1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
12 */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
24 */
rcu_bootup_announce_oddness(void)25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41 if (RCU_NUM_LVLS >= 4)
42 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43 if (RCU_FANOUT_LEAF != 16)
44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
45 RCU_FANOUT_LEAF);
46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48 rcu_fanout_leaf);
49 if (nr_cpu_ids != NR_CPUS)
50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
51 #ifdef CONFIG_RCU_BOOST
52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 kthread_prio, CONFIG_RCU_BOOST_DELAY);
54 #endif
55 if (blimit != DEFAULT_RCU_BLIMIT)
56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57 if (qhimark != DEFAULT_RCU_QHIMARK)
58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59 if (qlowmark != DEFAULT_RCU_QLOMARK)
60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61 if (qovld != DEFAULT_RCU_QOVLD)
62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
63 if (jiffies_till_first_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65 if (jiffies_till_next_fqs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67 if (jiffies_till_sched_qs != ULONG_MAX)
68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
69 if (rcu_kick_kthreads)
70 pr_info("\tKick kthreads if too-long grace period.\n");
71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
73 if (gp_preinit_delay)
74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
75 if (gp_init_delay)
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
77 if (gp_cleanup_delay)
78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79 if (!use_softirq)
80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82 pr_info("\tRCU debug extended QS entry/exit.\n");
83 rcupdate_announce_bootup_oddness();
84 }
85
86 #ifdef CONFIG_PREEMPT_RCU
87
88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
89 static void rcu_read_unlock_special(struct task_struct *t);
90
91 /*
92 * Tell them what RCU they are running.
93 */
rcu_bootup_announce(void)94 static void __init rcu_bootup_announce(void)
95 {
96 pr_info("Preemptible hierarchical RCU implementation.\n");
97 rcu_bootup_announce_oddness();
98 }
99
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS 0x8
102 #define RCU_EXP_TASKS 0x4
103 #define RCU_GP_BLKD 0x2
104 #define RCU_EXP_BLKD 0x1
105
106 /*
107 * Queues a task preempted within an RCU-preempt read-side critical
108 * section into the appropriate location within the ->blkd_tasks list,
109 * depending on the states of any ongoing normal and expedited grace
110 * periods. The ->gp_tasks pointer indicates which element the normal
111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112 * indicates which element the expedited grace period is waiting on (again,
113 * NULL if none). If a grace period is waiting on a given element in the
114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
115 * adding a task to the tail of the list blocks any grace period that is
116 * already waiting on one of the elements. In contrast, adding a task
117 * to the head of the list won't block any grace period that is already
118 * waiting on one of the elements.
119 *
120 * This queuing is imprecise, and can sometimes make an ongoing grace
121 * period wait for a task that is not strictly speaking blocking it.
122 * Given the choice, we needlessly block a normal grace period rather than
123 * blocking an expedited grace period.
124 *
125 * Note that an endless sequence of expedited grace periods still cannot
126 * indefinitely postpone a normal grace period. Eventually, all of the
127 * fixed number of preempted tasks blocking the normal grace period that are
128 * not also blocking the expedited grace period will resume and complete
129 * their RCU read-side critical sections. At that point, the ->gp_tasks
130 * pointer will equal the ->exp_tasks pointer, at which point the end of
131 * the corresponding expedited grace period will also be the end of the
132 * normal grace period.
133 */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135 __releases(rnp->lock) /* But leaves rrupts disabled. */
136 {
137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141 struct task_struct *t = current;
142
143 raw_lockdep_assert_held_rcu_node(rnp);
144 WARN_ON_ONCE(rdp->mynode != rnp);
145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
146 /* RCU better not be waiting on newly onlined CPUs! */
147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148 rdp->grpmask);
149
150 /*
151 * Decide where to queue the newly blocked task. In theory,
152 * this could be an if-statement. In practice, when I tried
153 * that, it was quite messy.
154 */
155 switch (blkd_state) {
156 case 0:
157 case RCU_EXP_TASKS:
158 case RCU_EXP_TASKS + RCU_GP_BLKD:
159 case RCU_GP_TASKS:
160 case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162 /*
163 * Blocking neither GP, or first task blocking the normal
164 * GP but not blocking the already-waiting expedited GP.
165 * Queue at the head of the list to avoid unnecessarily
166 * blocking the already-waiting GPs.
167 */
168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169 break;
170
171 case RCU_EXP_BLKD:
172 case RCU_GP_BLKD:
173 case RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_BLKD:
175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178 /*
179 * First task arriving that blocks either GP, or first task
180 * arriving that blocks the expedited GP (with the normal
181 * GP already waiting), or a task arriving that blocks
182 * both GPs with both GPs already waiting. Queue at the
183 * tail of the list to avoid any GP waiting on any of the
184 * already queued tasks that are not blocking it.
185 */
186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187 break;
188
189 case RCU_EXP_TASKS + RCU_EXP_BLKD:
190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
192
193 /*
194 * Second or subsequent task blocking the expedited GP.
195 * The task either does not block the normal GP, or is the
196 * first task blocking the normal GP. Queue just after
197 * the first task blocking the expedited GP.
198 */
199 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200 break;
201
202 case RCU_GP_TASKS + RCU_GP_BLKD:
203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205 /*
206 * Second or subsequent task blocking the normal GP.
207 * The task does not block the expedited GP. Queue just
208 * after the first task blocking the normal GP.
209 */
210 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211 break;
212
213 default:
214
215 /* Yet another exercise in excessive paranoia. */
216 WARN_ON_ONCE(1);
217 break;
218 }
219
220 /*
221 * We have now queued the task. If it was the first one to
222 * block either grace period, update the ->gp_tasks and/or
223 * ->exp_tasks pointers, respectively, to reference the newly
224 * blocked tasks.
225 */
226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
229 }
230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233 !(rnp->qsmask & rdp->grpmask));
234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235 !(rnp->expmask & rdp->grpmask));
236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237
238 /*
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
243 */
244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245 rcu_report_exp_rdp(rdp);
246 else
247 WARN_ON_ONCE(rdp->exp_deferred_qs);
248 }
249
250 /*
251 * Record a preemptible-RCU quiescent state for the specified CPU.
252 * Note that this does not necessarily mean that the task currently running
253 * on the CPU is in a quiescent state: Instead, it means that the current
254 * grace period need not wait on any RCU read-side critical section that
255 * starts later on this CPU. It also means that if the current task is
256 * in an RCU read-side critical section, it has already added itself to
257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
258 * current task, there might be any number of other tasks blocked while
259 * in an RCU read-side critical section.
260 *
261 * Callers to this function must disable preemption.
262 */
rcu_qs(void)263 static void rcu_qs(void)
264 {
265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data.gp_seq),
269 TPS("cpuqs"));
270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273 }
274 }
275
276 /*
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
286 *
287 * Caller must disable interrupts.
288 */
rcu_note_context_switch(bool preempt)289 void rcu_note_context_switch(bool preempt)
290 {
291 struct task_struct *t = current;
292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
293 struct rcu_node *rnp;
294
295 trace_rcu_utilization(TPS("Start context switch"));
296 lockdep_assert_irqs_disabled();
297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298 if (rcu_preempt_depth() > 0 &&
299 !t->rcu_read_unlock_special.b.blocked) {
300
301 /* Possibly blocking in an RCU read-side critical section. */
302 rnp = rdp->mynode;
303 raw_spin_lock_rcu_node(rnp);
304 t->rcu_read_unlock_special.b.blocked = true;
305 t->rcu_blocked_node = rnp;
306
307 /*
308 * Verify the CPU's sanity, trace the preemption, and
309 * then queue the task as required based on the states
310 * of any ongoing and expedited grace periods.
311 */
312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
314 trace_rcu_preempt_task(rcu_state.name,
315 t->pid,
316 (rnp->qsmask & rdp->grpmask)
317 ? rnp->gp_seq
318 : rcu_seq_snap(&rnp->gp_seq));
319 rcu_preempt_ctxt_queue(rnp, rdp);
320 } else {
321 rcu_preempt_deferred_qs(t);
322 }
323
324 /*
325 * Either we were not in an RCU read-side critical section to
326 * begin with, or we have now recorded that critical section
327 * globally. Either way, we can now note a quiescent state
328 * for this CPU. Again, if we were in an RCU read-side critical
329 * section, and if that critical section was blocking the current
330 * grace period, then the fact that the task has been enqueued
331 * means that we continue to block the current grace period.
332 */
333 rcu_qs();
334 if (rdp->exp_deferred_qs)
335 rcu_report_exp_rdp(rdp);
336 rcu_tasks_qs(current, preempt);
337 trace_rcu_utilization(TPS("End context switch"));
338 }
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340
341 /*
342 * Check for preempted RCU readers blocking the current grace period
343 * for the specified rcu_node structure. If the caller needs a reliable
344 * answer, it must hold the rcu_node's ->lock.
345 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
347 {
348 return READ_ONCE(rnp->gp_tasks) != NULL;
349 }
350
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
353
rcu_preempt_read_enter(void)354 static void rcu_preempt_read_enter(void)
355 {
356 current->rcu_read_lock_nesting++;
357 }
358
rcu_preempt_read_exit(void)359 static int rcu_preempt_read_exit(void)
360 {
361 return --current->rcu_read_lock_nesting;
362 }
363
rcu_preempt_depth_set(int val)364 static void rcu_preempt_depth_set(int val)
365 {
366 current->rcu_read_lock_nesting = val;
367 }
368
369 /*
370 * Preemptible RCU implementation for rcu_read_lock().
371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
372 * if we block.
