# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tuple_slice """ import numpy as np import mindspore.ops.operations as P from mindspore import Tensor from mindspore.nn import Cell from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config from ....mindspore_test_framework.pipeline.forward.verify_exception \ import pipeline_for_verify_exception_for_case_by_case_config class NetWork_1(Cell): """ NetWork_1 definition """ def __init__(self): super(NetWork_1, self).__init__() self.addN = P.AddN() self.index_0 = Tensor(3) self.index_1 = Tensor([5]) self.index_3 = Tensor([True]) def construct(self, tensor_tuple): tensor_tuple_slice0 = tensor_tuple[:] tensor_tuple_slice1 = tensor_tuple[:self.index_0] tensor_tuple_slice2 = tensor_tuple[self.index_3:] tensor_tuple_slice3 = tensor_tuple[2:self.index_1:True] sum0 = self.addN(tensor_tuple_slice0) sum1 = self.addN(tensor_tuple_slice1) sum2 = self.addN(tensor_tuple_slice2) sum3 = self.addN(tensor_tuple_slice3) ret = sum0 + sum1 + sum2 + sum3 return ret class NetWork_2(Cell): """ NetWork_2 definition """ def __init__(self): super(NetWork_2, self).__init__() self.addN = P.AddN() self.step = Tensor([-1]) self.index_0 = Tensor(-6) def construct(self, tensor_tuple): tensor_tuple_slice0 = tensor_tuple[::self.step] tensor_tuple_slice1 = tensor_tuple[-1::-1] tensor_tuple_slice2 = tensor_tuple[:-4:-1] tensor_tuple_slice3 = tensor_tuple[self.index_0:3] tensor_tuple_slice4 = tensor_tuple[-1:-6:-2] sum0 = self.addN(tensor_tuple_slice0) sum1 = self.addN(tensor_tuple_slice1) sum2 = self.addN(tensor_tuple_slice2) sum3 = self.addN(tensor_tuple_slice3) sum4 = self.addN(tensor_tuple_slice4) ret = sum0 + sum1 + sum2 + sum3 + sum4 return ret class NetWorkSliceStepZero(Cell): """ NetWork_3 definition """ def __init__(self): super(NetWorkSliceStepZero, self).__init__() def construct(self, tensor_tuple): tensor_tuple_slice = tensor_tuple[0:3:0] return tensor_tuple_slice class NetWorkOutOfBounds(Cell): """ NetWork_3 definition """ def __init__(self): super(NetWorkOutOfBounds, self).__init__() def construct(self, tensor_tuple): return tensor_tuple[100] class NetWorkTensorSizeGreaterThanTwo(Cell): """ NetWork_3 definition """ def __init__(self): super(NetWorkTensorSizeGreaterThanTwo, self).__init__() self.index_0 = Tensor([2, 3]) def construct(self, tensor_tuple): return tensor_tuple[1:self.index_0] class NetWorkTensorDtypeFloat(Cell): """ NetWork_3 definition """ def __init__(self): super(NetWorkTensorDtypeFloat, self).__init__() self.index_0 = Tensor([2.1]) def construct(self, tensor_tuple): return tensor_tuple[1:self.index_0] test_cases = [ ('SlicePositive', { 'block': NetWork_1(), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceNegative', { 'block': NetWork_2(), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ] test_cases_for_verify_exception = [ ('SliceStepZero', { 'block': (NetWorkSliceStepZero(), {'exception': ValueError}), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceOutOfBounds', { 'block': (NetWorkOutOfBounds(), {'exception': IndexError}), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceTensorSizeGreaterThanTwo', { 'block': (NetWorkTensorSizeGreaterThanTwo(), {'exception': TypeError}), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceTensorDtypeFloat', { 'block': (NetWorkTensorDtypeFloat(), {'exception': TypeError}), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_compile(): return test_cases @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config) def test_check_exception(): return test_cases_for_verify_exception