
2606 		.seq_show = cpuset_common_seq_show,
2607 		.private = FILE_EFFECTIVE_MEMLIST,
2608 	},
2609 
2610 	{
2611 		.name = "cpu_exclusive",
2612 		.read_u64 = cpuset_read_u64,
2613 		.write_u64 = cpuset_write_u64,
2614 		.private = FILE_CPU_EXCLUSIVE,
2615 	},
2616 
2617 	{
2618 		.name = "mem_exclusive",
2619 		.read_u64 = cpuset_read_u64,
2620 		.write_u64 = cpuset_write_u64,
2621 		.private = FILE_MEM_EXCLUSIVE,
2622 	},
2623 
2624 	{
2625 		.name = "mem_hardwall",
2626 		.read_u64 = cpuset_read_u64,
2627 		.write_u64 = cpuset_write_u64,
2628 		.private = FILE_MEM_HARDWALL,
2629 	},
2630 
2631 	{
2632 		.name = "sched_load_balance",
2633 		.read_u64 = cpuset_read_u64,
2634 		.write_u64 = cpuset_write_u64,
2635 		.private = FILE_SCHED_LOAD_BALANCE,
2636 	},
2637 
2638 	{
2639 		.name = "sched_relax_domain_level",
2640 		.read_s64 = cpuset_read_s64,
2641 		.write_s64 = cpuset_write_s64,
2642 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2643 	},
2644 
2645 	{
2646 		.name = "memory_migrate",
2647 		.read_u64 = cpuset_read_u64,
2648 		.write_u64 = cpuset_write_u64,
2649 		.private = FILE_MEMORY_MIGRATE,
2650 	},
2651 
2652 	{
2653 		.name = "memory_pressure",
2654 		.read_u64 = cpuset_read_u64,
2655 		.private = FILE_MEMORY_PRESSURE,
2656 	},
2657 
2658 	{
2659 		.name = "memory_spread_page",
2660 		.read_u64 = cpuset_read_u64,
2661 		.write_u64 = cpuset_write_u64,
2662 		.private = FILE_SPREAD_PAGE,
2663 	},
2664 
2665 	{
2666 		.name = "memory_spread_slab",
2667 		.read_u64 = cpuset_read_u64,
2668 		.write_u64 = cpuset_write_u64,
2669 		.private = FILE_SPREAD_SLAB,
2670 	},
2671 
2672 	{
2673 		.name = "memory_pressure_enabled",
2674 		.flags = CFTYPE_ONLY_ON_ROOT,
2675 		.read_u64 = cpuset_read_u64,
2676 		.write_u64 = cpuset_write_u64,
2677 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2678 	},
2679 
2680 	{ }	/* terminate */
2681 };
2682 
2683 /*
2684  * This is currently a minimal set for the default hierarchy. It can be
2685  * expanded later on by migrating more features and control files from v1.
2686  */
2687 static struct cftype dfl_files[] = {
2688 	{
2689 		.name = "cpus",
2690 		.seq_show = cpuset_common_seq_show,
2691 		.write = cpuset_write_resmask,
2692 		.max_write_len = (100U + 6 * NR_CPUS),
2693 		.private = FILE_CPULIST,
2694 		.flags = CFTYPE_NOT_ON_ROOT,
2695 	},
2696 
2697 	{
2698 		.name = "mems",
2699 		.seq_show = cpuset_common_seq_show,
2700 		.write = cpuset_write_resmask,
2701 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2702 		.private = FILE_MEMLIST,
2703 		.flags = CFTYPE_NOT_ON_ROOT,
2704 	},
2705 
2706 	{
2707 		.name = "cpus.effective",
2708 		.seq_show = cpuset_common_seq_show,
2709 		.private = FILE_EFFECTIVE_CPULIST,
2710 	},
2711 
2712 	{
2713 		.name = "mems.effective",
2714 		.seq_show = cpuset_common_seq_show,
2715 		.private = FILE_EFFECTIVE_MEMLIST,
2716 	},
2717 
2718 	{
2719 		.name = "cpus.partition",
2720 		.seq_show = sched_partition_show,
2721 		.write = sched_partition_write,
2722 		.private = FILE_PARTITION_ROOT,
2723 		.flags = CFTYPE_NOT_ON_ROOT,
2724 	},
2725 
2726 	{
2727 		.name = "cpus.subpartitions",
2728 		.seq_show = cpuset_common_seq_show,
2729 		.private = FILE_SUBPARTS_CPULIST,
2730 		.flags = CFTYPE_DEBUG,
2731 	},
2732 
2733 	{ }	/* terminate */
2734 };
2735 
2736 
2737 /*
2738  *	cpuset_css_alloc - allocate a cpuset css
2739  *	cgrp:	control group that the new cpuset will be part of
2740  */
2741 