373 */
__rcu_read_lock(void)374 void __rcu_read_lock(void)
375 {
376 rcu_preempt_read_enter();
377 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
381 barrier(); /* critical section after entry code. */
382 }
383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
384
385 /*
386 * Preemptible RCU implementation for rcu_read_unlock().
387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389 * invoke rcu_read_unlock_special() to clean up after a context switch
390 * in an RCU read-side critical section and other special cases.
391 */
__rcu_read_unlock(void)392 void __rcu_read_unlock(void)
393 {
394 struct task_struct *t = current;
395
396 if (rcu_preempt_read_exit() == 0) {
397 barrier(); /* critical section before exit code. */
398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399 rcu_read_unlock_special(t);
400 }
401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402 int rrln = rcu_preempt_depth();
403
404 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
405 }
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408
409 /*
410 * Advance a ->blkd_tasks-list pointer to the next entry, instead
411 * returning NULL if at the end of the list.
412 */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)413 static struct list_head *rcu_next_node_entry(struct task_struct *t,
414 struct rcu_node *rnp)
415 {
416 struct list_head *np;
417
418 np = t->rcu_node_entry.next;
419 if (np == &rnp->blkd_tasks)
420 np = NULL;
421 return np;
422 }
423
424 /*
425 * Return true if the specified rcu_node structure has tasks that were
426 * preempted within an RCU read-side critical section.
427 */
rcu_preempt_has_tasks(struct rcu_node * rnp)428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429 {
430 return !list_empty(&rnp->blkd_tasks);
431 }
432
433 /*
434 * Report deferred quiescent states. The deferral time can
435 * be quite short, for example, in the case of the call from
436 * rcu_read_unlock_special().
437 */
438 static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
440 {
441 bool empty_exp;
442 bool empty_norm;
443 bool empty_exp_now;
444 struct list_head *np;
445 bool drop_boost_mutex = false;
446 struct rcu_data *rdp;
447 struct rcu_node *rnp;
448 union rcu_special special;
449
450 /*
451 * If RCU core is waiting for this CPU to exit its critical section,
452 * report the fact that it has exited. Because irqs are disabled,
453 * t->rcu_read_unlock_special cannot change.
454 */
455 special = t->rcu_read_unlock_special;
456 rdp = this_cpu_ptr(&rcu_data);
457 if (!special.s && !rdp->exp_deferred_qs) {
458 local_irq_restore(flags);
459 return;
460 }
461 t->rcu_read_unlock_special.s = 0;
462 if (special.b.need_qs) {
463 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464 rcu_report_qs_rdp(rdp);
465 udelay(rcu_unlock_delay);
466 } else {
467 rcu_qs();
468 }
469 }
470
471 /*
472 * Respond to a request by an expedited grace period for a
473 * quiescent state from this CPU. Note that requests from
474 * tasks are handled when removing the task from the
475 * blocked-tasks list below.
476 */
477 if (rdp->exp_deferred_qs)
478 rcu_report_exp_rdp(rdp);
479
480 /* Clean up if blocked during RCU read-side critical section. */
481 if (special.b.blocked) {
482
483 /*
484 * Remove this task from the list it blocked on. The task
485 * now remains queued on the rcu_node corresponding to the
486 * CPU it first blocked on, so there is no longer any need
487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
488 */
489 rnp = t->rcu_blocked_node;
490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
495 (!empty_norm || rnp->qsmask));
496 empty_exp = sync_rcu_exp_done(rnp);
497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498 np = rcu_next_node_entry(t, rnp);
499 list_del_init(&t->rcu_node_entry);
500 t->rcu_blocked_node = NULL;
501 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502 rnp->gp_seq, t->pid);
503 if (&t->rcu_node_entry == rnp->gp_tasks)
504 WRITE_ONCE(rnp->gp_tasks, np);
505 if (&t->rcu_node_entry == rnp->exp_tasks)
506 WRITE_ONCE(rnp->exp_tasks, np);
507 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
510 if (&t->rcu_node_entry == rnp->boost_tasks)
511 WRITE_ONCE(rnp->boost_tasks, np);
512 }
513
514 /*
515 * If this was the last task on the current list, and if
516 * we aren't waiting on any CPUs, report the quiescent state.
517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518 * so we must take a snapshot of the expedited state.
519 */
520 empty_exp_now = sync_rcu_exp_done(rnp);
521 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
523 rnp->gp_seq,
524 0, rnp->qsmask,
525 rnp->level,
526 rnp->grplo,
527 rnp->grphi,
528 !!rnp->gp_tasks);
529 rcu_report_unblock_qs_rnp(rnp, flags);
530 } else {
531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532 }
533
534 /* Unboost if we were boosted. */
535 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
536 rt_mutex_futex_unlock(&rnp->boost_mtx);
537
538 /*
539 * If this was the last task on the expedited lists,
540 * then we need to report up the rcu_node hierarchy.
541 */
542 if (!empty_exp && empty_exp_now)
543 rcu_report_exp_rnp(rnp, true);
544 } else {
545 local_irq_restore(flags);
546 }
547 }
548
549 /*
550 * Is a deferred quiescent-state pending, and are we also not in
551 * an RCU read-side critical section? It is the caller's responsibility
552 * to ensure it is otherwise safe to report any deferred quiescent
553 * states. The reason for this is that it is safe to report a
554 * quiescent state during context switch even though preemption
555 * is disabled. This function cannot be expected to understand these
556 * nuances, so the caller must handle them.
557 */
rcu_preempt_need_deferred_qs(struct task_struct * t)558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
559 {
560 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
561 READ_ONCE(t->rcu_read_unlock_special.s)) &&
562 rcu_preempt_depth() == 0;
563 }
564
565 /*
566 * Report a deferred quiescent state if needed and safe to do so.
567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
568 * not being in an RCU read-side critical section. The caller must
569 * evaluate safety in terms of interrupt, softirq, and preemption
570 * disabling.
571 */
rcu_preempt_deferred_qs(struct task_struct * t)572 static void rcu_preempt_deferred_qs(struct task_struct *t)
573 {
574 unsigned long flags;
575
576 if (!rcu_preempt_need_deferred_qs(t))
577 return;
578 local_irq_save(flags);
579 rcu_preempt_deferred_qs_irqrestore(t, flags);
580 }
581
582 /*
583 * Minimal handler to give the scheduler a chance to re-evaluate.
584 */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587 struct rcu_data *rdp;
588
589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 rdp->defer_qs_iw_pending = false;
591 }
592
593 /*
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
597 */
rcu_read_unlock_special(struct task_struct * t)598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600 unsigned long flags;
601 bool preempt_bh_were_disabled =
602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 bool irqs_were_disabled;
604
605 /* NMI handlers cannot block and cannot safely manipulate state. */
606 if (in_nmi())
607 return;
608
609 local_irq_save(flags);
610 irqs_were_disabled = irqs_disabled_flags(flags);
611 if (preempt_bh_were_disabled || irqs_were_disabled) {
612 bool exp;
613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 struct rcu_node *rnp = rdp->mynode;
615
616 exp = (t->rcu_blocked_node &&
617 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
618 (rdp->grpmask & READ_ONCE(rnp->expmask));
619 // Need to defer quiescent state until everything is enabled.
620 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
621 // Using softirq, safe to awaken, and either the
622 // wakeup is free or there is an expedited GP.
623 raise_softirq_irqoff(RCU_SOFTIRQ);
624 } else {
625 // Enabling BH or preempt does reschedule, so...
626 // Also if no expediting, slow is OK.
627 // Plus nohz_full CPUs eventually get tick enabled.
628 set_tsk_need_resched(current);
629 set_preempt_need_resched();
630 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631 !rdp->defer_qs_iw_pending && exp) {
632 // Get scheduler to re-evaluate and call hooks.
633 // If !IRQ_WORK, FQS scan will eventually IPI.
634 init_irq_work(&rdp->defer_qs_iw,
635 rcu_preempt_deferred_qs_handler);
636 rdp->defer_qs_iw_pending = true;
637 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638 }
639 }
640 local_irq_restore(flags);
641 return;
642 }
643 rcu_preempt_deferred_qs_irqrestore(t, flags);
644 }
645
646 /*
647 * Check that the list of blocked tasks for the newly completed grace
648 * period is in fact empty. It is a serious bug to complete a grace
649 * period that still has RCU readers blocked! This function must be
650 * invoked -before- updating this rnp's ->gp_seq.
651 *
652 * Also, if there are blocked tasks on the list, they automatically
653 * block the newly created grace period, so set up ->gp_tasks accordingly.
654 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
656 {
657 struct task_struct *t;
658
659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660 raw_lockdep_assert_held_rcu_node(rnp);
661 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
662 dump_blkd_tasks(rnp, 10);
663 if (rcu_preempt_has_tasks(rnp) &&
664 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
665 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
666 t = container_of(rnp->gp_tasks, struct task_struct,
667 rcu_node_entry);
668 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
669 rnp->gp_seq, t->pid);
670 }
671 WARN_ON_ONCE(rnp->qsmask);
672 }
673
674 /*
675 * Check for a quiescent state from the current CPU, including voluntary
676 * context switches for Tasks RCU. When a task blocks, the task is
677 * recorded in the corresponding CPU's rcu_node structure, which is checked
678 * elsewhere, hence this function need only check for quiescent states
679 * related to the current CPU, not to those related to tasks.
