# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import time import pytest import numpy as np from mindspore import context from mindspore import Tensor from tests.models.official.gnn.gcn.src.gcn import GCN from tests.models.official.gnn.gcn.src.metrics import LossAccuracyWrapper, TrainNetWrapper from tests.models.official.gnn.gcn.src.config import ConfigGCN from tests.models.official.gnn.gcn.src.dataset import get_adj_features_labels, get_mask DATA_DIR = '/home/workspace/mindspore_dataset/cora/cora_mr/cora_mr' TRAIN_NODE_NUM = 140 EVAL_NODE_NUM = 500 TEST_NODE_NUM = 1000 SEED = 20 @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_gcn(): print("test_gcn begin") np.random.seed(SEED) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") config = ConfigGCN() config.dropout = 0.0 adj, feature, label_onehot, _ = get_adj_features_labels(DATA_DIR) nodes_num = label_onehot.shape[0] train_mask = get_mask(nodes_num, 0, TRAIN_NODE_NUM) eval_mask = get_mask(nodes_num, TRAIN_NODE_NUM, TRAIN_NODE_NUM + EVAL_NODE_NUM) test_mask = get_mask(nodes_num, nodes_num - TEST_NODE_NUM, nodes_num) class_num = label_onehot.shape[1] input_dim = feature.shape[1] gcn_net = GCN(config, input_dim, class_num) gcn_net.add_flags_recursive(fp16=True) adj = Tensor(adj) feature = Tensor(feature) eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay) test_net = LossAccuracyWrapper(gcn_net, label_onehot, test_mask, config.weight_decay) train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config) loss_list = [] for epoch in range(config.epochs): t = time.time() train_net.set_train() train_result = train_net(adj, feature) train_loss = train_result[0].asnumpy() train_accuracy = train_result[1].asnumpy() eval_net.set_train(False) eval_result = eval_net(adj, feature) eval_loss = eval_result[0].asnumpy() eval_accuracy = eval_result[1].asnumpy() loss_list.append(eval_loss) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss), "train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss), "val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t)) if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]): print("Early stopping...") break test_net.set_train(False) test_result = test_net(adj, feature) test_loss = test_result[0].asnumpy() test_accuracy = test_result[1].asnumpy() print("Test set results:", "loss=", "{:.5f}".format(test_loss), "accuracy=", "{:.5f}".format(test_accuracy)) assert test_accuracy > 0.812