2742 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2743 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2744 {
2745 	struct cpuset *cs;
2746 
2747 	if (!parent_css)
2748 		return &top_cpuset.css;
2749 
2750 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2751 	if (!cs)
2752 		return ERR_PTR(-ENOMEM);
2753 
2754 	if (alloc_cpumasks(cs, NULL)) {
2755 		kfree(cs);
2756 		return ERR_PTR(-ENOMEM);
2757 	}
2758 
2759 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2760 	nodes_clear(cs->mems_allowed);
2761 	nodes_clear(cs->effective_mems);
2762 	fmeter_init(&cs->fmeter);
2763 	cs->relax_domain_level = -1;
2764 
2765 	return &cs->css;
2766 }
2767 
cpuset_css_online(struct cgroup_subsys_state * css)2768 static int cpuset_css_online(struct cgroup_subsys_state *css)
2769 {
2770 	struct cpuset *cs = css_cs(css);
2771 	struct cpuset *parent = parent_cs(cs);
2772 	struct cpuset *tmp_cs;
2773 	struct cgroup_subsys_state *pos_css;
2774 
2775 	if (!parent)
2776 		return 0;
2777 
2778 	get_online_cpus();
2779 	percpu_down_write(&cpuset_rwsem);
2780 
2781 	set_bit(CS_ONLINE, &cs->flags);
2782 	if (is_spread_page(parent))
2783 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2784 	if (is_spread_slab(parent))
2785 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2786 
2787 	cpuset_inc();
2788 
2789 	spin_lock_irq(&callback_lock);
2790 	if (is_in_v2_mode()) {
2791 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2792 		cs->effective_mems = parent->effective_mems;
2793 		cs->use_parent_ecpus = true;
2794 		parent->child_ecpus_count++;
2795 	}
2796 	spin_unlock_irq(&callback_lock);
2797 
2798 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2799 		goto out_unlock;
2800 
2801 	/*
2802 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2803 	 * set.  This flag handling is implemented in cgroup core for
2804 	 * histrical reasons - the flag may be specified during mount.
2805 	 *
2806 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2807 	 * refuse to clone the configuration - thereby refusing the task to
2808 	 * be entered, and as a result refusing the sys_unshare() or
2809 	 * clone() which initiated it.  If this becomes a problem for some
2810 	 * users who wish to allow that scenario, then this could be
2811 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2812 	 * (and likewise for mems) to the new cgroup.
2813 	 */
2814 	rcu_read_lock();
2815 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2816 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2817 			rcu_read_unlock();
2818 			goto out_unlock;
2819 		}
2820 	}
2821 	rcu_read_unlock();
2822 
2823 	spin_lock_irq(&callback_lock);
2824 	cs->mems_allowed = parent->mems_allowed;
2825 	cs->effective_mems = parent->mems_allowed;
2826 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2827 	cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2828 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2829 	spin_unlock_irq(&callback_lock);
2830 out_unlock:
2831 	percpu_up_write(&cpuset_rwsem);
2832 	put_online_cpus();
2833 	return 0;
2834 }
2835 
2836 /*
2837  * If the cpuset being removed has its flag 'sched_load_balance'
2838  * enabled, then simulate turning sched_load_balance off, which
2839  * will call rebuild_sched_domains_locked(). That is not needed
2840  * in the default hierarchy where only changes in partition
2841  * will cause repartitioning.
2842  *
2843  * If the cpuset has the 'sched.partition' flag enabled, simulate
2844  * turning 'sched.partition" off.