680 */
rcu_flavor_sched_clock_irq(int user)681 static void rcu_flavor_sched_clock_irq(int user)
682 {
683 struct task_struct *t = current;
684
685 lockdep_assert_irqs_disabled();
686 if (user || rcu_is_cpu_rrupt_from_idle()) {
687 rcu_note_voluntary_context_switch(current);
688 }
689 if (rcu_preempt_depth() > 0 ||
690 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691 /* No QS, force context switch if deferred. */
692 if (rcu_preempt_need_deferred_qs(t)) {
693 set_tsk_need_resched(t);
694 set_preempt_need_resched();
695 }
696 } else if (rcu_preempt_need_deferred_qs(t)) {
697 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698 return;
699 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
700 rcu_qs(); /* Report immediate QS. */
701 return;
702 }
703
704 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
705 if (rcu_preempt_depth() > 0 &&
706 __this_cpu_read(rcu_data.core_needs_qs) &&
707 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
708 !t->rcu_read_unlock_special.b.need_qs &&
709 time_after(jiffies, rcu_state.gp_start + HZ))
710 t->rcu_read_unlock_special.b.need_qs = true;
711 }
712
713 /*
714 * Check for a task exiting while in a preemptible-RCU read-side
715 * critical section, clean up if so. No need to issue warnings, as
716 * debug_check_no_locks_held() already does this if lockdep is enabled.
717 * Besides, if this function does anything other than just immediately
718 * return, there was a bug of some sort. Spewing warnings from this
719 * function is like as not to simply obscure important prior warnings.
720 */
exit_rcu(void)721 void exit_rcu(void)
722 {
723 struct task_struct *t = current;
724
725 if (unlikely(!list_empty(¤t->rcu_node_entry))) {
726 rcu_preempt_depth_set(1);
727 barrier();
728 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
729 } else if (unlikely(rcu_preempt_depth())) {
730 rcu_preempt_depth_set(1);
731 } else {
732 return;
733 }
734 __rcu_read_unlock();
735 rcu_preempt_deferred_qs(current);
736 }
737
738 /*
739 * Dump the blocked-tasks state, but limit the list dump to the
740 * specified number of elements.
741 */
742 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)743 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
744 {
745 int cpu;
746 int i;
747 struct list_head *lhp;
748 bool onl;
749 struct rcu_data *rdp;
750 struct rcu_node *rnp1;
751
752 raw_lockdep_assert_held_rcu_node(rnp);
753 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
754 __func__, rnp->grplo, rnp->grphi, rnp->level,
755 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
756 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
759 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
760 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
761 READ_ONCE(rnp->exp_tasks));
762 pr_info("%s: ->blkd_tasks", __func__);
763 i = 0;
764 list_for_each(lhp, &rnp->blkd_tasks) {
765 pr_cont(" %p", lhp);
766 if (++i >= ncheck)
767 break;
768 }
769 pr_cont("\n");
770 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
771 rdp = per_cpu_ptr(&rcu_data, cpu);
772 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
773 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
774 cpu, ".o"[onl],
775 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
776 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
777 }
778 }
779
780 #else /* #ifdef CONFIG_PREEMPT_RCU */
781
782 /*
783 * If strict grace periods are enabled, and if the calling
784 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
785 * report that quiescent state and, if requested, spin for a bit.
786 */
rcu_read_unlock_strict(void)787 void rcu_read_unlock_strict(void)
788 {
789 struct rcu_data *rdp;
790
791 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
792 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
793 return;
794 rdp = this_cpu_ptr(&rcu_data);
795 rcu_report_qs_rdp(rdp);
796 udelay(rcu_unlock_delay);
797 }
798 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
799
800 /*
801 * Tell them what RCU they are running.
802 */
rcu_bootup_announce(void)803 static void __init rcu_bootup_announce(void)
804 {
805 pr_info("Hierarchical RCU implementation.\n");
806 rcu_bootup_announce_oddness();
807 }
808
809 /*
810 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
811 * how many quiescent states passed, just if there was at least one since
812 * the start of the grace period, this just sets a flag. The caller must
813 * have disabled preemption.
814 */
rcu_qs(void)815 static void rcu_qs(void)
816 {
817 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
818 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
819 return;
820 trace_rcu_grace_period(TPS("rcu_sched"),
821 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
822 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
823 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
824 return;
825 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
826 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
827 }
828
829 /*
830 * Register an urgently needed quiescent state. If there is an
831 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
832 * dyntick-idle quiescent state visible to other CPUs, which will in
833 * some cases serve for expedited as well as normal grace periods.
834 * Either way, register a lightweight quiescent state.
835 */
rcu_all_qs(void)836 void rcu_all_qs(void)
837 {
838 unsigned long flags;
839
840 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
841 return;
842 preempt_disable();
843 /* Load rcu_urgent_qs before other flags. */
844 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
845 preempt_enable();
846 return;
847 }
848 this_cpu_write(rcu_data.rcu_urgent_qs, false);
849 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
850 local_irq_save(flags);
851 rcu_momentary_dyntick_idle();
852 local_irq_restore(flags);
853 }
854 rcu_qs();
855 preempt_enable();
856 }
857 EXPORT_SYMBOL_GPL(rcu_all_qs);
858
859 /*
860 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
861 */
rcu_note_context_switch(bool preempt)862 void rcu_note_context_switch(bool preempt)
863 {
864 trace_rcu_utilization(TPS("Start context switch"));
865 rcu_qs();
866 /* Load rcu_urgent_qs before other flags. */
867 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
868 goto out;
869 this_cpu_write(rcu_data.rcu_urgent_qs, false);
870 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
871 rcu_momentary_dyntick_idle();
872 rcu_tasks_qs(current, preempt);
873 out:
874 trace_rcu_utilization(TPS("End context switch"));
875 }
876 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
877
878 /*
879 * Because preemptible RCU does not exist, there are never any preempted
880 * RCU readers.
881 */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)882 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
883 {
884 return 0;
885 }
886
887 /*
888 * Because there is no preemptible RCU, there can be no readers blocked.
889 */
rcu_preempt_has_tasks(struct rcu_node * rnp)890 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
891 {
892 return false;
893 }
894
895 /*
896 * Because there is no preemptible RCU, there can be no deferred quiescent
897 * states.
898 */
rcu_preempt_need_deferred_qs(struct task_struct * t)899 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
900 {
901 return false;
902 }
rcu_preempt_deferred_qs(struct task_struct * t)903 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
904
905 /*
906 * Because there is no preemptible RCU, there can be no readers blocked,
907 * so there is no need to check for blocked tasks. So check only for
908 * bogus qsmask values.
909 */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)910 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
911 {
912 WARN_ON_ONCE(rnp->qsmask);
913 }
914
915 /*
916 * Check to see if this CPU is in a non-context-switch quiescent state,
917 * namely user mode and idle loop.
918 */
rcu_flavor_sched_clock_irq(int user)919 static void rcu_flavor_sched_clock_irq(int user)
920 {
921 if (user || rcu_is_cpu_rrupt_from_idle()) {
922
923 /*
924 * Get here if this CPU took its interrupt from user
925 * mode or from the idle loop, and if this is not a
926 * nested interrupt. In this case, the CPU is in
927 * a quiescent state, so note it.
928 *
929 * No memory barrier is required here because rcu_qs()
930 * references only CPU-local variables that other CPUs
931 * neither access nor modify, at least not while the
932 * corresponding CPU is online.
933 */
934
935 rcu_qs();
936 }
937 }
938
939 /*
940 * Because preemptible RCU does not exist, tasks cannot possibly exit
941 * while in preemptible RCU read-side critical sections.
942 */
exit_rcu(void)943 void exit_rcu(void)
944 {
945 }
946
947 /*
948 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
949 */
950 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)951 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
952 {
953 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
954 }
955
956 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
957
958 /*
959 * If boosting, set rcuc kthreads to realtime priority.
960 */
rcu_cpu_kthread_setup(unsigned int cpu)961 static void rcu_cpu_kthread_setup(unsigned int cpu)
962 {
963 #ifdef CONFIG_RCU_BOOST
964 struct sched_param sp;
965
966 sp.sched_priority = kthread_prio;
967 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
968 #endif /* #ifdef CONFIG_RCU_BOOST */
969 }
970
971 #ifdef CONFIG_RCU_BOOST
972
973 /*
974 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
975 * or ->boost_tasks, advancing the pointer to the next task in the
976 * ->blkd_tasks list.
977 *
978 * Note that irqs must be enabled: boosting the task can block.
979 * Returns 1 if there are more tasks needing to be boosted.
980 */
rcu_boost(struct rcu_node * rnp)981 static int rcu_boost(struct rcu_node *rnp)
982 {
983 unsigned long flags;
984 struct task_struct *t;
985 struct list_head *tb;
986
987 if (READ_ONCE(rnp->exp_tasks) == NULL &&
988 READ_ONCE(rnp->boost_tasks) == NULL)
989 return 0; /* Nothing left to boost. */
990
991 raw_spin_lock_irqsave_rcu_node(rnp, flags);
992
993 /*
994 * Recheck under the lock: all tasks in need of boosting
995 * might exit their RCU read-side critical sections on their own.
996 */
997 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
998 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
999 return 0;
1000 }
1001
1002 /*
1003 * Preferentially boost tasks blocking expedited grace periods.
1004 * This cannot starve the normal grace periods because a second
1005 * expedited grace period must boost all blocked tasks, including
1006 * those blocking the pre-existing normal grace period.
1007 */
1008 if (rnp->exp_tasks != NULL)
1009 tb = rnp->exp_tasks;
1010 else
1011 tb = rnp->boost_tasks;
1012
1013 /*
1014 * We boost task t by manufacturing an rt_mutex that appears to
1015 * be held by task t. We leave a pointer to that rt_mutex where
1016 * task t can find it, and task t will release the mutex when it
1017 * exits its outermost RCU read-side critical section. Then
1018 * simply acquiring this artificial rt_mutex will boost task
1019 * t's priority. (Thanks to tglx for suggesting this approach!)
