# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations.array_ops as P from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter class BatchToSpaceNet(nn.Cell): def __init__(self, nptype, block_size=2, input_shape=(4, 1, 2, 2)): super(BatchToSpaceNet, self).__init__() self.BatchToSpace = P.BatchToSpace(block_size=block_size, crops=[[0, 0], [0, 0]]) input_size = 1 for i in input_shape: input_size = input_size*i data_np = np.arange(input_size).reshape(input_shape).astype(nptype) self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1') @ms_function def construct(self): y1 = self.BatchToSpace(self.x1) return y1 def BatchToSpace(nptype, block_size=2, input_shape=(4, 1, 2, 2)): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') input_size = 1 for i in input_shape: input_size = input_size*i expect = np.array([[[[0, 4, 1, 5], [8, 12, 9, 13], [2, 6, 3, 7], [10, 14, 11, 15]]]]).astype(nptype) dts = BatchToSpaceNet(nptype, block_size, input_shape) output = dts() assert (output.asnumpy() == expect).all() def BatchToSpace_pynative(nptype, block_size=2, input_shape=(4, 1, 2, 2)): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') input_size = 1 for i in input_shape: input_size = input_size*i expect = np.array([[[[0, 4, 1, 5], [8, 12, 9, 13], [2, 6, 3, 7], [10, 14, 11, 15]]]]).astype(nptype) dts = P.BatchToSpace(block_size=block_size, crops=[[0, 0], [0, 0]]) arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype)) output = dts(arr_input) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_batchtospace_graph_float32(): BatchToSpace(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_batchtospace_graph_float16(): BatchToSpace(np.float16)