# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ train Conv2dBnFoldQuant Cell """ import pytest import numpy as np from mindspore import nn from mindspore import context from mindspore import Tensor from mindspore.common import set_seed from mindspore.compression.quant import create_quant_config class Net(nn.Cell): def __init__(self, qconfig): super(Net, self).__init__() self.conv = nn.Conv2dBnFoldQuant(2, 3, kernel_size=(2, 2), stride=(1, 1), pad_mode='valid', quant_config=qconfig) def construct(self, x): return self.conv(x) def test_conv2d_bn_fold_quant(): set_seed(1) quant_config = create_quant_config() network = Net(quant_config) inputs = Tensor(np.ones([1, 2, 5, 5]).astype(np.float32)) label = Tensor(np.ones([1, 3, 4, 4]).astype(np.int32)) opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), learning_rate=0.1, momentum=0.9) loss = nn.MSELoss() net_with_loss = nn.WithLossCell(network, loss) train_network = nn.TrainOneStepCell(net_with_loss, opt) train_network.set_train() out_loss = train_network(inputs, label) expect_loss = np.array([0.940427]) error = np.array([0.1]) diff = out_loss.asnumpy() - expect_loss assert np.all(abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_conv2d_bn_fold_quant_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_conv2d_bn_fold_quant()