1020 *
1021 * Note that task t must acquire rnp->lock to remove itself from
1022 * the ->blkd_tasks list, which it will do from exit() if from
1023 * nowhere else. We therefore are guaranteed that task t will
1024 * stay around at least until we drop rnp->lock. Note that
1025 * rnp->lock also resolves races between our priority boosting
1026 * and task t's exiting its outermost RCU read-side critical
1027 * section.
1028 */
1029 t = container_of(tb, struct task_struct, rcu_node_entry);
1030 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1031 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1032 /* Lock only for side effect: boosts task t's priority. */
1033 rt_mutex_lock(&rnp->boost_mtx);
1034 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1035
1036 return READ_ONCE(rnp->exp_tasks) != NULL ||
1037 READ_ONCE(rnp->boost_tasks) != NULL;
1038 }
1039
1040 /*
1041 * Priority-boosting kthread, one per leaf rcu_node.
1042 */
rcu_boost_kthread(void * arg)1043 static int rcu_boost_kthread(void *arg)
1044 {
1045 struct rcu_node *rnp = (struct rcu_node *)arg;
1046 int spincnt = 0;
1047 int more2boost;
1048
1049 trace_rcu_utilization(TPS("Start boost kthread@init"));
1050 for (;;) {
1051 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1052 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1053 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1054 READ_ONCE(rnp->exp_tasks));
1055 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1056 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1057 more2boost = rcu_boost(rnp);
1058 if (more2boost)
1059 spincnt++;
1060 else
1061 spincnt = 0;
1062 if (spincnt > 10) {
1063 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1064 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1065 schedule_timeout_idle(2);
1066 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1067 spincnt = 0;
1068 }
1069 }
1070 /* NOTREACHED */
1071 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1072 return 0;
1073 }
1074
1075 /*
1076 * Check to see if it is time to start boosting RCU readers that are
1077 * blocking the current grace period, and, if so, tell the per-rcu_node
1078 * kthread to start boosting them. If there is an expedited grace
1079 * period in progress, it is always time to boost.
1080 *
1081 * The caller must hold rnp->lock, which this function releases.
1082 * The ->boost_kthread_task is immortal, so we don't need to worry
1083 * about it going away.
1084 */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1085 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1086 __releases(rnp->lock)
1087 {
1088 raw_lockdep_assert_held_rcu_node(rnp);
1089 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1090 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1091 return;
1092 }
1093 if (rnp->exp_tasks != NULL ||
1094 (rnp->gp_tasks != NULL &&
1095 rnp->boost_tasks == NULL &&
1096 rnp->qsmask == 0 &&
1097 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1098 if (rnp->exp_tasks == NULL)
1099 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1101 rcu_wake_cond(rnp->boost_kthread_task,
1102 READ_ONCE(rnp->boost_kthread_status));
1103 } else {
1104 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1105 }
1106 }
1107
1108 /*
1109 * Is the current CPU running the RCU-callbacks kthread?
1110 * Caller must have preemption disabled.
1111 */
rcu_is_callbacks_kthread(void)1112 static bool rcu_is_callbacks_kthread(void)
1113 {
1114 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1115 }
1116
1117 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1118
1119 /*
1120 * Do priority-boost accounting for the start of a new grace period.
1121 */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1122 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1123 {
1124 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1125 }
1126
1127 /*
1128 * Create an RCU-boost kthread for the specified node if one does not
1129 * already exist. We only create this kthread for preemptible RCU.
1130 * Returns zero if all is well, a negated errno otherwise.
1131 */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1132 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1133 {
1134 int rnp_index = rnp - rcu_get_root();
1135 unsigned long flags;
1136 struct sched_param sp;
1137 struct task_struct *t;
1138
1139 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1140 return;
1141
1142 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1143 return;
1144
1145 rcu_state.boost = 1;
1146
1147 if (rnp->boost_kthread_task != NULL)
1148 return;
1149
1150 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1151 "rcub/%d", rnp_index);
1152 if (WARN_ON_ONCE(IS_ERR(t)))
1153 return;
1154
1155 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1156 rnp->boost_kthread_task = t;
1157 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1158 sp.sched_priority = kthread_prio;
1159 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1160 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1161 }
1162
1163 /*
1164 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1165 * served by the rcu_node in question. The CPU hotplug lock is still
1166 * held, so the value of rnp->qsmaskinit will be stable.
1167 *
1168 * We don't include outgoingcpu in the affinity set, use -1 if there is
1169 * no outgoing CPU. If there are no CPUs left in the affinity set,
1170 * this function allows the kthread to execute on any CPU.
1171 */
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1172 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1173 {
1174 struct task_struct *t = rnp->boost_kthread_task;
1175 unsigned long mask = rcu_rnp_online_cpus(rnp);
1176 cpumask_var_t cm;
1177 int cpu;
1178
1179 if (!t)
1180 return;
1181 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1182 return;
1183 for_each_leaf_node_possible_cpu(rnp, cpu)
1184 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1185 cpu != outgoingcpu)
1186 cpumask_set_cpu(cpu, cm);
1187 if (cpumask_weight(cm) == 0)
1188 cpumask_setall(cm);
1189 set_cpus_allowed_ptr(t, cm);
1190 free_cpumask_var(cm);
1191 }
1192
1193 /*
1194 * Spawn boost kthreads -- called as soon as the scheduler is running.
1195 */
rcu_spawn_boost_kthreads(void)1196 static void __init rcu_spawn_boost_kthreads(void)
1197 {
1198 struct rcu_node *rnp;
1199
1200 rcu_for_each_leaf_node(rnp)
1201 rcu_spawn_one_boost_kthread(rnp);
1202 }
1203
rcu_prepare_kthreads(int cpu)1204 static void rcu_prepare_kthreads(int cpu)
1205 {
1206 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1207 struct rcu_node *rnp = rdp->mynode;
1208
1209 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1210 if (rcu_scheduler_fully_active)
1211 rcu_spawn_one_boost_kthread(rnp);
1212 }
1213
1214 #else /* #ifdef CONFIG_RCU_BOOST */
1215
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1216 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1217 __releases(rnp->lock)
1218 {
1219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1220 }
1221
rcu_is_callbacks_kthread(void)1222 static bool rcu_is_callbacks_kthread(void)
1223 {
1224 return false;
1225 }
1226
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1227 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1228 {
1229 }
1230
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1231 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1232 {
1233 }
1234
rcu_spawn_boost_kthreads(void)1235 static void __init rcu_spawn_boost_kthreads(void)
1236 {
1237 }
1238
rcu_prepare_kthreads(int cpu)1239 static void rcu_prepare_kthreads(int cpu)
1240 {
1241 }
1242
1243 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1244
1245 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1246
1247 /*
1248 * Check to see if any future non-offloaded RCU-related work will need
1249 * to be done by the current CPU, even if none need be done immediately,
1250 * returning 1 if so. This function is part of the RCU implementation;
1251 * it is -not- an exported member of the RCU API.
1252 *
1253 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1254 * CPU has RCU callbacks queued.
1255 */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1256 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1257 {
1258 *nextevt = KTIME_MAX;
1259 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1260 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1261 }
1262
1263 /*
1264 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1265 * after it.
1266 */
rcu_cleanup_after_idle(void)1267 static void rcu_cleanup_after_idle(void)
1268 {
1269 }
1270
1271 /*
1272 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1273 * is nothing.
1274 */
rcu_prepare_for_idle(void)1275 static void rcu_prepare_for_idle(void)
1276 {
1277 }
1278
1279 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1280
1281 /*
1282 * This code is invoked when a CPU goes idle, at which point we want
1283 * to have the CPU do everything required for RCU so that it can enter
1284 * the energy-efficient dyntick-idle mode.
1285 *
1286 * The following preprocessor symbol controls this:
1287 *
1288 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1289 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1290 * is sized to be roughly one RCU grace period. Those energy-efficiency
1291 * benchmarkers who might otherwise be tempted to set this to a large
1292 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1293 * system. And if you are -that- concerned about energy efficiency,
1294 * just power the system down and be done with it!
1295 *
1296 * The value below works well in practice. If future workloads require
1297 * adjustment, they can be converted into kernel config parameters, though
1298 * making the state machine smarter might be a better option.
1299 */
1300 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1301
1302 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1303 module_param(rcu_idle_gp_delay, int, 0644);
1304
1305 /*
1306 * Try to advance callbacks on the current CPU, but only if it has been
1307 * awhile since the last time we did so. Afterwards, if there are any
1308 * callbacks ready for immediate invocation, return true.
1309 */
rcu_try_advance_all_cbs(void)1310 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1311 {
1312 bool cbs_ready = false;
1313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1314 struct rcu_node *rnp;
1315
1316 /* Exit early if we advanced recently. */
1317 if (jiffies == rdp->last_advance_all)
1318 return false;
1319 rdp->last_advance_all = jiffies;
1320
1321 rnp = rdp->mynode;
1322
1323 /*
1324 * Don't bother checking unless a grace period has
1325 * completed since we last checked and there are
1326 * callbacks not yet ready to invoke.
1327 */
1328 if ((rcu_seq_completed_gp(rdp->gp_seq,
1329 rcu_seq_current(&rnp->gp_seq)) ||
1330 unlikely(READ_ONCE(rdp->gpwrap))) &&
1331 rcu_segcblist_pend_cbs(&rdp->cblist))
1332 note_gp_changes(rdp);
1333
1334 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1335 cbs_ready = true;
1336 return cbs_ready;
1337 }
1338
1339 /*
1340 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1341 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1342 * caller about what to set the timeout.
