# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, dim, index, strategy1=None, strategy2=None): super().__init__() self.gatherd = P.GatherD().shard(strategy1) self.neg = P.Neg().shard(strategy2) self.input = Parameter(index, "w1") self.dim = dim def construct(self, x, b): out = self.gatherd(self.input, self.dim, x) out = self.neg(out) return out _x = Tensor(np.ones([16, 32, 64]), dtype=ms.int32) _w1 = Tensor(np.ones([16, 32, 64]), dtype=ms.float32) _b = Tensor(np.ones([16, 32, 64]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_gathernd_dim0(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 2, 8), (1, 2, 8)) strategy2 = ((1, 2, 8),) net = Net(0, _w1, strategy1, strategy2) compile_net(net) def test_gathernd_dim2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 8, 1), (2, 8, 1)) strategy2 = ((2, 8, 1),) net = Net(2, _w1, strategy1, strategy2) compile_net(net) def test_gathernd_dim2_default_batch_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = None strategy2 = ((2, 8, 1),) net = Net(2, _w1, strategy1, strategy2) compile_net(net) def test_gathernd_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net(1, _w1) compile_net(net) def test_gathernd_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 2, 4), (1, 2, 4)) strategy2 = ((1, 2, 4),) net = Net(0, _w1, strategy1, strategy2) compile_net(net)