• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Skew Normal Distribution</title>
5<link rel="stylesheet" href="../../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../dists.html" title="Distributions">
9<link rel="prev" href="rayleigh.html" title="Rayleigh Distribution">
10<link rel="next" href="students_t_dist.html" title="Students t Distribution">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="rayleigh.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="students_t_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h4 class="title">
27<a name="math_toolkit.dist_ref.dists.skew_normal_dist"></a><a class="link" href="skew_normal_dist.html" title="Skew Normal Distribution">Skew
28        Normal Distribution</a>
29</h4></div></div></div>
30<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">skew_normal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></pre>
31<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
32
33<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
34          <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a>   <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy&lt;&gt;</a> <span class="special">&gt;</span>
35<span class="keyword">class</span> <span class="identifier">skew_normal_distribution</span><span class="special">;</span>
36
37<span class="keyword">typedef</span> <span class="identifier">skew_normal_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">normal</span><span class="special">;</span>
38
39<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
40<span class="keyword">class</span> <span class="identifier">skew_normal_distribution</span>
41<span class="special">{</span>
42<span class="keyword">public</span><span class="special">:</span>
43   <span class="keyword">typedef</span> <span class="identifier">RealType</span> <span class="identifier">value_type</span><span class="special">;</span>
44   <span class="keyword">typedef</span> <span class="identifier">Policy</span>   <span class="identifier">policy_type</span><span class="special">;</span>
45   <span class="comment">// Constructor:</span>
46   <span class="identifier">skew_normal_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">location</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">shape</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
47   <span class="comment">// Accessors:</span>
48   <span class="identifier">RealType</span> <span class="identifier">location</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// mean if normal.</span>
49   <span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// width, standard deviation if normal.</span>
50   <span class="identifier">RealType</span> <span class="identifier">shape</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span> <span class="comment">// The distribution is right skewed if shape &gt; 0 and is left skewed if shape &lt; 0.</span>
51                          <span class="comment">// The distribution is normal if shape is zero.</span>
52<span class="special">};</span>
53
54<span class="special">}}</span> <span class="comment">// namespaces</span>
55</pre>
56<p>
57          The skew normal distribution is a variant of the most well known Gaussian
58          statistical distribution.
59        </p>
60<p>
61          The skew normal distribution with shape zero resembles the <a href="http://en.wikipedia.org/wiki/Normal_distribution" target="_top">Normal
62          Distribution</a>, hence the latter can be regarded as a special case
63          of the more generic skew normal distribution.
64        </p>
65<p>
66          If the standard (mean = 0, scale = 1) normal distribution probability density
67          function is
68        </p>
69<div class="blockquote"><blockquote class="blockquote"><p>
70            <span class="inlinemediaobject"><img src="../../../../equations/normal01_pdf.svg"></span>
71
72          </p></blockquote></div>
73<p>
74          and the cumulative distribution function
75        </p>
76<div class="blockquote"><blockquote class="blockquote"><p>
77            <span class="inlinemediaobject"><img src="../../../../equations/normal01_cdf.svg"></span>
78
79          </p></blockquote></div>
80<p>
81          then the <a href="http://en.wikipedia.org/wiki/Probability_density_function" target="_top">PDF</a>
82          of the <a href="http://en.wikipedia.org/wiki/Skew_normal_distribution" target="_top">skew
83          normal distribution</a> with shape parameter α, defined by O'Hagan and
84          Leonhard (1976) is
85        </p>
86<div class="blockquote"><blockquote class="blockquote"><p>
87            <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_pdf0.svg"></span>
88
89          </p></blockquote></div>
90<p>
91          Given <a href="http://en.wikipedia.org/wiki/Location_parameter" target="_top">location</a>
92          ξ, <a href="http://en.wikipedia.org/wiki/Scale_parameter" target="_top">scale</a>
93          ω, and <a href="http://en.wikipedia.org/wiki/Shape_parameter" target="_top">shape</a>
94          α, it can be <a href="http://en.wikipedia.org/wiki/Skew_normal_distribution" target="_top">transformed</a>,
95          to the form:
96        </p>
97<div class="blockquote"><blockquote class="blockquote"><p>
98            <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_pdf.svg"></span>
99
100          </p></blockquote></div>
101<p>
102          and <a href="http://en.wikipedia.org/wiki/Cumulative_distribution_function" target="_top">CDF</a>:
103        </p>
104<div class="blockquote"><blockquote class="blockquote"><p>
105            <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_cdf.svg"></span>
106
107          </p></blockquote></div>
108<p>
109          where <span class="emphasis"><em>T(h,a)</em></span> is Owen's T function, and <span class="emphasis"><em>Φ(x)</em></span>
110          is the normal distribution.