2845  */
2846 
cpuset_css_offline(struct cgroup_subsys_state * css)2847 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2848 {
2849 	struct cpuset *cs = css_cs(css);
2850 
2851 	get_online_cpus();
2852 	percpu_down_write(&cpuset_rwsem);
2853 
2854 	if (is_partition_root(cs))
2855 		update_prstate(cs, 0);
2856 
2857 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2858 	    is_sched_load_balance(cs))
2859 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2860 
2861 	if (cs->use_parent_ecpus) {
2862 		struct cpuset *parent = parent_cs(cs);
2863 
2864 		cs->use_parent_ecpus = false;
2865 		parent->child_ecpus_count--;
2866 	}
2867 
2868 	cpuset_dec();
2869 	clear_bit(CS_ONLINE, &cs->flags);
2870 
2871 	percpu_up_write(&cpuset_rwsem);
2872 	put_online_cpus();
2873 }
2874 
cpuset_css_free(struct cgroup_subsys_state * css)2875 static void cpuset_css_free(struct cgroup_subsys_state *css)
2876 {
2877 	struct cpuset *cs = css_cs(css);
2878 
2879 	free_cpuset(cs);
2880 }
2881 
cpuset_bind(struct cgroup_subsys_state * root_css)2882 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2883 {
2884 	percpu_down_write(&cpuset_rwsem);
2885 	spin_lock_irq(&callback_lock);
2886 
2887 	if (is_in_v2_mode()) {
2888 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2889 		top_cpuset.mems_allowed = node_possible_map;
2890 	} else {
2891 		cpumask_copy(top_cpuset.cpus_allowed,
2892 			     top_cpuset.effective_cpus);
2893 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2894 	}
2895 
2896 	spin_unlock_irq(&callback_lock);
2897 	percpu_up_write(&cpuset_rwsem);
2898 }
2899 
2900 /*
2901  * Make sure the new task conform to the current state of its parent,
2902  * which could have been changed by cpuset just after it inherits the
2903  * state from the parent and before it sits on the cgroup's task list.
2904  */
cpuset_fork(struct task_struct * task)2905 static void cpuset_fork(struct task_struct *task)
2906 {
2907 	if (task_css_is_root(task, cpuset_cgrp_id))
2908 		return;
2909 
2910 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2911 	task->mems_allowed = current->mems_allowed;
2912 }
2913 
2914 struct cgroup_subsys cpuset_cgrp_subsys = {
2915 	.css_alloc	= cpuset_css_alloc,
2916 	.css_online	= cpuset_css_online,
2917 	.css_offline	= cpuset_css_offline,
2918 	.css_free	= cpuset_css_free,
2919 	.can_attach	= cpuset_can_attach,
2920 	.cancel_attach	= cpuset_cancel_attach,
2921 	.attach		= cpuset_attach,
2922 	.post_attach	= cpuset_post_attach,
2923 	.bind		= cpuset_bind,
2924 	.fork		= cpuset_fork,
2925 	.legacy_cftypes	= legacy_files,
2926 	.dfl_cftypes	= dfl_files,
2927 	.early_init	= true,
2928 	.threaded	= true,
2929 };
2930 
2931 /**
2932  * cpuset_init - initialize cpusets at system boot
2933  *
2934  * Description: Initialize top_cpuset
2935  **/
2936 
cpuset_init(void)2937 int __init cpuset_init(void)
2938 {
2939 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2940 
2941 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2942 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
2943 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2944 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2945 
2946 	cpumask_setall(top_cpuset.cpus_allowed);
2947 	cpumask_setall(top_cpuset.cpus_requested);
2948 	nodes_setall(top_cpuset.mems_allowed);
2949 	cpumask_setall(top_cpuset.effective_cpus);
2950 	nodes_setall(top_cpuset.effective_mems);
2951 
2952 	fmeter_init(&top_cpuset.fmeter);
2953 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2954 	top_cpuset.relax_domain_level = -1;
2955 
2956 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2957 
2958 	return 0;
2959 }
2960 
2961 /*
2962  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2963  * or memory nodes, we need to walk over the cpuset hierarchy,
2964  * removing that CPU or node from all cpusets.  If this removes the
2965  * last CPU or node from a cpuset, then move the tasks in the empty
2966  * cpuset to its next-highest non-empty parent.
2967  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2968 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2969 {
2970 	struct cpuset *parent;
2971 
2972 	/*
2973 	 * Find its next-highest non-empty parent, (top cpuset
2974 	 * has online cpus, so can't be empty).
2975 	 */
2976 	parent = parent_cs(cs);
2977 	while (cpumask_empty(parent->cpus_allowed) ||
2978 			nodes_empty(parent->mems_allowed))
2979 		parent = parent_cs(parent);
2980 
2981 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2982 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2983 		pr_cont_cgroup_name(cs->css.cgroup);
2984 		pr_cont("\n");
2985 	}
2986 }
2987 
2988 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2989 hotplug_update_tasks_legacy(struct cpuset *cs,
2990 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2991 			    bool cpus_updated, bool mems_updated)
2992 {
2993 	bool is_empty;
2994 
2995 	spin_lock_irq(&callback_lock);
2996 	cpumask_copy(cs->cpus_allowed, new_cpus);
2997 	cpumask_copy(cs->effective_cpus, new_cpus);
2998 	cs->mems_allowed = *new_mems;
2999 	cs->effective_mems = *new_mems;
3000 	spin_unlock_irq(&callback_lock);
3001 
3002 	/*
3003 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3004 	 * as the tasks will be migratecd to an ancestor.
