# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, weight, w2, begin, end, strategy1=None, strategy2=None, is_parameter=True): super().__init__() self.mul = P.Mul().shard(strategy1) self.slice = P.Slice().shard(strategy2) if is_parameter: self.weight = Parameter(weight, "w1") else: self.weight = weight self.mul2 = P.Mul() self.weight2 = Parameter(w2, "w2") self.begin = begin self.end = end def construct(self, x, b): out = self.slice(self.weight, self.begin, self.end) out = self.mul(x, out) out = self.mul2(out, self.weight2) return out class Net2(Cell): def __init__(self, weight2, begin, end, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.slice = P.Slice().shard(strategy2) self.weight2 = Parameter(weight2, "w2") self.begin = begin self.end = end def construct(self, x, b): out = self.mul(x, self.weight2) out = self.slice(out, self.begin, self.end) return out _x = Tensor(np.ones([128, 64, 1]), dtype=ms.float32) _w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32) _w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32) _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_slice_no_fully_fetch_split_error(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 2),) net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True) with pytest.raises(RuntimeError): compile_net(net) def test_slice_parameter(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 1), (1, 4, 2)) strategy2 = ((1, 4, 2),) net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2) compile_net(net) def test_slice_tensor(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 1), (1, 4, 2)) strategy2 = ((1, 4, 2),) net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=False) compile_net(net) def test_slice_parameter_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 1), (1, 4, 2)) strategy2 = ((1, 2, 2),) net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True) compile_net(net) def test_slice_output(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8, 1), (1, 8, 1)) strategy2 = ((1, 8, 1),) net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2) compile_net(net) def test_stridedslice_output_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8, 1), (1, 8, 1)) strategy2 = ((1, 4, 1),) net = Net2(_w2, (0, 0, 0), (64, 64, 1), strategy1, strategy2) compile_net(net) def test_stridedslice_no_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8, 1), (1, 8, 1)) strategy2 = None net = Net2(_w2, (0, 0, 0), (128, 64, 1), strategy1, strategy2) compile_net(net) def test_slice_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w2, (0, 0, 0), (32, 64, 1)) compile_net(net)