1343 *
1344 * The caller must have disabled interrupts.
1345 */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1346 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1347 {
1348 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1349 unsigned long dj;
1350
1351 lockdep_assert_irqs_disabled();
1352
1353 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1354 if (rcu_segcblist_empty(&rdp->cblist) ||
1355 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1356 *nextevt = KTIME_MAX;
1357 return 0;
1358 }
1359
1360 /* Attempt to advance callbacks. */
1361 if (rcu_try_advance_all_cbs()) {
1362 /* Some ready to invoke, so initiate later invocation. */
1363 invoke_rcu_core();
1364 return 1;
1365 }
1366 rdp->last_accelerate = jiffies;
1367
1368 /* Request timer and round. */
1369 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1370
1371 *nextevt = basemono + dj * TICK_NSEC;
1372 return 0;
1373 }
1374
1375 /*
1376 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1377 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1378 * major task is to accelerate (that is, assign grace-period numbers to) any
1379 * recently arrived callbacks.
1380 *
1381 * The caller must have disabled interrupts.
1382 */
rcu_prepare_for_idle(void)1383 static void rcu_prepare_for_idle(void)
1384 {
1385 bool needwake;
1386 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1387 struct rcu_node *rnp;
1388 int tne;
1389
1390 lockdep_assert_irqs_disabled();
1391 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1392 return;
1393
1394 /* Handle nohz enablement switches conservatively. */
1395 tne = READ_ONCE(tick_nohz_active);
1396 if (tne != rdp->tick_nohz_enabled_snap) {
1397 if (!rcu_segcblist_empty(&rdp->cblist))
1398 invoke_rcu_core(); /* force nohz to see update. */
1399 rdp->tick_nohz_enabled_snap = tne;
1400 return;
1401 }
1402 if (!tne)
1403 return;
1404
1405 /*
1406 * If we have not yet accelerated this jiffy, accelerate all
1407 * callbacks on this CPU.
1408 */
1409 if (rdp->last_accelerate == jiffies)
1410 return;
1411 rdp->last_accelerate = jiffies;
1412 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1413 rnp = rdp->mynode;
1414 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1415 needwake = rcu_accelerate_cbs(rnp, rdp);
1416 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1417 if (needwake)
1418 rcu_gp_kthread_wake();
1419 }
1420 }
1421
1422 /*
1423 * Clean up for exit from idle. Attempt to advance callbacks based on
1424 * any grace periods that elapsed while the CPU was idle, and if any
1425 * callbacks are now ready to invoke, initiate invocation.
1426 */
rcu_cleanup_after_idle(void)1427 static void rcu_cleanup_after_idle(void)
1428 {
1429 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1430
1431 lockdep_assert_irqs_disabled();
1432 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1433 return;
1434 if (rcu_try_advance_all_cbs())
1435 invoke_rcu_core();
1436 }
1437
1438 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1439
1440 #ifdef CONFIG_RCU_NOCB_CPU
1441
1442 /*
1443 * Offload callback processing from the boot-time-specified set of CPUs
1444 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1445 * created that pull the callbacks from the corresponding CPU, wait for
1446 * a grace period to elapse, and invoke the callbacks. These kthreads
1447 * are organized into GP kthreads, which manage incoming callbacks, wait for
1448 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1449 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1450 * do a wake_up() on their GP kthread when they insert a callback into any
1451 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1452 * in which case each kthread actively polls its CPU. (Which isn't so great
1453 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1454 *
1455 * This is intended to be used in conjunction with Frederic Weisbecker's
1456 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1457 * running CPU-bound user-mode computations.
1458 *
1459 * Offloading of callbacks can also be used as an energy-efficiency
1460 * measure because CPUs with no RCU callbacks queued are more aggressive
1461 * about entering dyntick-idle mode.
1462 */
1463
1464
1465 /*
1466 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1467 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1468 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1469 * given, a warning is emitted and all CPUs are offloaded.
1470 */
rcu_nocb_setup(char * str)1471 static int __init rcu_nocb_setup(char *str)
1472 {
1473 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1474 if (!strcasecmp(str, "all"))
1475 cpumask_setall(rcu_nocb_mask);
1476 else
1477 if (cpulist_parse(str, rcu_nocb_mask)) {
1478 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1479 cpumask_setall(rcu_nocb_mask);
1480 }
1481 return 1;
1482 }
1483 __setup("rcu_nocbs=", rcu_nocb_setup);
1484
parse_rcu_nocb_poll(char * arg)1485 static int __init parse_rcu_nocb_poll(char *arg)
1486 {
1487 rcu_nocb_poll = true;
1488 return 0;
1489 }
1490 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1491
1492 /*
1493 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1494 * After all, the main point of bypassing is to avoid lock contention
1495 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1496 */
1497 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1498 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1499
1500 /*
1501 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1502 * lock isn't immediately available, increment ->nocb_lock_contended to
1503 * flag the contention.
1504 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)1505 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1506 __acquires(&rdp->nocb_bypass_lock)
1507 {
1508 lockdep_assert_irqs_disabled();
1509 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1510 return;
1511 atomic_inc(&rdp->nocb_lock_contended);
1512 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1513 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1514 raw_spin_lock(&rdp->nocb_bypass_lock);
1515 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1516 atomic_dec(&rdp->nocb_lock_contended);
1517 }
1518
1519 /*
1520 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1521 * not contended. Please note that this is extremely special-purpose,
1522 * relying on the fact that at most two kthreads and one CPU contend for
1523 * this lock, and also that the two kthreads are guaranteed to have frequent
1524 * grace-period-duration time intervals between successive acquisitions
1525 * of the lock. This allows us to use an extremely simple throttling
1526 * mechanism, and further to apply it only to the CPU doing floods of
1527 * call_rcu() invocations. Don't try this at home!
1528 */
rcu_nocb_wait_contended(struct rcu_data * rdp)1529 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1530 {
1531 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1532 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1533 cpu_relax();
1534 }
1535
1536 /*
1537 * Conditionally acquire the specified rcu_data structure's
1538 * ->nocb_bypass_lock.
1539 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)1540 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1541 {
1542 lockdep_assert_irqs_disabled();
1543 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1544 }
1545
1546 /*
1547 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1548 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)1549 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1550 __releases(&rdp->nocb_bypass_lock)
1551 {
1552 lockdep_assert_irqs_disabled();
1553 raw_spin_unlock(&rdp->nocb_bypass_lock);
1554 }
1555
1556 /*
1557 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1558 * if it corresponds to a no-CBs CPU.
1559 */
rcu_nocb_lock(struct rcu_data * rdp)1560 static void rcu_nocb_lock(struct rcu_data *rdp)
1561 {
1562 lockdep_assert_irqs_disabled();
1563 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1564 return;
1565 raw_spin_lock(&rdp->nocb_lock);
1566 }
1567
1568 /*
1569 * Release the specified rcu_data structure's ->nocb_lock, but only
1570 * if it corresponds to a no-CBs CPU.
1571 */
rcu_nocb_unlock(struct rcu_data * rdp)1572 static void rcu_nocb_unlock(struct rcu_data *rdp)
1573 {
1574 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1575 lockdep_assert_irqs_disabled();
1576 raw_spin_unlock(&rdp->nocb_lock);
1577 }
1578 }
1579
1580 /*
1581 * Release the specified rcu_data structure's ->nocb_lock and restore
1582 * interrupts, but only if it corresponds to a no-CBs CPU.
1583 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1584 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1585 unsigned long flags)
1586 {
1587 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1588 lockdep_assert_irqs_disabled();
1589 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1590 } else {
1591 local_irq_restore(flags);
1592 }
1593 }
1594
1595 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1596 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1597 {
1598 lockdep_assert_irqs_disabled();
1599 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1600 lockdep_assert_held(&rdp->nocb_lock);
1601 }
1602
1603 /*
1604 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1605 * grace period.
1606 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1607 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1608 {
1609 swake_up_all(sq);
1610 }
1611
rcu_nocb_gp_get(struct rcu_node * rnp)1612 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1613 {
1614 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1615 }
1616
rcu_init_one_nocb(struct rcu_node * rnp)1617 static void rcu_init_one_nocb(struct rcu_node *rnp)
1618 {
1619 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1620 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1621 }
1622
1623 /* Is the specified CPU a no-CBs CPU? */
rcu_is_nocb_cpu(int cpu)1624 bool rcu_is_nocb_cpu(int cpu)
1625 {
1626 if (cpumask_available(rcu_nocb_mask))
1627 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1628 return false;
1629 }
1630
1631 /*
1632 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1633 * and this function releases it.
1634 */
wake_nocb_gp(struct rcu_data * rdp,bool force,unsigned long flags)1635 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1636 unsigned long flags)
1637 __releases(rdp->nocb_lock)
1638 {
1639 bool needwake = false;
1640 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1641
1642 lockdep_assert_held(&rdp->nocb_lock);
1643 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1644 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1645 TPS("AlreadyAwake"));
1646 rcu_nocb_unlock_irqrestore(rdp, flags);
1647 return;
1648 }
1649 del_timer(&rdp->nocb_timer);
1650 rcu_nocb_unlock_irqrestore(rdp, flags);
1651 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1652 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1653 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1654 needwake = true;
1655 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1656 }
1657 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1658 if (needwake)
1659 wake_up_process(rdp_gp->nocb_gp_kthread);
1660 }
1661
1662 /*
1663 * Arrange to wake the GP kthread for this NOCB group at some future
1664 * time when it is safe to do so.
