# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class TestScatterAddNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterAddNet, self).__init__() self.scatter_add = P.ScatterAdd(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_add(self.inputx, self.indices, self.updates) return out def scatter_add_net(inputx, indices, updates): lock = True net = TestScatterAddNet(lock, inputx, indices, updates) return net() def scatter_add_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterAddNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_small_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterAddNet(lock, inputx, indices, updates) net() expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_shape_float32(): inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]], [[13., 14., 15., 16.], [17., 18., 19., 20.], [21., 22., 23., 24.]]], [[[73., 74., 75., 76.], [77., 78., 79., 80.], [81., 82., 83., 84.]], [[85., 86., 87., 88.], [89., 90., 91., 92.], [93., 94., 95., 96.]]], [[[25., 26., 27., 28.], [29., 30., 31., 32.], [33., 34., 35., 36.]], [[37., 38., 39., 40.], [41., 42., 43., 44.], [45., 46., 47., 48.]]], [[[49., 50., 51., 52.], [53., 54., 55., 56.], [57., 58., 59., 60.]], [[61., 62., 63., 64.], [65., 66., 67., 68.], [69., 70., 71., 72.]]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_small_float32_use_locking_false(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([1, 0]).astype(np.int32)) updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) output = scatter_add_use_locking_false_net(inputx, indices, updates) expected = np.array([[3., 4., 5.], [0., 1., 2.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_input_less_than_1_float32(): inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516], [0.876542, 0.451611, 0.55112], [0.111244, 0.633333, 0.34444]]).astype(np.float32)) indices = Tensor(np.array([[[1, 0, 2], [2, 2, 0]], [[1, 0, 1], [2, 1, 2]]]).astype(np.int32)) updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[141.21414, 144.41515, 147.51517], [208.87654, 212.45161, 216.55112], [257.11124, 262.63333, 267.34442]], dtype=np.float32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_float16(): inputx = Tensor(np.zeros((2, 3)).astype(np.float16)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[6., 8., 10.], [12., 14., 16.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_float16(): inputx = Tensor(np.zeros((2, 3, 4)).astype(np.float16)) indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[138., 140., 142., 144.], [146., 148., 150., 152.], [154., 156., 158., 160.]], [[186., 188., 190., 192.], [194., 196., 198., 200.], [202., 204., 206., 208.]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_disordered_float16(): inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16))) indices = Tensor(np.array([[[0, 1, 2], [2, 1, 0]], [[0, 0, 0], [2, 2, 2]]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[464., 468., 472., 476.], [187., 188., 189., 190.], [492., 496., 500., 504.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_large_int32(): inputx = Tensor(np.zeros((2, 3, 4)).astype(np.int32)) indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[[138., 140., 142., 144.], [146., 148., 150., 152.], [154., 156., 158., 160.]], [[186., 188., 190., 192.], [194., 196., 198., 200.], [202., 204., 206., 208.]]]).astype(np.int32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_add_disordered_int32(): inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32))) indices = Tensor(np.array([[[0, 1, 2], [2, 1, 0]], [[0, 0, 0], [2, 2, 2]]]).astype(np.int32)) updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) output = scatter_add_net(inputx, indices, updates) expected = np.array([[464., 468., 472., 476.], [187., 188., 189., 190.], [492., 496., 500., 504.]]).astype(np.int32) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterSubNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterSubNet, self).__init__() self.scatter_sub = P.ScatterSub(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_sub(self.inputx, self.indices, self.updates) return out def scatter_sub_net(inputx, indices, updates): lock = True net = TestScatterSubNet(lock, inputx, indices, updates) return net() def scatter_sub_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterSubNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterSubNet(lock, inputx, indices, updates) net() expected = np.array([[-6., -8., -10.], [-12., -14., -16.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_large_shape_float32(): inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) output = scatter_sub_net(inputx, indices, updates) expected = np.array( [[[[1.0, 0.0, -1.0, -2.0], [-3.0, -4.0, -5.0, -6.0], [-7.0, -8.0, -9.0, -10.0]], [[-11.0, -12.0, -13.0, -14.0], [-15.0, -16.0, -17.0, -18.0], [-19.0, -20.0, -21.0, -22.0]]], [[[-71.0, -72.0, -73.0, -74.0], [-75.0, -76.0, -77.0, -78.0], [-79.0, -80.0, -81.0, -82.0]], [[-83.0, -84.0, -85.0, -86.0], [-87.0, -88.0, -89.0, -90.0], [-91.0, -92.0, -93.0, -94.0]]], [[[-23.0, -24.0, -25.0, -26.0], [-27.0, -28.0, -29.0, -30.0], [-31.0, -32.0, -33.0, -34.0]], [[-35.0, -36.0, -37.0, -38.0], [-39.0, -40.0, -41.0, -42.0], [-43.0, -44.0, -45.0, -46.0]]], [[[-47.0, -48.0, -49.0, -50.0], [-51.0, -52.0, -53.0, -54.0], [-55.0, -56.0, -57.0, -58.0]], [[-59.0, -60.0, -61.0, -62.0], [-63.0, -64.0, -65.0, -66.0], [-67.0, -68.0, -69.0, -70.0]]]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_sub_small_float32_use_locking_false(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([1, 0]).astype(np.int32)) updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) output = scatter_sub_use_locking_false_net(inputx, indices, updates) expected = np.array([[-3., -4., -5.], [-0., -1., -2.