# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from tqdm import tqdm import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore.dataset import NumpySlicesDataset from mindspore import context, Tensor context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class AutoEncoderTrainNetwork(nn.Cell): def __init__(self): super(AutoEncoderTrainNetwork, self).__init__() self.loss_fun = nn.MSELoss() self.net = nn.CellList([nn.Dense(2, 32), nn.Dense(32, 2)]) self.relu = nn.ReLU() def reconstruct_sample(self, x: Tensor): for _, layer in enumerate(self.net): x = layer(x) x = self.relu(x) return x def construct(self, x: Tensor): recon_x = self.reconstruct_sample(x) return self.loss_fun(recon_x, x) def sample_2d_data(self, n_normals=2000, n_outliers=400): z = np.random.randn(n_normals, 2) outliers = np.random.uniform(low=-6, high=6, size=(n_outliers, 2)) centers = np.array([(2., 0), (-2., 0)]) sigma = 0.3 normal_points = sigma * z + centers[np.random.randint(len(centers), size=(n_normals,))] return np.vstack((normal_points, outliers)) def create_synthetic_dataset(self): transformed_dataset = self.sample_2d_data() for dim in range(transformed_dataset.shape[1]): min_val = transformed_dataset[:, dim].min() max_val = transformed_dataset[:, dim].max() if min_val != max_val: transformed_dataset[:, dim] = (transformed_dataset[:, dim] - min_val) / (max_val - min_val) elif min_val != 1: transformed_dataset[:, dim] = transformed_dataset[:, dim] / min_val transformed_dataset = transformed_dataset.astype(np.float32) return transformed_dataset def test_auto_monad_layer(): ae_with_loss = AutoEncoderTrainNetwork() transformed_dataset = ae_with_loss.create_synthetic_dataset() dataloader = NumpySlicesDataset(data=(transformed_dataset,), shuffle=True) dataloader = dataloader.batch(batch_size=16) optim = nn.RMSProp(params=ae_with_loss.trainable_params(), learning_rate=0.002,) train_net = nn.TrainOneStepCell(ae_with_loss, optim) train_net.set_train() gen_samples = dict() num_epoch = 21 for epoch in tqdm(range(num_epoch)): loss = [] for _, (batch,) in enumerate(dataloader): batch = Tensor(batch, dtype=ms.float32) loss_ = train_net(batch) loss.append(loss_.asnumpy()) avg_loss = np.array(loss).mean() if epoch % 10 == 0: gen_samples[epoch] = ae_with_loss.reconstruct_sample(Tensor(transformed_dataset)).asnumpy() print(f"epoch: {epoch}/{num_epoch}, avg loss: {avg_loss}")