# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train dataset. """ import os import re import numpy as np from mindspore.communication.management import init from mindspore.communication.management import get_rank from mindspore.communication.management import get_group_size from mindspore import Tensor def _count_unequal_element(data_expected, data_me, rtol, atol): assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_me) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, \ "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \ format(data_expected[greater], data_me[greater], error[greater]) def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): if np.any(np.isnan(data_expected)): assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan) elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan): _count_unequal_element(data_expected, data_me, rtol, atol) else: assert True def clean_all_ir_files(folder_path): if os.path.exists(folder_path): for file_name in os.listdir(folder_path): if file_name.endswith('.ir') or file_name.endswith('.dat') or file_name.endswith('.dot'): os.remove(os.path.join(folder_path, file_name)) def find_newest_validateir_file(folder_path): validate_files = map(lambda f: os.path.join(folder_path, f), filter(lambda f: re.match(r'\d+_validate_\d+.ir', f), os.listdir(folder_path))) return max(validate_files, key=os.path.getctime) class FakeDataInitMode: RandomInit = 0 OnesInit = 1 UniqueInit = 2 ZerosInit = 3 class FakeData: def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_classes=10, random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit): self.size = size self.rank_batch_size = batch_size self.total_batch_size = self.rank_batch_size self.random_offset = random_offset self.image_size = image_size self.num_classes = num_classes self.rank_size = 1 self.rank_id = 0 self.batch_index = 0 self.image_data_type = np.float32 self.label_data_type = np.float32 self.is_onehot = True self.fakedata_mode = fakedata_mode if use_parallel is True: init() self.rank_size = get_group_size() self.rank_id = get_rank() self.total_batch_size = self.rank_batch_size * self.rank_size assert (self.size % self.total_batch_size) == 0 self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size def get_dataset_size(self): return int(self.size / self.total_batch_size) def get_repeat_count(self): return 1 def set_image_data_type(self, data_type): self.image_data_type = data_type def set_label_data_type(self, data_type): self.label_data_type = data_type def set_label_onehot(self, is_onehot=True): self.is_onehot = is_onehot def create_tuple_iterator(self, num_epochs=-1, do_copy=True): _ = num_epochs return self def __getitem__(self, batch_index): if batch_index * self.total_batch_size >= len(self): raise IndexError("{} index out of range".format(self.__class__.__name__)) rng_state = np.random.get_state() np.random.seed(batch_index + self.random_offset) if self.fakedata_mode == FakeDataInitMode.OnesInit: img = np.ones(self.total_batch_data_size) elif self.fakedata_mode == FakeDataInitMode.ZerosInit: img = np.zeros(self.total_batch_data_size) elif self.fakedata_mode == FakeDataInitMode.UniqueInit: total_size = 1 for i in self.total_batch_data_size: total_size = total_size * i img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size) else: img = np.random.randn(*self.total_batch_data_size) target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size)) np.random.set_state(rng_state) img = img[self.rank_id] target = target[self.rank_id] img_ret = img.astype(self.image_data_type) target_ret = target.astype(self.label_data_type) if self.is_onehot: target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes)) target_onehot[np.arange(self.rank_batch_size), target] = 1 target_ret = target_onehot.astype(self.label_data_type) return Tensor(img_ret), Tensor(target_ret) def __len__(self): return self.size def __iter__(self): self.batch_index = 0 return self def reset(self): self.batch_index = 0 def __next__(self): if self.batch_index * self.total_batch_size < len(self): data = self[self.batch_index] self.batch_index += 1 return data raise StopIteration