# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, axis): super(Net, self).__init__() self.squeeze = P.Squeeze(axis) def construct(self, x): return self.squeeze(x) def get_output(x, axis=(), enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = Net(axis) output = net(x) return output def test_squeeze(shape, dtype, axis=()): x = Tensor(np.random.normal(0, 10, shape).astype(dtype)) expect = get_output(x, axis, False) output = get_output(x, axis, True) assert np.allclose(expect.asnumpy(), output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_squeeze_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_squeeze((1, 16, 1, 1), np.int32) test_squeeze((1, 16, 1, 1), np.float32, (0, 2))