# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetConv3dTranspose(nn.Cell): def __init__(self): super(NetConv3dTranspose, self).__init__() in_channel = 2 out_channel = 2 kernel_size = 2 self.conv_trans = P.Conv3DTranspose(in_channel, out_channel, kernel_size, pad_mode="pad", pad=1, stride=1, dilation=1, group=1) def construct(self, x, w): return self.conv_trans(x, w) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_conv3d_transpose(): x = Tensor(np.arange(1 * 2 * 3 * 3 * 3).reshape(1, 2, 3, 3, 3).astype(np.float32)) w = Tensor(np.ones((2, 2, 2, 2, 2)).astype(np.float32)) expect = np.array([[[[[320., 336.], [368., 384.]], [[464., 480.], [512., 528.]]], [[[320., 336.], [368., 384.]], [[464., 480.], [512., 528.]]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") conv3dtranspose = NetConv3dTranspose() output = conv3dtranspose(x, w) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") conv3dtranspose = NetConv3dTranspose() output = conv3dtranspose(x, w) assert (output.asnumpy() == expect).all()