# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph Attention Networks.""" import mindspore.nn as nn from mindspore._checkparam import Validator from aggregator import AttentionAggregator class GAT(nn.Cell): """ Graph Attention Network Args: ftr_dims (int): Initial feature dimensions. num_class (int): Num of class to identify. num_nodes (int): Num of nodes in this graph. hidden_units (list[int]): Num of hidden units at each layer. num_heads (list[int]): Num of heads at each layer. attn_drop (float): Drop out ratio of attention coefficient, default 0.0. ftr_drop (float): Drop out ratio of feature, default 0.0. activation (Cell): Activation Function for output layer, default nn.Elu(). residual (bool): Whether to use residual connection between intermediate layers, default False. Examples: >>> ft_sizes = 1433 >>> num_class = 7 >>> num_nodes = 2708 >>> hid_units = [8] >>> n_heads = [8, 1] >>> activation = nn.ELU() >>> residual = False >>> input_data = Tensor( np.array(np.random.rand(1, 2708, 1433), dtype=np.float32)) >>> biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32)) >>> net = GAT(ft_sizes, num_class, num_nodes, hidden_units=hid_units, num_heads=n_heads, attn_drop=0.6, ftr_drop=0.6, activation=activation, residual=residual) >>> output = net(input_data, biases) """ def __init__(self, ftr_dims, num_class, num_nodes, hidden_units, num_heads, attn_drop=0.0, ftr_drop=0.0, activation=nn.ELU(), residual=False): super(GAT, self).__init__() self.ftr_dims = Validator.check_positive_int(ftr_dims) self.num_class = Validator.check_positive_int(num_class) self.num_nodes = Validator.check_positive_int(num_nodes) self.hidden_units = hidden_units self.num_heads = num_heads self.attn_drop = attn_drop self.ftr_drop = ftr_drop self.activation = activation self.residual = Validator.check_bool(residual) self.layers = [] # first layer self.layers.append(AttentionAggregator( self.ftr_dims, self.hidden_units[0], self.num_heads[0], self.ftr_drop, self.attn_drop, self.activation, residual=False)) # intermediate layer for i in range(1, len(self.hidden_units)): self.layers.append(AttentionAggregator( self.hidden_units[i-1]*self.num_heads[i-1], self.hidden_units[i], self.num_heads[i], self.ftr_drop, self.attn_drop, self.activation, residual=self.residual)) # output layer self.layers.append(AttentionAggregator( self.hidden_units[-1]*self.num_heads[-2], self.num_class, self.num_heads[-1], self.ftr_drop, self.attn_drop, activation=None, residual=False, output_transform='sum')) self.layers = nn.layer.CellList(self.layers) def construct(self, input_data, bias_mat): for cell in self.layers: input_data = cell(input_data, bias_mat) return input_data/self.num_heads[-1]