3005 	 */
3006 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3007 		update_tasks_cpumask(cs);
3008 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3009 		update_tasks_nodemask(cs);
3010 
3011 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3012 		   nodes_empty(cs->mems_allowed);
3013 
3014 	percpu_up_write(&cpuset_rwsem);
3015 
3016 	/*
3017 	 * Move tasks to the nearest ancestor with execution resources,
3018 	 * This is full cgroup operation which will also call back into
3019 	 * cpuset. Should be done outside any lock.
3020 	 */
3021 	if (is_empty)
3022 		remove_tasks_in_empty_cpuset(cs);
3023 
3024 	percpu_down_write(&cpuset_rwsem);
3025 }
3026 
3027 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3028 hotplug_update_tasks(struct cpuset *cs,
3029 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3030 		     bool cpus_updated, bool mems_updated)
3031 {
3032 	if (cpumask_empty(new_cpus))
3033 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3034 	if (nodes_empty(*new_mems))
3035 		*new_mems = parent_cs(cs)->effective_mems;
3036 
3037 	spin_lock_irq(&callback_lock);
3038 	cpumask_copy(cs->effective_cpus, new_cpus);
3039 	cs->effective_mems = *new_mems;
3040 	spin_unlock_irq(&callback_lock);
3041 
3042 	if (cpus_updated)
3043 		update_tasks_cpumask(cs);
3044 	if (mems_updated)
3045 		update_tasks_nodemask(cs);
3046 }
3047 
3048 static bool force_rebuild;
3049 
cpuset_force_rebuild(void)3050 void cpuset_force_rebuild(void)
3051 {
3052 	force_rebuild = true;
3053 }
3054 
3055 /**
3056  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3057  * @cs: cpuset in interest
3058  * @tmp: the tmpmasks structure pointer
3059  *
3060  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3061  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3062  * all its tasks are moved to the nearest ancestor with both resources.
3063  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3064 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3065 {
3066 	static cpumask_t new_cpus;
3067 	static nodemask_t new_mems;
3068 	bool cpus_updated;
3069 	bool mems_updated;
3070 	struct cpuset *parent;
3071 retry:
3072 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3073 
3074 	percpu_down_write(&cpuset_rwsem);
3075 
3076 	/*
3077 	 * We have raced with task attaching. We wait until attaching
3078 	 * is finished, so we won't attach a task to an empty cpuset.
3079 	 */
3080 	if (cs->attach_in_progress) {
3081 		percpu_up_write(&cpuset_rwsem);
3082 		goto retry;
3083 	}
3084 
3085 	parent = parent_cs(cs);
3086 	compute_effective_cpumask(&new_cpus, cs, parent);
3087 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3088 
3089 	if (cs->nr_subparts_cpus)
3090 		/*
3091 		 * Make sure that CPUs allocated to child partitions
3092 		 * do not show up in effective_cpus.
3093 		 */
3094 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3095 
3096 	if (!tmp || !cs->partition_root_state)
3097 		goto update_tasks;
3098 
3099 	/*
3100 	 * In the unlikely event that a partition root has empty
3101 	 * effective_cpus or its parent becomes erroneous, we have to
3102 	 * transition it to the erroneous state.
3103 	 */
3104 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3105 	   (parent->partition_root_state == PRS_ERROR))) {
3106 		if (cs->nr_subparts_cpus) {
3107 			spin_lock_irq(&callback_lock);
3108 			cs->nr_subparts_cpus = 0;
3109 			cpumask_clear(cs->subparts_cpus);
3110 			spin_unlock_irq(&callback_lock);
3111 			compute_effective_cpumask(&new_cpus, cs, parent);
3112 		}
3113 
3114 		/*
3115 		 * If the effective_cpus is empty because the child
3116 		 * partitions take away all the CPUs, we can keep
3117 		 * the current partition and let the child partitions
3118 		 * fight for available CPUs.
3119 		 */
3120 		if ((parent->partition_root_state == PRS_ERROR) ||
3121 		     cpumask_empty(&new_cpus)) {
3122 			update_parent_subparts_cpumask(cs, partcmd_disable,
3123 						       NULL, tmp);
3124 			spin_lock_irq(&callback_lock);
3125 			cs->partition_root_state = PRS_ERROR;
3126 			spin_unlock_irq(&callback_lock);
3127 		}
3128 		cpuset_force_rebuild();
3129 	}
3130 
3131 	/*
3132 	 * On the other hand, an erroneous partition root may be transitioned
3133 	 * back to a regular one or a partition root with no CPU allocated
3134 	 * from the parent may change to erroneous.
