# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ This test is used to monitor inversion attack method of MindArmour. """ import numpy as np import pytest import mindspore.context as context from mindspore.nn import Cell, MSELoss from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation from mindspore import Tensor class GradWrapWithLoss(Cell): def __init__(self, network): super(GradWrapWithLoss, self).__init__() self._grad_all = GradOperation(get_all=True, sens_param=False) self._network = network def construct(self, inputs, labels): gout = self._grad_all(self._network)(inputs, labels) return gout[0] class AddNet(Cell): def __init__(self): super(AddNet, self).__init__() self._add = P.Add() def construct(self, inputs): out = self._add(inputs, inputs) return out class InversionLoss(Cell): def __init__(self, network, weights): super(InversionLoss, self).__init__() self._network = network self._mse_loss = MSELoss() self._weights = weights self._get_shape = P.Shape() self._zeros = P.ZerosLike() self._device_target = context.get_context("device_target") def construct(self, input_data, target_features): output = self._network(input_data) loss_1 = self._mse_loss(output, target_features) / self._mse_loss(target_features, self._zeros(target_features)) data_shape = self._get_shape(input_data) if self._device_target == 'CPU': split_op_1 = P.Split(2, data_shape[2]) split_op_2 = P.Split(3, data_shape[3]) data_split_1 = split_op_1(input_data) data_split_2 = split_op_2(input_data) loss_2 = 0 for i in range(1, data_shape[2]): loss_2 += self._mse_loss(data_split_1[i], data_split_1[i - 1]) for j in range(1, data_shape[3]): loss_2 += self._mse_loss(data_split_2[j], data_split_2[j - 1]) else: data_copy_1 = self._zeros(input_data) data_copy_2 = self._zeros(input_data) data_copy_1[:, :, :(data_shape[2] - 1), :] = input_data[:, :, 1:, :] data_copy_2[:, :, :, :(data_shape[2] - 1)] = input_data[:, :, :, 1:] loss_2 = self._mse_loss(input_data, data_copy_1) + self._mse_loss(input_data, data_copy_2) loss_3 = self._mse_loss(input_data, self._zeros(input_data)) loss = loss_1*self._weights[0] + loss_2*self._weights[1] + loss_3*self._weights[2] return loss class ImageInversionAttack: def __init__(self, network, input_shape, loss_weights=(1, 0.2, 5)): self._network = network self._loss = InversionLoss(self._network, loss_weights) self._input_shape = input_shape def generate(self, target_features): target_features = target_features img_num = target_features.shape[0] test_input = np.random.random((img_num,) + self._input_shape).astype(np.float32) loss_net = self._loss loss_grad = GradWrapWithLoss(loss_net) x_grad = loss_grad(Tensor(test_input), Tensor(target_features)).asnumpy() return x_grad @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_loss_grad_graph(): context.set_context(mode=context.GRAPH_MODE) net = AddNet() target_features = np.random.random((1, 32, 32)).astype(np.float32) inversion_attack = ImageInversionAttack(net, input_shape=(1, 32, 32)) grads = inversion_attack.generate(target_features) assert np.any(grads != 0), 'grad result can not be all zeros'