# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops as ops import mindspore.ops.operations as P def test_case_1(): class Net1(Cell): def __init__(self): super(Net1, self).__init__() self.sub = ops.Sub() self.mul = ops.Mul() self.sum = ops.ReduceSum(keep_dims=False) self.add = ops.Add() self.pow = ops.Pow() def construct(self, x, y, z): t1 = self.sub(x, y) t2 = self.mul(t1, x) t3 = self.add(y, t2) t4 = self.add(t3, t3) t5 = z + 1.0 t6 = self.sum(t4) t7 = self.add(t5, t6) return t7 def get_output(x, y, z, net, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_obj = net() output = net_obj(x, y, z) return output N = 8 x = Tensor(np.random.uniform(1, 2, [N, N, N]).astype(np.float32)) y = Tensor(np.random.uniform(1, 2, [N, N, N]).astype(np.float32)) z = Tensor(np.random.uniform(1, 2, [N, N, N]).astype(np.float32)) expect = get_output(x, y, z, Net1, False) output = get_output(x, y, z, Net1, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 1.e-2, 1.e-2) def test_case_2(): class Net2(Cell): def __init__(self): super(Net2, self).__init__() self.sqrt = P.Sqrt() self.sum = P.ReduceSum(keep_dims=True) self.add = P.Add() self.neg = P.Neg() def construct(self, x, y): sqrt_res = self.sqrt(x) add_res = self.add(y, sqrt_res) neg_res = self.neg(add_res) return neg_res def get_output(x, y, net, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_obj = net() output = net_obj(x, y) return output N = 16 x = Tensor(np.random.uniform(1, 2, [N, N]).astype(np.float32)) y = Tensor(np.random.uniform(1, 2, [N, N]).astype(np.float32)) expect = get_output(x, y, Net2, False) output = get_output(x, y, Net2, True) expect_np = expect[0].asnumpy().copy() output_np = output[0].asnumpy().copy() assert np.allclose(expect_np, output_np, 1.e-2, 1.e-2) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_case_1(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(graph_kernel_flags="--enable_low_precision=true --disable_pass=highlevelopt2.atomic_clean") test_case_1() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_case_2(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(graph_kernel_flags="--enable_low_precision=true") test_case_2() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_ascend_case_1(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(graph_kernel_flags="--enable_low_precision=true --disable_pass=highlevelopt2.atomic_clean") test_case_1() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_ascend_case_2(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(graph_kernel_flags="--enable_low_precision=true") test_case_2()