# Copyright 2016 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import threading from src.proto.grpc.testing import stats_pb2 class Histogram(object): """Histogram class used for recording performance testing data. This class is thread safe. """ def __init__(self, resolution, max_possible): self._lock = threading.Lock() self._resolution = resolution self._max_possible = max_possible self._sum = 0 self._sum_of_squares = 0 self.multiplier = 1.0 + self._resolution self._count = 0 self._min = self._max_possible self._max = 0 self._buckets = [0] * (self._bucket_for(self._max_possible) + 1) def reset(self): with self._lock: self._sum = 0 self._sum_of_squares = 0 self._count = 0 self._min = self._max_possible self._max = 0 self._buckets = [0] * (self._bucket_for(self._max_possible) + 1) def add(self, val): with self._lock: self._sum += val self._sum_of_squares += val * val self._count += 1 self._min = min(self._min, val) self._max = max(self._max, val) self._buckets[self._bucket_for(val)] += 1 def get_data(self): with self._lock: data = stats_pb2.HistogramData() data.bucket.extend(self._buckets) data.min_seen = self._min data.max_seen = self._max data.sum = self._sum data.sum_of_squares = self._sum_of_squares data.count = self._count return data def merge(self, another_data): with self._lock: for i in range(len(self._buckets)): self._buckets[i] += another_data.bucket[i] self._min = min(self._min, another_data.min_seen) self._max = max(self._max, another_data.max_seen) self._sum += another_data.sum self._sum_of_squares += another_data.sum_of_squares self._count += another_data.count def _bucket_for(self, val): val = min(val, self._max_possible) return int(math.log(val, self.multiplier))