# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_criteo.""" import os import pytest from mindspore import context from mindspore.train.model import Model from mindspore.common import set_seed from src.deepfm import ModelBuilder, AUCMetric from src.config import DataConfig, ModelConfig, TrainConfig from src.dataset import create_dataset, DataType from src.callback import EvalCallBack, LossCallBack, TimeMonitor set_seed(1) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_deepfm(): data_config = DataConfig() train_config = TrainConfig() device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id) rank_size = None rank_id = None dataset_path = "/home/workspace/mindspore_dataset/criteo_data/mindrecord/" print("dataset_path:", dataset_path) ds_train = create_dataset(dataset_path, train_mode=True, epochs=1, batch_size=train_config.batch_size, data_type=DataType(data_config.data_format), rank_size=rank_size, rank_id=rank_id) model_builder = ModelBuilder(ModelConfig, TrainConfig) train_net, eval_net = model_builder.get_train_eval_net() auc_metric = AUCMetric() model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) loss_file_name = './loss.log' time_callback = TimeMonitor(data_size=ds_train.get_dataset_size()) loss_callback = LossCallBack(loss_file_path=loss_file_name) callback_list = [time_callback, loss_callback] eval_file_name = './auc.log' ds_eval = create_dataset(dataset_path, train_mode=False, epochs=1, batch_size=train_config.batch_size, data_type=DataType(data_config.data_format)) eval_callback = EvalCallBack(model, ds_eval, auc_metric, eval_file_path=eval_file_name) callback_list.append(eval_callback) print("train_config.train_epochs:", train_config.train_epochs) model.train(train_config.train_epochs, ds_train, callbacks=callback_list) export_loss_value = 0.52 print("loss_callback.loss:", loss_callback.loss) assert loss_callback.loss < export_loss_value export_per_step_time = 30.0 print("time_callback:", time_callback.per_step_time) assert time_callback.per_step_time < export_per_step_time print("*******test case pass!********")