1665 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)1666 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1667 const char *reason)
1668 {
1669 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1670 mod_timer(&rdp->nocb_timer, jiffies + 1);
1671 if (rdp->nocb_defer_wakeup < waketype)
1672 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1673 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1674 }
1675
1676 /*
1677 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1678 * However, if there is a callback to be enqueued and if ->nocb_bypass
1679 * proves to be initially empty, just return false because the no-CB GP
1680 * kthread may need to be awakened in this case.
1681 *
1682 * Note that this function always returns true if rhp is NULL.
1683 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1684 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1685 unsigned long j)
1686 {
1687 struct rcu_cblist rcl;
1688
1689 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1690 rcu_lockdep_assert_cblist_protected(rdp);
1691 lockdep_assert_held(&rdp->nocb_bypass_lock);
1692 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1693 raw_spin_unlock(&rdp->nocb_bypass_lock);
1694 return false;
1695 }
1696 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1697 if (rhp)
1698 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1699 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1700 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1701 WRITE_ONCE(rdp->nocb_bypass_first, j);
1702 rcu_nocb_bypass_unlock(rdp);
1703 return true;
1704 }
1705
1706 /*
1707 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1708 * However, if there is a callback to be enqueued and if ->nocb_bypass
1709 * proves to be initially empty, just return false because the no-CB GP
1710 * kthread may need to be awakened in this case.
1711 *
1712 * Note that this function always returns true if rhp is NULL.
1713 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1714 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1715 unsigned long j)
1716 {
1717 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1718 return true;
1719 rcu_lockdep_assert_cblist_protected(rdp);
1720 rcu_nocb_bypass_lock(rdp);
1721 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1722 }
1723
1724 /*
1725 * If the ->nocb_bypass_lock is immediately available, flush the
1726 * ->nocb_bypass queue into ->cblist.
1727 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)1728 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1729 {
1730 rcu_lockdep_assert_cblist_protected(rdp);
1731 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1732 !rcu_nocb_bypass_trylock(rdp))
1733 return;
1734 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1735 }
1736
1737 /*
1738 * See whether it is appropriate to use the ->nocb_bypass list in order
1739 * to control contention on ->nocb_lock. A limited number of direct
1740 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1741 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1742 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1743 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1744 * used if ->cblist is empty, because otherwise callbacks can be stranded
1745 * on ->nocb_bypass because we cannot count on the current CPU ever again
1746 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1747 * non-empty, the corresponding no-CBs grace-period kthread must not be
1748 * in an indefinite sleep state.
1749 *
1750 * Finally, it is not permitted to use the bypass during early boot,
1751 * as doing so would confuse the auto-initialization code. Besides
1752 * which, there is no point in worrying about lock contention while
1753 * there is only one CPU in operation.
1754 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)1755 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1756 bool *was_alldone, unsigned long flags)
1757 {
1758 unsigned long c;
1759 unsigned long cur_gp_seq;
1760 unsigned long j = jiffies;
1761 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1762
1763 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1764 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1765 return false; /* Not offloaded, no bypassing. */
1766 }
1767 lockdep_assert_irqs_disabled();
1768
1769 // Don't use ->nocb_bypass during early boot.
1770 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1771 rcu_nocb_lock(rdp);
1772 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1773 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1774 return false;
1775 }
1776
1777 // If we have advanced to a new jiffy, reset counts to allow
1778 // moving back from ->nocb_bypass to ->cblist.
1779 if (j == rdp->nocb_nobypass_last) {
1780 c = rdp->nocb_nobypass_count + 1;
1781 } else {
1782 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1783 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1784 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1785 nocb_nobypass_lim_per_jiffy))
1786 c = 0;
1787 else if (c > nocb_nobypass_lim_per_jiffy)
1788 c = nocb_nobypass_lim_per_jiffy;
1789 }
1790 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1791
1792 // If there hasn't yet been all that many ->cblist enqueues
1793 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1794 // ->nocb_bypass first.
1795 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1796 rcu_nocb_lock(rdp);
1797 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1798 if (*was_alldone)
1799 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1800 TPS("FirstQ"));
1801 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1802 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1803 return false; // Caller must enqueue the callback.
1804 }
1805
1806 // If ->nocb_bypass has been used too long or is too full,
1807 // flush ->nocb_bypass to ->cblist.
1808 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1809 ncbs >= qhimark) {
1810 rcu_nocb_lock(rdp);
1811 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1812 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1813 if (*was_alldone)
1814 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1815 TPS("FirstQ"));
1816 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1817 return false; // Caller must enqueue the callback.
1818 }
1819 if (j != rdp->nocb_gp_adv_time &&
1820 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1821 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1822 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1823 rdp->nocb_gp_adv_time = j;
1824 }
1825 rcu_nocb_unlock_irqrestore(rdp, flags);
1826 return true; // Callback already enqueued.
1827 }
1828
1829 // We need to use the bypass.
1830 rcu_nocb_wait_contended(rdp);
1831 rcu_nocb_bypass_lock(rdp);
1832 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1833 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1834 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1835 if (!ncbs) {
1836 WRITE_ONCE(rdp->nocb_bypass_first, j);
1837 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1838 }
1839 rcu_nocb_bypass_unlock(rdp);
1840 smp_mb(); /* Order enqueue before wake. */
1841 if (ncbs) {
1842 local_irq_restore(flags);
1843 } else {
1844 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1845 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1846 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1847 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1848 TPS("FirstBQwake"));
1849 __call_rcu_nocb_wake(rdp, true, flags);
1850 } else {
1851 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1852 TPS("FirstBQnoWake"));
1853 rcu_nocb_unlock_irqrestore(rdp, flags);
1854 }
1855 }
1856 return true; // Callback already enqueued.
1857 }
1858
1859 /*
1860 * Awaken the no-CBs grace-period kthead if needed, either due to it
1861 * legitimately being asleep or due to overload conditions.
1862 *
1863 * If warranted, also wake up the kthread servicing this CPUs queues.
1864 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)1865 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1866 unsigned long flags)
1867 __releases(rdp->nocb_lock)
1868 {
1869 unsigned long cur_gp_seq;
1870 unsigned long j;
1871 long len;
1872 struct task_struct *t;
1873
1874 // If we are being polled or there is no kthread, just leave.
1875 t = READ_ONCE(rdp->nocb_gp_kthread);
1876 if (rcu_nocb_poll || !t) {
1877 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1878 TPS("WakeNotPoll"));
1879 rcu_nocb_unlock_irqrestore(rdp, flags);
1880 return;
1881 }
1882 // Need to actually to a wakeup.
1883 len = rcu_segcblist_n_cbs(&rdp->cblist);
1884 if (was_alldone) {
1885 rdp->qlen_last_fqs_check = len;
1886 if (!irqs_disabled_flags(flags)) {
1887 /* ... if queue was empty ... */
1888 wake_nocb_gp(rdp, false, flags);
1889 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1890 TPS("WakeEmpty"));
1891 } else {
1892 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1893 TPS("WakeEmptyIsDeferred"));
1894 rcu_nocb_unlock_irqrestore(rdp, flags);
1895 }
1896 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1897 /* ... or if many callbacks queued. */
1898 rdp->qlen_last_fqs_check = len;
1899 j = jiffies;
1900 if (j != rdp->nocb_gp_adv_time &&
1901 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1902 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1903 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1904 rdp->nocb_gp_adv_time = j;
1905 }
1906 smp_mb(); /* Enqueue before timer_pending(). */
1907 if ((rdp->nocb_cb_sleep ||
1908 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1909 !timer_pending(&rdp->nocb_bypass_timer))
1910 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1911 TPS("WakeOvfIsDeferred"));
1912 rcu_nocb_unlock_irqrestore(rdp, flags);
1913 } else {
1914 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1915 rcu_nocb_unlock_irqrestore(rdp, flags);
1916 }
1917 return;
1918 }
1919
1920 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
do_nocb_bypass_wakeup_timer(struct timer_list * t)1921 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1922 {
1923 unsigned long flags;
1924 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1925
1926 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1927 rcu_nocb_lock_irqsave(rdp, flags);
1928 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1929 __call_rcu_nocb_wake(rdp, true, flags);
1930 }
1931
1932 /*
1933 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1934 * or for grace periods to end.
1935 */
nocb_gp_wait(struct rcu_data * my_rdp)1936 static void nocb_gp_wait(struct rcu_data *my_rdp)
1937 {
1938 bool bypass = false;
1939 long bypass_ncbs;
1940 int __maybe_unused cpu = my_rdp->cpu;
1941 unsigned long cur_gp_seq;
1942 unsigned long flags;
1943 bool gotcbs = false;
1944 unsigned long j = jiffies;
1945 bool needwait_gp = false; // This prevents actual uninitialized use.
1946 bool needwake;
1947 bool needwake_gp;
1948 struct rcu_data *rdp;
1949 struct rcu_node *rnp;
1950 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1951 bool wasempty = false;
1952
1953 /*
1954 * Each pass through the following loop checks for CBs and for the
1955 * nearest grace period (if any) to wait for next. The CB kthreads
1956 * and the global grace-period kthread are awakened if needed.
1957 */
1958 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1959 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1960 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1961 rcu_nocb_lock_irqsave(rdp, flags);
1962 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1963 if (bypass_ncbs &&
1964 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1965 bypass_ncbs > 2 * qhimark)) {
1966 // Bypass full or old, so flush it.
1967 (void)rcu_nocb_try_flush_bypass(rdp, j);
1968 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1969 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1970 rcu_nocb_unlock_irqrestore(rdp, flags);
1971 continue; /* No callbacks here, try next. */
1972 }
1973 if (bypass_ncbs) {
1974 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1975 TPS("Bypass"));
1976 bypass = true;
1977 }
1978 rnp = rdp->mynode;
1979 if (bypass) { // Avoid race with first bypass CB.
