# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, ops class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.round = ops.Round() def construct(self, x): return self.round(x) def generate_testcases(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype) net = Net() output = net(Tensor(x)) expect = np.round(x).astype(nptype) np.testing.assert_almost_equal(output.asnumpy(), expect) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype) net = Net() output = net(Tensor(x)) expect = np.round(x).astype(nptype) np.testing.assert_almost_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_round_float32(): generate_testcases(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_round_float16(): generate_testcases(np.float16)