3135 	 */
3136 	if (is_partition_root(parent) &&
3137 	   ((cs->partition_root_state == PRS_ERROR) ||
3138 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3139 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3140 		cpuset_force_rebuild();
3141 
3142 update_tasks:
3143 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3144 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3145 
3146 	if (is_in_v2_mode())
3147 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3148 				     cpus_updated, mems_updated);
3149 	else
3150 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3151 					    cpus_updated, mems_updated);
3152 
3153 	percpu_up_write(&cpuset_rwsem);
3154 }
3155 
3156 /**
3157  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3158  *
3159  * This function is called after either CPU or memory configuration has
3160  * changed and updates cpuset accordingly.  The top_cpuset is always
3161  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3162  * order to make cpusets transparent (of no affect) on systems that are
3163  * actively using CPU hotplug but making no active use of cpusets.
3164  *
3165  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3166  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3167  * all descendants.
3168  *
3169  * Note that CPU offlining during suspend is ignored.  We don't modify
3170  * cpusets across suspend/resume cycles at all.
3171  */
cpuset_hotplug_workfn(struct work_struct * work)3172 static void cpuset_hotplug_workfn(struct work_struct *work)
3173 {
3174 	static cpumask_t new_cpus;
3175 	static nodemask_t new_mems;
3176 	bool cpus_updated, mems_updated;
3177 	bool on_dfl = is_in_v2_mode();
3178 	struct tmpmasks tmp, *ptmp = NULL;
3179 
3180 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3181 		ptmp = &tmp;
3182 
3183 	percpu_down_write(&cpuset_rwsem);
3184 
3185 	/* fetch the available cpus/mems and find out which changed how */
3186 	cpumask_copy(&new_cpus, cpu_active_mask);
3187 	new_mems = node_states[N_MEMORY];
3188 
3189 	/*
3190 	 * If subparts_cpus is populated, it is likely that the check below
3191 	 * will produce a false positive on cpus_updated when the cpu list
3192 	 * isn't changed. It is extra work, but it is better to be safe.
3193 	 */
3194 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3195 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3196 
3197 	/*
3198 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3199 	 * we assumed that cpus are updated.
3200 	 */
3201 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3202 		cpus_updated = true;
3203 
3204 	/* synchronize cpus_allowed to cpu_active_mask */
3205 	if (cpus_updated) {
3206 		spin_lock_irq(&callback_lock);
3207 		if (!on_dfl)
3208 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3209 		/*
3210 		 * Make sure that CPUs allocated to child partitions
3211 		 * do not show up in effective_cpus. If no CPU is left,
3212 		 * we clear the subparts_cpus & let the child partitions
3213 		 * fight for the CPUs again.
3214 		 */
3215 		if (top_cpuset.nr_subparts_cpus) {
3216 			if (cpumask_subset(&new_cpus,
3217 					   top_cpuset.subparts_cpus)) {
3218 				top_cpuset.nr_subparts_cpus = 0;
3219 				cpumask_clear(top_cpuset.subparts_cpus);
3220 			} else {
3221 				cpumask_andnot(&new_cpus, &new_cpus,
3222 					       top_cpuset.subparts_cpus);
3223 			}
3224 		}
3225 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3226 		spin_unlock_irq(&callback_lock);
3227 		/* we don't mess with cpumasks of tasks in top_cpuset */
3228 	}
3229 
3230 	/* synchronize mems_allowed to N_MEMORY */
3231 	if (mems_updated) {
3232 		spin_lock_irq(&callback_lock);
3233 		if (!on_dfl)
3234 			top_cpuset.mems_allowed = new_mems;
3235 		top_cpuset.effective_mems = new_mems;
3236 		spin_unlock_irq(&callback_lock);
3237 		update_tasks_nodemask(&top_cpuset);
3238 	}
3239 
3240 	percpu_up_write(&cpuset_rwsem);
3241 
3242 	/* if cpus or mems changed, we need to propagate to descendants */
3243 	if (cpus_updated || mems_updated) {
3244 		struct cpuset *cs;
3245 		struct cgroup_subsys_state *pos_css;
3246 
3247 		rcu_read_lock();
3248 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3249 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3250 				continue;
3251 			rcu_read_unlock();
3252 
3253 			cpuset_hotplug_update_tasks(cs, ptmp);
3254 
3255 			rcu_read_lock();
3256 			css_put(&cs->css);
3257 		}
3258 		rcu_read_unlock();
3259 	}
3260 
3261 	/* rebuild sched domains if cpus_allowed has changed */
3262 	if (cpus_updated || force_rebuild) {
3263 		force_rebuild = false;
3264 		rebuild_sched_domains();
3265 	}
3266 
3267 	free_cpumasks(NULL, ptmp);
3268 }
3269 
cpuset_update_active_cpus(void)3270 void cpuset_update_active_cpus(void)
3271 {
3272 	/*
3273 	 * We're inside cpu hotplug critical region which usually nests
3274 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3275 	 * to a work item to avoid reverse locking order.