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMulNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMulNet, self).__init__() self.scatter_mul = P.ScatterMul(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_mul(self.inputx, self.indices, self.updates) return out def scatter_mul_net(inputx, indices, updates): lock = True net = TestScatterMulNet(lock, inputx, indices, updates) return net() def scatter_mul_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMulNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_input_updated(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMulNet(lock, inputx, indices, updates) net() expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_mul_net(inputx, indices, updates) expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_mul_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_mul_use_locking_false_net(inputx, indices, updates) expected = np.array([[0., 7., 16.], [27., 40., 55.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterDivNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterDivNet, self).__init__() self.scatter_div = P.ScatterDiv(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_div(self.inputx, self.indices, self.updates) return out def scatter_div_net(inputx, indices, updates): lock = True net = TestScatterDivNet(lock, inputx, indices, updates) return net() def scatter_div_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterDivNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterDivNet(lock, inputx, indices, updates) net() expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_output_updated_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) output = scatter_div_net(inputx, indices, updates) expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_div_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.ones(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_div_use_locking_false_net(inputx, indices, updates) expected = np.array([[10., 10., 10.], [10., 10., 10.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMaxNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMaxNet, self).__init__() self.scatter_max = P.ScatterMax(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_max(self.inputx, self.indices, self.updates) return out def scatter_max_net(inputx, indices, updates): lock = True net = TestScatterMaxNet(lock, inputx, indices, updates) return net() def scatter_max_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMaxNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMaxNet(lock, inputx, indices, updates) net() expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_output_updated_float32(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_max_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_max_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_max_use_locking_false_net(inputx, indices, updates) expected = np.array([[10., 10., 10.], [10., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterMinNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterMinNet, self).__init__() self.scatter_min = P.ScatterMin(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_min(self.inputx, self.indices, self.updates) return out def scatter_min_net(inputx, indices, updates): lock = True net = TestScatterMinNet(lock, inputx, indices, updates) return net() def scatter_min_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterMinNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterMinNet(lock, inputx, indices, updates) net() expected = np.array([[0., 0., 0.], [0., 0., 0.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_min_net(inputx, indices, updates) expected = np.array([[0., 1., 1.], [1., 1., 1.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_min_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_min_use_locking_false_net(inputx, indices, updates) expected = np.array([[0., 1., 1.], [1., 1., 1.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) class TestScatterUpdateNet(nn.Cell): def __init__(self, lock, inputx, indices, updates): super(TestScatterUpdateNet, self).__init__() self.scatter_update = P.ScatterUpdate(use_locking=lock) self.inputx = Parameter(inputx, name="inputx") self.indices = Parameter(indices, name="indices") self.updates = Parameter(updates, name="updates") def construct(self): out = self.scatter_update(self.inputx, self.indices, self.updates) return out def scatter_update_net(inputx, indices, updates): lock = True net = TestScatterUpdateNet(lock, inputx, indices, updates) return net() def scatter_update_use_locking_false_net(inputx, indices, updates): lock = False net = TestScatterUpdateNet(lock, inputx, indices, updates) return net() @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_input_updated(): inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) lock = True net = TestScatterUpdateNet(lock, inputx, indices, updates) net() expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_output_updated_float32(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_update_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_scatter_update_small_float32_use_locking_false(): inputx = Tensor(np.ones((2, 3)).astype(np.float32)) indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) output = scatter_update_use_locking_false_net(inputx, indices, updates) expected = np.array([[6., 7., 8.], [9., 10., 11.]]) np.testing.assert_array_almost_equal(output.asnumpy(), expected)