1980 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1981 RCU_NOCB_WAKE_NOT);
1982 del_timer(&my_rdp->nocb_timer);
1983 }
1984 // Advance callbacks if helpful and low contention.
1985 needwake_gp = false;
1986 if (!rcu_segcblist_restempty(&rdp->cblist,
1987 RCU_NEXT_READY_TAIL) ||
1988 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1989 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1990 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1991 needwake_gp = rcu_advance_cbs(rnp, rdp);
1992 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1993 RCU_NEXT_READY_TAIL);
1994 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1995 }
1996 // Need to wait on some grace period?
1997 WARN_ON_ONCE(wasempty &&
1998 !rcu_segcblist_restempty(&rdp->cblist,
1999 RCU_NEXT_READY_TAIL));
2000 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2001 if (!needwait_gp ||
2002 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2003 wait_gp_seq = cur_gp_seq;
2004 needwait_gp = true;
2005 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2006 TPS("NeedWaitGP"));
2007 }
2008 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2009 needwake = rdp->nocb_cb_sleep;
2010 WRITE_ONCE(rdp->nocb_cb_sleep, false);
2011 smp_mb(); /* CB invocation -after- GP end. */
2012 } else {
2013 needwake = false;
2014 }
2015 rcu_nocb_unlock_irqrestore(rdp, flags);
2016 if (needwake) {
2017 swake_up_one(&rdp->nocb_cb_wq);
2018 gotcbs = true;
2019 }
2020 if (needwake_gp)
2021 rcu_gp_kthread_wake();
2022 }
2023
2024 my_rdp->nocb_gp_bypass = bypass;
2025 my_rdp->nocb_gp_gp = needwait_gp;
2026 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2027 if (bypass && !rcu_nocb_poll) {
2028 // At least one child with non-empty ->nocb_bypass, so set
2029 // timer in order to avoid stranding its callbacks.
2030 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2031 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2032 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2033 }
2034 if (rcu_nocb_poll) {
2035 /* Polling, so trace if first poll in the series. */
2036 if (gotcbs)
2037 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2038 schedule_timeout_idle(1);
2039 } else if (!needwait_gp) {
2040 /* Wait for callbacks to appear. */
2041 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2042 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2043 !READ_ONCE(my_rdp->nocb_gp_sleep));
2044 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2045 } else {
2046 rnp = my_rdp->mynode;
2047 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2048 swait_event_interruptible_exclusive(
2049 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2050 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2051 !READ_ONCE(my_rdp->nocb_gp_sleep));
2052 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2053 }
2054 if (!rcu_nocb_poll) {
2055 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2056 if (bypass)
2057 del_timer(&my_rdp->nocb_bypass_timer);
2058 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2059 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2060 }
2061 my_rdp->nocb_gp_seq = -1;
2062 WARN_ON(signal_pending(current));
2063 }
2064
2065 /*
2066 * No-CBs grace-period-wait kthread. There is one of these per group
2067 * of CPUs, but only once at least one CPU in that group has come online
2068 * at least once since boot. This kthread checks for newly posted
2069 * callbacks from any of the CPUs it is responsible for, waits for a
2070 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2071 * that then have callback-invocation work to do.
2072 */
rcu_nocb_gp_kthread(void * arg)2073 static int rcu_nocb_gp_kthread(void *arg)
2074 {
2075 struct rcu_data *rdp = arg;
2076
2077 for (;;) {
2078 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2079 nocb_gp_wait(rdp);
2080 cond_resched_tasks_rcu_qs();
2081 }
2082 return 0;
2083 }
2084
2085 /*
2086 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2087 * then, if there are no more, wait for more to appear.
2088 */
nocb_cb_wait(struct rcu_data * rdp)2089 static void nocb_cb_wait(struct rcu_data *rdp)
2090 {
2091 unsigned long cur_gp_seq;
2092 unsigned long flags;
2093 bool needwake_gp = false;
2094 struct rcu_node *rnp = rdp->mynode;
2095
2096 local_irq_save(flags);
2097 rcu_momentary_dyntick_idle();
2098 local_irq_restore(flags);
2099 local_bh_disable();
2100 rcu_do_batch(rdp);
2101 local_bh_enable();
2102 lockdep_assert_irqs_enabled();
2103 rcu_nocb_lock_irqsave(rdp, flags);
2104 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2105 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2106 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2107 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2108 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2109 }
2110 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2111 rcu_nocb_unlock_irqrestore(rdp, flags);
2112 if (needwake_gp)
2113 rcu_gp_kthread_wake();
2114 return;
2115 }
2116
2117 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2118 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2119 rcu_nocb_unlock_irqrestore(rdp, flags);
2120 if (needwake_gp)
2121 rcu_gp_kthread_wake();
2122 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2123 !READ_ONCE(rdp->nocb_cb_sleep));
2124 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2125 /* ^^^ Ensure CB invocation follows _sleep test. */
2126 return;
2127 }
2128 WARN_ON(signal_pending(current));
2129 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2130 }
2131
2132 /*
2133 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2134 * nocb_cb_wait() to do the dirty work.
2135 */
rcu_nocb_cb_kthread(void * arg)2136 static int rcu_nocb_cb_kthread(void *arg)
2137 {
2138 struct rcu_data *rdp = arg;
2139
2140 // Each pass through this loop does one callback batch, and,
2141 // if there are no more ready callbacks, waits for them.
2142 for (;;) {
2143 nocb_cb_wait(rdp);
2144 cond_resched_tasks_rcu_qs();
2145 }
2146 return 0;
2147 }
2148
2149 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2150 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2151 {
2152 return READ_ONCE(rdp->nocb_defer_wakeup);
2153 }
2154
2155 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp)2156 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2157 {
2158 unsigned long flags;
2159 int ndw;
2160
2161 rcu_nocb_lock_irqsave(rdp, flags);
2162 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2163 rcu_nocb_unlock_irqrestore(rdp, flags);
2164 return;
2165 }
2166 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2167 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2168 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2169 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2170 }
2171
2172 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)2173 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2174 {
2175 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2176
2177 do_nocb_deferred_wakeup_common(rdp);
2178 }
2179
2180 /*
2181 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2182 * This means we do an inexact common-case check. Note that if
2183 * we miss, ->nocb_timer will eventually clean things up.
2184 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)2185 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2186 {
2187 if (rcu_nocb_need_deferred_wakeup(rdp))
2188 do_nocb_deferred_wakeup_common(rdp);
2189 }
2190
rcu_nocb_flush_deferred_wakeup(void)2191 void rcu_nocb_flush_deferred_wakeup(void)
2192 {
2193 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2194 }
2195
rcu_init_nohz(void)2196 void __init rcu_init_nohz(void)
2197 {
2198 int cpu;
2199 bool need_rcu_nocb_mask = false;
2200 struct rcu_data *rdp;
2201
2202 #if defined(CONFIG_NO_HZ_FULL)
2203 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2204 need_rcu_nocb_mask = true;
2205 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2206
2207 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2208 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2209 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2210 return;
2211 }
2212 }
2213 if (!cpumask_available(rcu_nocb_mask))
2214 return;
2215
2216 #if defined(CONFIG_NO_HZ_FULL)
2217 if (tick_nohz_full_running)
2218 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2219 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2220
2221 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2222 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2223 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2224 rcu_nocb_mask);
2225 }
2226 if (cpumask_empty(rcu_nocb_mask))
2227 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2228 else
2229 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2230 cpumask_pr_args(rcu_nocb_mask));
2231 if (rcu_nocb_poll)
2232 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2233
2234 for_each_cpu(cpu, rcu_nocb_mask) {
2235 rdp = per_cpu_ptr(&rcu_data, cpu);
2236 if (rcu_segcblist_empty(&rdp->cblist))
2237 rcu_segcblist_init(&rdp->cblist);
2238 rcu_segcblist_offload(&rdp->cblist);
2239 }
2240 rcu_organize_nocb_kthreads();
2241 }
2242
2243 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2244 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2245 {
2246 init_swait_queue_head(&rdp->nocb_cb_wq);
2247 init_swait_queue_head(&rdp->nocb_gp_wq);
2248 raw_spin_lock_init(&rdp->nocb_lock);
2249 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2250 raw_spin_lock_init(&rdp->nocb_gp_lock);
2251 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2252 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2253 rcu_cblist_init(&rdp->nocb_bypass);
2254 }
2255
2256 /*
2257 * If the specified CPU is a no-CBs CPU that does not already have its
2258 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2259 * for this CPU's group has not yet been created, spawn it as well.
2260 */
rcu_spawn_one_nocb_kthread(int cpu)2261 static void rcu_spawn_one_nocb_kthread(int cpu)
2262 {
2263 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2264 struct rcu_data *rdp_gp;
2265 struct task_struct *t;
2266
2267 /*
2268 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2269 * then nothing to do.
2270 */
2271 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2272 return;
2273
2274 /* If we didn't spawn the GP kthread first, reorganize! */
2275 rdp_gp = rdp->nocb_gp_rdp;
2276 if (!rdp_gp->nocb_gp_kthread) {
2277 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2278 "rcuog/%d", rdp_gp->cpu);
2279 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2280 return;
2281 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2282 }
2283
2284 /* Spawn the kthread for this CPU. */
2285 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2286 "rcuo%c/%d", rcu_state.abbr, cpu);
2287 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2288 return;
2289 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2290 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2291 }
2292
2293 /*
2294 * If the specified CPU is a no-CBs CPU that does not already have its
2295 * rcuo kthread, spawn it.