3276 	 */
3277 	schedule_work(&cpuset_hotplug_work);
3278 }
3279 
cpuset_wait_for_hotplug(void)3280 void cpuset_wait_for_hotplug(void)
3281 {
3282 	flush_work(&cpuset_hotplug_work);
3283 }
3284 
3285 /*
3286  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3287  * Call this routine anytime after node_states[N_MEMORY] changes.
3288  * See cpuset_update_active_cpus() for CPU hotplug handling.
3289  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3290 static int cpuset_track_online_nodes(struct notifier_block *self,
3291 				unsigned long action, void *arg)
3292 {
3293 	schedule_work(&cpuset_hotplug_work);
3294 	return NOTIFY_OK;
3295 }
3296 
3297 static struct notifier_block cpuset_track_online_nodes_nb = {
3298 	.notifier_call = cpuset_track_online_nodes,
3299 	.priority = 10,		/* ??! */
3300 };
3301 
3302 /**
3303  * cpuset_init_smp - initialize cpus_allowed
3304  *
3305  * Description: Finish top cpuset after cpu, node maps are initialized
3306  */
cpuset_init_smp(void)3307 void __init cpuset_init_smp(void)
3308 {
3309 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3310 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3311 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3312 
3313 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3314 	top_cpuset.effective_mems = node_states[N_MEMORY];
3315 
3316 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3317 
3318 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3319 	BUG_ON(!cpuset_migrate_mm_wq);
3320 }
3321 
3322 /**
3323  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3324  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3325  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3326  *
3327  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3328  * attached to the specified @tsk.  Guaranteed to return some non-empty
3329  * subset of cpu_online_mask, even if this means going outside the
3330  * tasks cpuset.
3331  **/
3332 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3333 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3334 {
3335 	unsigned long flags;
3336 
3337 	spin_lock_irqsave(&callback_lock, flags);
3338 	rcu_read_lock();
3339 	guarantee_online_cpus(task_cs(tsk), pmask);
3340 	rcu_read_unlock();
3341 	spin_unlock_irqrestore(&callback_lock, flags);
3342 }
3343 
3344 /**
3345  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3346  * @tsk: pointer to task_struct with which the scheduler is struggling
3347  *
3348  * Description: In the case that the scheduler cannot find an allowed cpu in
3349  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3350  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3351  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3352  * This is the absolute last resort for the scheduler and it is only used if
3353  * _every_ other avenue has been traveled.
3354  **/
3355 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3356 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3357 {
3358 	rcu_read_lock();
3359 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3360 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3361 	rcu_read_unlock();
3362 
3363 	/*
3364 	 * We own tsk->cpus_allowed, nobody can change it under us.
3365 	 *
3366 	 * But we used cs && cs->cpus_allowed lockless and thus can
3367 	 * race with cgroup_attach_task() or update_cpumask() and get
3368 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3369 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3370 	 * which takes task_rq_lock().
3371 	 *
3372 	 * If we are called after it dropped the lock we must see all
3373 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3374 	 * set any mask even if it is not right from task_cs() pov,
3375 	 * the pending set_cpus_allowed_ptr() will fix things.
3376 	 *
3377 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3378 	 * if required.
3379 	 */
3380 }
3381 
cpuset_init_current_mems_allowed(void)3382 void __init cpuset_init_current_mems_allowed(void)
3383 {
3384 	nodes_setall(current->mems_allowed);
3385 }
3386 
3387 /**
3388  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3389  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3390  *
3391  * Description: Returns the nodemask_t mems_allowed of the cpuset
3392  * attached to the specified @tsk.  Guaranteed to return some non-empty
3393  * subset of node_states[N_MEMORY], even if this means going outside the
3394  * tasks cpuset.