111        </p>
112<p>
113          The variation the PDF and CDF with its parameters is illustrated in the
114          following graphs:
115        </p>
116<div class="blockquote"><blockquote class="blockquote"><p>
117            <span class="inlinemediaobject"><img src="../../../../graphs/skew_normal_pdf.svg" align="middle"></span>
118
119          </p></blockquote></div>
120<div class="blockquote"><blockquote class="blockquote"><p>
121            <span class="inlinemediaobject"><img src="../../../../graphs/skew_normal_cdf.svg" align="middle"></span>
122
123          </p></blockquote></div>
124<h5>
125<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h0"></a>
126          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.member_functions"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.member_functions">Member
127          Functions</a>
128        </h5>
129<pre class="programlisting"><span class="identifier">skew_normal_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">location</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">scale</span> <span class="special">=</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">shape</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
130</pre>
131<p>
132          Constructs a skew_normal distribution with location ξ, scale ω and shape α.
133        </p>
134<p>
135          Requires scale &gt; 0, otherwise <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
136          is called.
137        </p>
138<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">location</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
139</pre>
140<p>
141          returns the location ξ of this distribution,
142        </p>
143<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">scale</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
144</pre>
145<p>
146          returns the scale ω of this distribution,
147        </p>
148<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">shape</span><span class="special">()</span><span class="keyword">const</span><span class="special">;</span>
149</pre>
150<p>
151          returns the shape α of this distribution.
152        </p>
153<p>
154          (Location and scale function match other similar distributions, allowing
155          the functions <code class="computeroutput"><span class="identifier">find_location</span></code>
156          and <code class="computeroutput"><span class="identifier">find_scale</span></code> to be used
157          generically).
158        </p>
159<div class="note"><table border="0" summary="Note">
160<tr>
161<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
162<th align="left">Note</th>
163</tr>
164<tr><td align="left" valign="top">
165<p>
166            While the shape parameter may be chosen arbitrarily (finite), the resulting
167            <span class="bold"><strong>skewness</strong></span> of the distribution is in fact
168            limited to about (-1, 1); strictly, the interval is (-0.9952717, 0.9952717).
169          </p>
170<p>
171            A parameter δ is related to the shape α by δ = α / (1 + α²), and used in the expression
172            for skewness
173          </p>
174<div class="blockquote"><blockquote class="blockquote"><p>
175              <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_skewness.svg"></span>
176
177            </p></blockquote></div>
178</td></tr>
179</table></div>
180<h5>
181<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h1"></a>
182          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.references"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.references">References</a>
183        </h5>
184<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
185<li class="listitem">
186              <a href="http://azzalini.stat.unipd.it/SN/" target="_top">Skew-Normal Probability
187              Distribution</a> for many links and bibliography.
188            </li>
189<li class="listitem">
190              <a href="http://azzalini.stat.unipd.it/SN/Intro/intro.html" target="_top">A very
191              brief introduction to the skew-normal distribution</a> by Adelchi
192              Azzalini (2005-11-2).
193            </li>
194<li class="listitem">
195              See a <a href="http://www.tri.org.au/azzalini.html" target="_top">skew-normal
196              function animation</a>.
197            </li>
198</ul></div>
199<h5>
200<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h2"></a>
201          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.non_member_accessors"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.non_member_accessors">Non-member
202          Accessors</a>
203        </h5>
204<p>
205          All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
206          functions</a> that are generic to all distributions are supported:
207          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
208          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
209          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
210          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
211          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
212          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
213          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
214          <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
215        </p>
216<p>
217          The domain of the random variable is <span class="emphasis"><em>-[max_value], +[min_value]</em></span>.
218          Infinite values are not supported.
219        </p>
220<p>
221          There are no <a href="http://en.wikipedia.org/wiki/Closed-form_expression" target="_top">closed-form
222          expression</a> known for the mode and median, but these are computed
223          for the
224        </p>
225<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
226<li class="listitem">
227              mode - by finding the maximum of the PDF.
