# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import numpy as np import pytest import mindspore.nn as nn from mindspore import context from mindspore.common.tensor import Tensor from mindspore.common import dtype as mstype from mindspore.train.serialization import export, load ZERO = Tensor([0], mstype.int32) ONE = Tensor([1], mstype.int32) class RecrusiveNet(nn.Cell): def construct(self, x, z): def f(x, z): y = ZERO if x < 0: y = ONE elif x < 3: y = x * f(x - 1, z) elif x < 5: y = x * f(x - 2, z) else: y = f(x - 4, z) z = y + 1 + z return z return f(x, z) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_recrusive(): context.set_context(mode=context.GRAPH_MODE) network = RecrusiveNet() x = Tensor(np.array([1]).astype(np.float32)) y = Tensor(np.array([2]).astype(np.float32)) origin_out = network(x, y) file_name = "recrusive_net" export(network, x, y, file_name=file_name, file_format='MINDIR') mindir_name = file_name + ".mindir" assert os.path.exists(mindir_name) graph = load(mindir_name) loaded_net = nn.GraphCell(graph) outputs_after_load = loaded_net(x, y) assert origin_out == outputs_after_load