3395  **/
3396 
cpuset_mems_allowed(struct task_struct * tsk)3397 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3398 {
3399 	nodemask_t mask;
3400 	unsigned long flags;
3401 
3402 	spin_lock_irqsave(&callback_lock, flags);
3403 	rcu_read_lock();
3404 	guarantee_online_mems(task_cs(tsk), &mask);
3405 	rcu_read_unlock();
3406 	spin_unlock_irqrestore(&callback_lock, flags);
3407 
3408 	return mask;
3409 }
3410 
3411 /**
3412  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3413  * @nodemask: the nodemask to be checked
3414  *
3415  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3416  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3417 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3418 {
3419 	return nodes_intersects(*nodemask, current->mems_allowed);
3420 }
3421 
3422 /*
3423  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3424  * mem_hardwall ancestor to the specified cpuset.  Call holding
3425  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3426  * (an unusual configuration), then returns the root cpuset.
3427  */
nearest_hardwall_ancestor(struct cpuset * cs)3428 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3429 {
3430 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3431 		cs = parent_cs(cs);
3432 	return cs;
3433 }
3434 
3435 /**
3436  * cpuset_node_allowed - Can we allocate on a memory node?
3437  * @node: is this an allowed node?
3438  * @gfp_mask: memory allocation flags
3439  *
3440  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3441  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3442  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3443  * yes.  If current has access to memory reserves as an oom victim, yes.
3444  * Otherwise, no.
3445  *
3446  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3447  * and do not allow allocations outside the current tasks cpuset
3448  * unless the task has been OOM killed.
3449  * GFP_KERNEL allocations are not so marked, so can escape to the
3450  * nearest enclosing hardwalled ancestor cpuset.
3451  *
3452  * Scanning up parent cpusets requires callback_lock.  The
3453  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3454  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3455  * current tasks mems_allowed came up empty on the first pass over
3456  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3457  * cpuset are short of memory, might require taking the callback_lock.
3458  *
3459  * The first call here from mm/page_alloc:get_page_from_freelist()
3460  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3461  * so no allocation on a node outside the cpuset is allowed (unless
3462  * in interrupt, of course).
3463  *
3464  * The second pass through get_page_from_freelist() doesn't even call
3465  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3466  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3467  * in alloc_flags.  That logic and the checks below have the combined
3468  * affect that:
3469  *	in_interrupt - any node ok (current task context irrelevant)
3470  *	GFP_ATOMIC   - any node ok
3471  *	tsk_is_oom_victim   - any node ok
3472  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3473  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3474  */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3475 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3476 {
3477 	struct cpuset *cs;		/* current cpuset ancestors */
3478 	int allowed;			/* is allocation in zone z allowed? */
3479 	unsigned long flags;
3480 
3481 	if (in_interrupt())
3482 		return true;
3483 	if (node_isset(node, current->mems_allowed))
3484 		return true;
3485 	/*
3486 	 * Allow tasks that have access to memory reserves because they have
3487 	 * been OOM killed to get memory anywhere.
3488 	 */
3489 	if (unlikely(tsk_is_oom_victim(current)))
3490 		return true;
3491 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3492 		return false;
3493 
3494 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3495 		return true;
3496 
3497 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3498 	spin_lock_irqsave(&callback_lock, flags);
3499 
3500 	rcu_read_lock();
3501 	cs = nearest_hardwall_ancestor(task_cs(current));
3502 	allowed = node_isset(node, cs->mems_allowed);
3503 	rcu_read_unlock();
3504 
3505 	spin_unlock_irqrestore(&callback_lock, flags);
3506 	return allowed;
3507 }
3508 
3509 /**
3510  * cpuset_mem_spread_node() - On which node to begin search for a file page
3511  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3512  *
3513  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3514  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3515  * and if the memory allocation used cpuset_mem_spread_node()
3516  * to determine on which node to start looking, as it will for
3517  * certain page cache or slab cache pages such as used for file
3518  * system buffers and inode caches, then instead of starting on the
3519  * local node to look for a free page, rather spread the starting
3520  * node around the tasks mems_allowed nodes.
3521  *
3522  * We don't have to worry about the returned node being offline
3523  * because "it can't happen", and even if it did, it would be ok.
3524  *
3525  * The routines calling guarantee_online_mems() are careful to
3526  * only set nodes in task->mems_allowed that are online.  So it
3527  * should not be possible for the following code to return an
3528  * offline node.  But if it did, that would be ok, as this routine
3529  * is not returning the node where the allocation must be, only
3530  * the node where the search should start.  The zonelist passed to
3531  * __alloc_pages() will include all nodes.  If the slab allocator
3532  * is passed an offline node, it will fall back to the local node.
3533  * See kmem_cache_alloc_node().
