# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test gnn aggregator.""" import numpy as np from aggregator import MeanAggregator, AttentionHead, AttentionAggregator import mindspore.context as context import mindspore.nn as nn import mindspore.ops.composite as C from mindspore import Tensor from mindspore.common.api import _cell_graph_executor context.set_context(mode=context.GRAPH_MODE) grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) class MeanAggregatorGrad(nn.Cell): """Backward of MeanAggregator""" def __init__(self, network): super(MeanAggregatorGrad, self).__init__() self.grad_op = grad_all_with_sens self.network = network def construct(self, x, sens): grad_op = self.grad_op(self.network)(x, sens) return grad_op def test_MeanAggregator(): """Compile MeanAggregator forward graph""" aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5) input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32)) _cell_graph_executor.compile(aggregator, input_data) def test_MeanAggregator_grad(): """Compile MeanAggregator backward graph""" aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5) input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32)) sens = Tensor(np.ones([32, 64]).astype(np.float32)) grad_op = MeanAggregatorGrad(aggregator) _cell_graph_executor.compile(grad_op, input_data, sens) def test_AttentionHead(): """Compile AttentionHead forward graph""" head = AttentionHead(1433, 8, in_drop_ratio=0.6, coef_drop_ratio=0.6, residual=False) input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32)) biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32)) _cell_graph_executor.compile(head, input_data, biases) def test_AttentionAggregator(): input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32)) biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32)) net = AttentionAggregator(1433, 8, 8) _cell_graph_executor.compile(net, input_data, biases)