228            </li>
229<li class="listitem">
230              median - by computing <code class="computeroutput"><span class="identifier">quantile</span><span class="special">(</span><span class="number">1</span><span class="special">/</span><span class="number">2</span><span class="special">)</span></code>.
231            </li>
232</ul></div>
233<p>
234          The maximum of the PDF is sought through searching the root of f'(x)=0.
235        </p>
236<p>
237          Both involve iterative methods that will have lower accuracy than other
238          estimates.
239        </p>
240<h5>
241<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h3"></a>
242          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.testing"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.testing">Testing</a>
243        </h5>
244<p>
245          <a href="http://www.r-project.org/" target="_top">The R Project for Statistical Computing</a>
246          using library(sn) described at <a href="http://azzalini.stat.unipd.it/SN/" target="_top">Skew-Normal
247          Probability Distribution</a>, and at <a href="http://cran.r-project.org/web/packages/sn/sn.pd" target="_top">R
248          skew-normal(sn) package</a>.
249        </p>
250<p>
251          Package sn provides functions related to the skew-normal (SN) and the skew-t
252          (ST) probability distributions, both for the univariate and for the the
253          multivariate case, including regression models.
254        </p>
255<p>
256          <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
257          Mathematica</a> was also used to generate some more accurate spot test
258          data.
259        </p>
260<h5>
261<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h4"></a>
262          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.accuracy"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.accuracy">Accuracy</a>
263        </h5>
264<p>
265          The skew_normal distribution with shape = zero is implemented as a special
266          case, equivalent to the normal distribution in terms of the <a class="link" href="../../sf_erf/error_function.html" title="Error Function erf and complement erfc">error
267          function</a>, and therefore should have excellent accuracy.
268        </p>
269<p>
270          The PDF and mean, variance, skewness and kurtosis are also accurately evaluated
271          using <a href="http://en.wikipedia.org/wiki/Analytical_expression" target="_top">analytical
272          expressions</a>. The CDF requires <a href="http://en.wikipedia.org/wiki/Owen%27s_T_function" target="_top">Owen's
273          T function</a> that is evaluated using a Boost C++ <a class="link" href="../../owens_t.html" title="Owen's T function">Owens
274          T</a> implementation of the algorithms of M. Patefield and D. Tandy,
275          Journal of Statistical Software, 5(5), 1-25 (2000); the complicated accuracy
276          of this function is discussed in detail at <a class="link" href="../../owens_t.html" title="Owen's T function">Owens
277          T</a>.
278        </p>
279<p>
280          The median and mode are calculated by iterative root finding, and both
281          will be less accurate.
282        </p>
283<h5>
284<a name="math_toolkit.dist_ref.dists.skew_normal_dist.h5"></a>
285          <span class="phrase"><a name="math_toolkit.dist_ref.dists.skew_normal_dist.implementation"></a></span><a class="link" href="skew_normal_dist.html#math_toolkit.dist_ref.dists.skew_normal_dist.implementation">Implementation</a>
286        </h5>
287<p>
288          In the following table, ξ is the location of the distribution, and ω is its
289          scale, and α is its shape.
290        </p>
291<div class="informaltable"><table class="table">
292<colgroup>
293<col>
294<col>
295</colgroup>
296<thead><tr>
297<th>
298                  <p>
299                    Function
300                  </p>
301                </th>
302<th>
303                  <p>
304                    Implementation Notes
305                  </p>
306                </th>
307</tr></thead>
308<tbody>
309<tr>
310<td>
311                  <p>
312                    pdf
313                  </p>
314                </td>
315<td>
316                  <p>
317                    Using:
318                  </p>
319                  <div class="blockquote"><blockquote class="blockquote"><p>
320                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_pdf.svg"></span>
321
322                    </p></blockquote></div>
323                </td>
324</tr>
325<tr>
326<td>
327                  <p>
328                    cdf
329                  </p>
330                </td>
331<td>
332                  <p>
333                    Using:
334                  </p>
335                  <div class="blockquote"><blockquote class="blockquote"><p>
336                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_cdf.svg"></span>
337
338                    </p></blockquote></div>
339                  <p>
340                    <br> where <span class="emphasis"><em>T(h,a)</em></span> is Owen's T function,
341                    and <span class="emphasis"><em>Φ(x)</em></span> is the normal distribution.