3534  */
3535 
cpuset_spread_node(int * rotor)3536 static int cpuset_spread_node(int *rotor)
3537 {
3538 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3539 }
3540 
cpuset_mem_spread_node(void)3541 int cpuset_mem_spread_node(void)
3542 {
3543 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3544 		current->cpuset_mem_spread_rotor =
3545 			node_random(&current->mems_allowed);
3546 
3547 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3548 }
3549 
cpuset_slab_spread_node(void)3550 int cpuset_slab_spread_node(void)
3551 {
3552 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3553 		current->cpuset_slab_spread_rotor =
3554 			node_random(&current->mems_allowed);
3555 
3556 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3557 }
3558 
3559 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3560 
3561 /**
3562  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3563  * @tsk1: pointer to task_struct of some task.
3564  * @tsk2: pointer to task_struct of some other task.
3565  *
3566  * Description: Return true if @tsk1's mems_allowed intersects the
3567  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3568  * one of the task's memory usage might impact the memory available
3569  * to the other.
3570  **/
3571 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3572 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3573 				   const struct task_struct *tsk2)
3574 {
3575 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3576 }
3577 
3578 /**
3579  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3580  *
3581  * Description: Prints current's name, cpuset name, and cached copy of its
3582  * mems_allowed to the kernel log.
3583  */
cpuset_print_current_mems_allowed(void)3584 void cpuset_print_current_mems_allowed(void)
3585 {
3586 	struct cgroup *cgrp;
3587 
3588 	rcu_read_lock();
3589 
3590 	cgrp = task_cs(current)->css.cgroup;
3591 	pr_cont(",cpuset=");
3592 	pr_cont_cgroup_name(cgrp);
3593 	pr_cont(",mems_allowed=%*pbl",
3594 		nodemask_pr_args(&current->mems_allowed));
3595 
3596 	rcu_read_unlock();
3597 }
3598 
3599 /*
3600  * Collection of memory_pressure is suppressed unless
3601  * this flag is enabled by writing "1" to the special
3602  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3603  */
3604 
3605 int cpuset_memory_pressure_enabled __read_mostly;
3606 
3607 /**
3608  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3609  *
3610  * Keep a running average of the rate of synchronous (direct)
3611  * page reclaim efforts initiated by tasks in each cpuset.
3612  *
3613  * This represents the rate at which some task in the cpuset
3614  * ran low on memory on all nodes it was allowed to use, and
3615  * had to enter the kernels page reclaim code in an effort to
3616  * create more free memory by tossing clean pages or swapping
3617  * or writing dirty pages.
3618  *
3619  * Display to user space in the per-cpuset read-only file
3620  * "memory_pressure".  Value displayed is an integer
3621  * representing the recent rate of entry into the synchronous
3622  * (direct) page reclaim by any task attached to the cpuset.
3623  **/
3624 
__cpuset_memory_pressure_bump(void)3625 void __cpuset_memory_pressure_bump(void)
3626 {
3627 	rcu_read_lock();
3628 	fmeter_markevent(&task_cs(current)->fmeter);
3629 	rcu_read_unlock();
3630 }
3631 
3632 #ifdef CONFIG_PROC_PID_CPUSET
3633 /*
3634  * proc_cpuset_show()
3635  *  - Print tasks cpuset path into seq_file.
3636  *  - Used for /proc/<pid>/cpuset.
3637  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3638  *    doesn't really matter if tsk->cpuset changes after we read it,
3639  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3640  *    anyway.
3641  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3642 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3643 		     struct pid *pid, struct task_struct *tsk)
3644 {
3645 	char *buf;
3646 	struct cgroup_subsys_state *css;
3647 	int retval;
3648 
3649 	retval = -ENOMEM;
3650 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3651 	if (!buf)
3652 		goto out;
3653 
3654 	css = task_get_css(tsk, cpuset_cgrp_id);
3655 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3656 				current->nsproxy->cgroup_ns);
3657 	css_put(css);
3658 	if (retval >= PATH_MAX)
3659 		retval = -ENAMETOOLONG;
3660 	if (retval < 0)
3661 		goto out_free;
3662 	seq_puts(m, buf);
3663 	seq_putc(m, '\n');
3664 	retval = 0;
3665 out_free:
3666 	kfree(buf);
3667 out:
3668 	return retval;
3669 }
3670 #endif /* CONFIG_PROC_PID_CPUSET */
3671 
3672 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3673 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3674 {
3675 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3676 		   nodemask_pr_args(&task->mems_allowed));
3677 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3678 		   nodemask_pr_args(&task->mems_allowed));
3679 }
3680