# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class ReverseV2Net(nn.Cell): def __init__(self, axis): super(ReverseV2Net, self).__init__() self.reverse_v2 = P.ReverseV2(axis) def construct(self, x): return self.reverse_v2(x) def reverse_v2(x_numpy, axis): x = Tensor(x_numpy) reverse_v2_net = ReverseV2Net(axis) output = reverse_v2_net(x).asnumpy() expected_output = np.flip(x_numpy, axis) np.testing.assert_array_equal(output, expected_output) def reverse_v2_3d(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_numpy = np.arange(60).reshape(3, 4, 5).astype(nptype) reverse_v2(x_numpy, (0,)) reverse_v2(x_numpy, (1,)) reverse_v2(x_numpy, (2,)) reverse_v2(x_numpy, (2, -2)) reverse_v2(x_numpy, (-3, 1, 2)) def reverse_v2_1d(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_numpy = np.arange(4).astype(nptype) reverse_v2(x_numpy, (0,)) reverse_v2(x_numpy, (-1,)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_float16(): reverse_v2_1d(np.float16) reverse_v2_3d(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_float32(): reverse_v2_1d(np.float32) reverse_v2_3d(np.float32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_uint8(): reverse_v2_1d(np.uint8) reverse_v2_3d(np.uint8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_int16(): reverse_v2_1d(np.int16) reverse_v2_3d(np.int16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_int32(): reverse_v2_1d(np.int32) reverse_v2_3d(np.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_int64(): reverse_v2_1d(np.int64) reverse_v2_3d(np.int64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reverse_v2_invalid_axis(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.arange(60).reshape(1, 2, 3, 2, 5).astype(np.int32)) with pytest.raises(ValueError) as info: reverse_v2_net = ReverseV2Net((0, 1, 2, 1)) _ = reverse_v2_net(x) assert "'axis' cannot contain duplicate dimensions" in str(info.value) with pytest.raises(ValueError) as info: reverse_v2_net = ReverseV2Net((-2, -1, 3)) _ = reverse_v2_net(x) assert "'axis' cannot contain duplicate dimensions" in str(info.value)