# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest from mindspore import nn, context from mindspore import ops as P from mindspore.train import DatasetHelper, connect_network_with_dataset import mindspore.dataset as ds context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def _exec_preprocess(network, is_train, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1, dataset_helper=None): if dataset_sink_mode and not is_train: dataset.__loop_size__ = 1 if dataset_helper is None: dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num) if dataset_sink_mode: network = connect_network_with_dataset(network, dataset_helper) network.set_train(is_train) return dataset_helper, network def _eval_dataset_sink_process(network, valid_dataset): dataset_helper, eval_network = _exec_preprocess(network, is_train=False, dataset=valid_dataset, dataset_sink_mode=True) for inputs1, inputs2 in zip(dataset_helper, valid_dataset.create_dict_iterator()): outputs = eval_network(*inputs1) for elem1, (_, elem2) in zip(outputs, inputs2.items()): assert elem1.shape == elem2.shape def dataset_generator(): for i in range(1, 10): yield ( np.ones((32, i), dtype=np.float32), np.zeros((32, i, i, 3), dtype=np.int32), np.ones((32,), dtype=np.float32), np.ones((32, i, 8), dtype=np.float32), np.ones((32, 8, 8), dtype=np.float32)) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.relu = P.ReLU() def construct(self, x1, x2, x3, x4, x5): x1 = self.relu(x1) x1 = self.relu(x1) x2 = self.relu(x2) x3 = self.relu(x3) x3 = self.relu(x3) x4 = self.relu(x4) x5 = self.relu(x5) return x1, x2, x3, x4, x5 @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_getnext_dynamic_pipeline(): network = Net() dataset = ds.GeneratorDataset(dataset_generator, ["data1", "data2", "data3", "data4", "data5"]) dataset.set_dynamic_columns(columns={"data1": [32, None], "data2": [32, None, None, 3], "data3": [32], "data4": [32, None, 8], "data5": [32, 8, 8]}) _eval_dataset_sink_process(network, dataset)