2296 */
rcu_spawn_cpu_nocb_kthread(int cpu)2297 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2298 {
2299 if (rcu_scheduler_fully_active)
2300 rcu_spawn_one_nocb_kthread(cpu);
2301 }
2302
2303 /*
2304 * Once the scheduler is running, spawn rcuo kthreads for all online
2305 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2306 * non-boot CPUs come online -- if this changes, we will need to add
2307 * some mutual exclusion.
2308 */
rcu_spawn_nocb_kthreads(void)2309 static void __init rcu_spawn_nocb_kthreads(void)
2310 {
2311 int cpu;
2312
2313 for_each_online_cpu(cpu)
2314 rcu_spawn_cpu_nocb_kthread(cpu);
2315 }
2316
2317 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2318 static int rcu_nocb_gp_stride = -1;
2319 module_param(rcu_nocb_gp_stride, int, 0444);
2320
2321 /*
2322 * Initialize GP-CB relationships for all no-CBs CPU.
2323 */
rcu_organize_nocb_kthreads(void)2324 static void __init rcu_organize_nocb_kthreads(void)
2325 {
2326 int cpu;
2327 bool firsttime = true;
2328 bool gotnocbs = false;
2329 bool gotnocbscbs = true;
2330 int ls = rcu_nocb_gp_stride;
2331 int nl = 0; /* Next GP kthread. */
2332 struct rcu_data *rdp;
2333 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2334 struct rcu_data *rdp_prev = NULL;
2335
2336 if (!cpumask_available(rcu_nocb_mask))
2337 return;
2338 if (ls == -1) {
2339 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2340 rcu_nocb_gp_stride = ls;
2341 }
2342
2343 /*
2344 * Each pass through this loop sets up one rcu_data structure.
2345 * Should the corresponding CPU come online in the future, then
2346 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2347 */
2348 for_each_cpu(cpu, rcu_nocb_mask) {
2349 rdp = per_cpu_ptr(&rcu_data, cpu);
2350 if (rdp->cpu >= nl) {
2351 /* New GP kthread, set up for CBs & next GP. */
2352 gotnocbs = true;
2353 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2354 rdp->nocb_gp_rdp = rdp;
2355 rdp_gp = rdp;
2356 if (dump_tree) {
2357 if (!firsttime)
2358 pr_cont("%s\n", gotnocbscbs
2359 ? "" : " (self only)");
2360 gotnocbscbs = false;
2361 firsttime = false;
2362 pr_alert("%s: No-CB GP kthread CPU %d:",
2363 __func__, cpu);
2364 }
2365 } else {
2366 /* Another CB kthread, link to previous GP kthread. */
2367 gotnocbscbs = true;
2368 rdp->nocb_gp_rdp = rdp_gp;
2369 rdp_prev->nocb_next_cb_rdp = rdp;
2370 if (dump_tree)
2371 pr_cont(" %d", cpu);
2372 }
2373 rdp_prev = rdp;
2374 }
2375 if (gotnocbs && dump_tree)
2376 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2377 }
2378
2379 /*
2380 * Bind the current task to the offloaded CPUs. If there are no offloaded
2381 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2382 */
rcu_bind_current_to_nocb(void)2383 void rcu_bind_current_to_nocb(void)
2384 {
2385 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2386 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2387 }
2388 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2389
2390 /*
2391 * Dump out nocb grace-period kthread state for the specified rcu_data
2392 * structure.
2393 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)2394 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2395 {
2396 struct rcu_node *rnp = rdp->mynode;
2397
2398 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2399 rdp->cpu,
2400 "kK"[!!rdp->nocb_gp_kthread],
2401 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2402 "dD"[!!rdp->nocb_defer_wakeup],
2403 "tT"[timer_pending(&rdp->nocb_timer)],
2404 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2405 "sS"[!!rdp->nocb_gp_sleep],
2406 ".W"[swait_active(&rdp->nocb_gp_wq)],
2407 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2408 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2409 ".B"[!!rdp->nocb_gp_bypass],
2410 ".G"[!!rdp->nocb_gp_gp],
2411 (long)rdp->nocb_gp_seq,
2412 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2413 }
2414
2415 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)2416 static void show_rcu_nocb_state(struct rcu_data *rdp)
2417 {
2418 struct rcu_segcblist *rsclp = &rdp->cblist;
2419 bool waslocked;
2420 bool wastimer;
2421 bool wassleep;
2422
2423 if (rdp->nocb_gp_rdp == rdp)
2424 show_rcu_nocb_gp_state(rdp);
2425
2426 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2427 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2428 "kK"[!!rdp->nocb_cb_kthread],
2429 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2430 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2431 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2432 "sS"[!!rdp->nocb_cb_sleep],
2433 ".W"[swait_active(&rdp->nocb_cb_wq)],
2434 jiffies - rdp->nocb_bypass_first,
2435 jiffies - rdp->nocb_nobypass_last,
2436 rdp->nocb_nobypass_count,
2437 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2438 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2439 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2440 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2441 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2442 rcu_segcblist_n_cbs(&rdp->cblist));
2443
2444 /* It is OK for GP kthreads to have GP state. */
2445 if (rdp->nocb_gp_rdp == rdp)
2446 return;
2447
2448 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2449 wastimer = timer_pending(&rdp->nocb_bypass_timer);
2450 wassleep = swait_active(&rdp->nocb_gp_wq);
2451 if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2452 return; /* Nothing untowards. */
2453
2454 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2455 "lL"[waslocked],
2456 "dD"[!!rdp->nocb_defer_wakeup],
2457 "tT"[wastimer],
2458 "sS"[!!rdp->nocb_gp_sleep],
2459 ".W"[wassleep]);
2460 }
2461
2462 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2463
2464 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)2465 static void rcu_nocb_lock(struct rcu_data *rdp)
2466 {
2467 }
2468
2469 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)2470 static void rcu_nocb_unlock(struct rcu_data *rdp)
2471 {
2472 }
2473
2474 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)2475 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2476 unsigned long flags)
2477 {
2478 local_irq_restore(flags);
2479 }
2480
2481 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)2482 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2483 {
2484 lockdep_assert_irqs_disabled();
2485 }
2486
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)2487 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2488 {
2489 }
2490
rcu_nocb_gp_get(struct rcu_node * rnp)2491 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2492 {
2493 return NULL;
2494 }
2495
rcu_init_one_nocb(struct rcu_node * rnp)2496 static void rcu_init_one_nocb(struct rcu_node *rnp)
2497 {
2498 }
2499
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)2500 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2501 unsigned long j)
2502 {
2503 return true;
2504 }
2505
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)2506 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2507 bool *was_alldone, unsigned long flags)
2508 {
2509 return false;
2510 }
2511
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)2512 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2513 unsigned long flags)
2514 {
2515 WARN_ON_ONCE(1); /* Should be dead code! */
2516 }
2517
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2518 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2519 {
2520 }
2521
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2522 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2523 {
2524 return false;
2525 }
2526
do_nocb_deferred_wakeup(struct rcu_data * rdp)2527 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2528 {
2529 }
2530
rcu_spawn_cpu_nocb_kthread(int cpu)2531 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2532 {
2533 }
2534
rcu_spawn_nocb_kthreads(void)2535 static void __init rcu_spawn_nocb_kthreads(void)
2536 {
2537 }
2538
show_rcu_nocb_state(struct rcu_data * rdp)2539 static void show_rcu_nocb_state(struct rcu_data *rdp)
2540 {
2541 }
2542
2543 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2544
2545 /*
2546 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2547 * grace-period kthread will do force_quiescent_state() processing?
2548 * The idea is to avoid waking up RCU core processing on such a
2549 * CPU unless the grace period has extended for too long.
2550 *
2551 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2552 * CONFIG_RCU_NOCB_CPU CPUs.
2553 */
rcu_nohz_full_cpu(void)2554 static bool rcu_nohz_full_cpu(void)
2555 {
2556 #ifdef CONFIG_NO_HZ_FULL
2557 if (tick_nohz_full_cpu(smp_processor_id()) &&
2558 (!rcu_gp_in_progress() ||
2559 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2560 return true;
2561 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2562 return false;
2563 }
2564
2565 /*
2566 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2567 */
rcu_bind_gp_kthread(void)2568 static void rcu_bind_gp_kthread(void)
2569 {
2570 if (!tick_nohz_full_enabled())
2571 return;
2572 housekeeping_affine(current, HK_FLAG_RCU);
2573 }
2574
2575 /* Record the current task on dyntick-idle entry. */
rcu_dynticks_task_enter(void)2576 static __always_inline void rcu_dynticks_task_enter(void)
2577 {
2578 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2579 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2580 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2581 }
2582
2583 /* Record no current task on dyntick-idle exit. */
rcu_dynticks_task_exit(void)2584 static __always_inline void rcu_dynticks_task_exit(void)
2585 {
2586 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2587 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2588 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2589 }
2590
2591 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
rcu_dynticks_task_trace_enter(void)2592 static __always_inline void rcu_dynticks_task_trace_enter(void)
2593 {
2594 #ifdef CONFIG_TASKS_TRACE_RCU
2595 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2596 current->trc_reader_special.b.need_mb = true;
2597 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2598 }
2599
2600 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
rcu_dynticks_task_trace_exit(void)2601 static __always_inline void rcu_dynticks_task_trace_exit(void)
2602 {
2603 #ifdef CONFIG_TASKS_TRACE_RCU
2604 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2605 current->trc_reader_special.b.need_mb = false;
2606 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2607 }
2608