# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetReLU6(nn.Cell): def __init__(self): super(NetReLU6, self).__init__() self.relu6 = P.ReLU6() def construct(self, x): return self.relu6(x) class NetRelu6Dynamic(nn.Cell): def __init__(self): super(NetRelu6Dynamic, self).__init__() self.test_dynamic = inner.GpuConvertToDynamicShape() self.relu6 = P.ReLU6() def construct(self, x): x = self.test_dynamic(x) return self.relu6(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu6(): x = Tensor(np.array([[[[-1, 1, 10], [5.9, 6.1, 6], [10, 1, -1]]]]).astype(np.float32)) expect = np.array([[[[0, 1, 6,], [5.9, 6, 6,], [6, 1, 0.]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu6 = NetReLU6() output = relu6(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu6 = NetReLU6() output = relu6(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu6_dynamic(): x1 = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32)) expect1 = np.array([[0, 4, 0,], [2, 0, 6,]]).astype(np.float32) x2 = Tensor(np.array([[[[-1, 1, 10], [5.9, 6.1, 6], [10, 1, -1]]]]).astype(np.float32)) expect2 = np.array([[[[0, 1, 6,], [5.9, 6, 6,], [6, 1, 0.]]]]).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu6 = NetRelu6Dynamic() output1 = relu6(x1) assert (output1.asnumpy() == expect1).all() output2 = relu6(x2) assert (output2.asnumpy() == expect2).all()