342                  </p>
343                </td>
344</tr>
345<tr>
346<td>
347                  <p>
348                    cdf complement
349                  </p>
350                </td>
351<td>
352                  <p>
353                    Using: complement of normal distribution + 2 * Owens_t
354                  </p>
355                </td>
356</tr>
357<tr>
358<td>
359                  <p>
360                    quantile
361                  </p>
362                </td>
363<td>
364                  <p>
365                    Maximum of the pdf is sought through searching the root of f'(x)=0
366                  </p>
367                </td>
368</tr>
369<tr>
370<td>
371                  <p>
372                    quantile from the complement
373                  </p>
374                </td>
375<td>
376                  <p>
377                    -quantile(SN(-location ξ, scale ω, -shapeα), p)
378                  </p>
379                </td>
380</tr>
381<tr>
382<td>
383                  <p>
384                    location
385                  </p>
386                </td>
387<td>
388                  <p>
389                    location ξ
390                  </p>
391                </td>
392</tr>
393<tr>
394<td>
395                  <p>
396                    scale
397                  </p>
398                </td>
399<td>
400                  <p>
401                    scale ω
402                  </p>
403                </td>
404</tr>
405<tr>
406<td>
407                  <p>
408                    shape
409                  </p>
410                </td>
411<td>
412                  <p>
413                    shape α
414                  </p>
415                </td>
416</tr>
417<tr>
418<td>
419                  <p>
420                    median
421                  </p>
422                </td>
423<td>
424                  <p>
425                    quantile(1/2)
426                  </p>
427                </td>
428</tr>
429<tr>
430<td>
431                  <p>
432                    mean
433                  </p>
434                </td>
435<td>
436                  <div class="blockquote"><blockquote class="blockquote"><p>
437                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_mean.svg"></span>
438
439                    </p></blockquote></div>
440                </td>
441</tr>
442<tr>
443<td>
444                  <p>
445                    mode
446                  </p>
447                </td>
448<td>
449                  <p>
450                    Maximum of the pdf is sought through searching the root of f'(x)=0
451                  </p>
452                </td>
453</tr>
454<tr>
455<td>
456                  <p>
457                    variance
458                  </p>
459                </td>
460<td>
461                  <div class="blockquote"><blockquote class="blockquote"><p>
462                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_variance.svg"></span>
463
464                    </p></blockquote></div>
465                </td>
466</tr>
467<tr>
468<td>
469                  <p>
470                    skewness
471                  </p>
472                </td>
473<td>
474                  <div class="blockquote"><blockquote class="blockquote"><p>
475                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_skewness.svg"></span>
476
477                    </p></blockquote></div>
478                </td>
479</tr>
480<tr>
481<td>
482                  <p>
483                    kurtosis
484                  </p>
485                </td>
486<td>
487                  <p>
488                    kurtosis excess-3
489                  </p>
490                </td>
491</tr>
492<tr>
493<td>
494                  <p>
495                    kurtosis excess
496                  </p>
497                </td>
498<td>
499                  <div class="blockquote"><blockquote class="blockquote"><p>
500                      <span class="inlinemediaobject"><img src="../../../../equations/skew_normal_kurt_ex.svg"></span>
501
502                    </p></blockquote></div>
503                </td>
504</tr>
505</tbody>
506</table></div>
507</div>
508<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
509<td align="left"></td>
510<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
511      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
512      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
513      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
514      Daryle Walker and Xiaogang Zhang<p>
515        Distributed under the Boost Software License, Version 1.0. (See accompanying
516        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
517      </p>
518</div></td>
519</tr></table>
520<hr>
521<div class="spirit-nav">
522<a accesskey="p" href="rayleigh.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="students_t_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
523</div>
524</body>
525</html>
526