# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P class Net(Cell): def __init__(self): super(Net, self).__init__() self.reduce_mean = P.ReduceMean(keep_dims=False) def construct(self, x): return self.reduce_mean(x) def test_reduce_mean(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) expect = np.mean(input_x, keepdims=False) net = Net() result = net(Tensor(input_x)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_reduce_mean_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") test_reduce_mean() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_reduce_mean_ascend(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend") test_reduce_mean()